Icacgp-IGAC Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Icacgp-IGAC Abstracts Keynote Presentations Abstract ID Abstract Title Presenting Author & Affiliation K.001 Going Through a Phase: Particulate Water Margaret Tolbert, Dept. of Chemistry and in Atmospheric Aerosol CIRES, University of Colorado, Boulder CO USA K.002 The science of atmospheric composition and Ian Galbally, Climate Research Centre, chemistry: past, present and future CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia & Centre for Atmospheric Chemistry, School of Chemistry, University of Wollongong, New South Wales, Australia K.003 Atmospheric Chemistry Research from Hajime Akimoto, National Institute for Fundamentals to Policy Relevance – Environmental Studies, Center for Global Recent Research Experience – Environmenrtal Reserach, Tsukuba, Ibaraki, Japan Invited Oral Presentations Session 1: Atmospheric Chemistry & People Abstract ID Abstract Title Presenting Author & Affiliation 1.044 Emissions, Air pollution, Health and Laboratoire d’Aérologie, Université Paul Society in Africa Sabatier Toulouse IIICNRS, France 1.066 Atmospheric Chemistry: A quiet Rajesh Kumar, National Center for revolution helping people mitigate Atmospheric Research, Boulder, CO, USA risks of air pollution Session 2: Atmospheric Chemistry & Fundamentals 2.126 Linking theoretical kinetic studies with Luc Vereecken, Institute for Energy and laboratory and chamber experiments Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany 2.145 First steps to uncovering molecular level Nonne Prisle, Atmospheric Research Group, interactions of organic aerosol and cloud Nano and Molecular Systems Research Unit, droplets from direct observation using University of Oulu, PO Box 3000, 90014 synchrotron radiation. University of Oulu, Finland Session 3: Atmospheric Chemistry & Ecosystems 3.038 Biogenic modelling activities in eucalypt-rich Kathryn Emmerson, CSIRO Climate Science southeast Australia Centre, Aspendale, Victoria 3195, Australia 3.104 Contributions of commercial aircraft for Toshinobu MACHIDA, National Institute for researching atmospheric greenhouse gases Environmantal studies, 16-2 Onogawa, Tsukuba 305-8506, Japan Session 4: Atmospheric Chemistry & Climate/Weather 4.062 How do short-lived climate forcers affect William Collins, University of Reading, climate? Department of Meteorology, Reading, UK Session 5: Challenging the Future 5.011 Moving the full complexity of the ocean- Kimberly Prather, UC San Diego, Scripps atmosphere system into the laboratory for Institution of Oceanography, La Jolla, CA, fundamental chemistry studies USA, 92093 5.029 Observing Air Quality from Geostationary Jhoon Kim, Yonsei University, Department of Constellation Atmospheric Sciences, Seoul, Korea Abstract ID Abstract Title Presenting Author & Affiliation 5.062 Atmospheric Chemistry: Future Directions Guy Brasseur, National Center for Atmospheric Research, Boulder, CO, USA Oral Presentations Session 1: Atmospheric Chemistry & People Abstract ID Abstract Title Presenting Author & Affiliation 1.031 A New Top-Down Approach to Quantifying Chuyong Lin, Sun Yat-Sen University, the Spatial, Temporal, and Vertical Guangzhou, Guangdong, China (Early Career Distribution of Urban and Biomass Burning Scientist) Regions using Decadal Measurements from MOPITT and AERONET 1.055 Establishing Connections between Aerosol Yinon Rudich, Department of Earth and Chemical Composition and Possible Health Planetary Sciences, Weizmann Institute, Effects Rehovot, Israel 1.093 Decadal changes of ozone-NOx-VOC Kazuya Inoue, RISS / AIST, Tsukuba, Ibaraki, sensitivity over Japan estimated using Japan satellite data and their impact on the effectiveness of surface ozone mitigation policies inferred from air quality simulations. 1.095 Forecast the shipping emissions and impacts Huan Liu, Tsinghua University, Beijing, China in China 1.112 What level of air quality monitoring data is Aderiana Mbandi, South Eastern Kenya needed to support effective policy action to University (Early Career Scientist) reduce pollution? 1.124 Recent changes of trans-boundary air Piyush Bhardwaj, Gwangju Institute of pollution over Northeast Asia: Implications Science and Technology, School of Earth for future air quality in South Korea Science and Environmental engineering, Gwangju, 61005, Republic of Korea (Early Career Scientist) 1.146 Surface ozone variability in continental Pieter Gideon van Zyl, Unit for South Africa Environmental Sciences and Management, North-West University, Potchefstroom, South Africa 1.157 Trends of PM pollution and health effects in Svetlana Tsyro, Norwegian Meteorological Europe during the 1990s and 2000s: multi- Institute, P.O. Box 43, Blindern, N-0313 Oslo, model and observational assessment Norway 1.167 Towards improved quantification of Russian Kathy Law, Laboratoire Atmosphères, oil and gas extraction emissions based on Milieux, Observations Spatiales (LATMOS)- analysis of YAK-AEROSIB aircraft data CNRS, Paris, France 1.185 Air Quality in Puerto Rico in the Aftermath of Olga L Mayol-Bracero, Department of Hurricane Maria Environmental Science, University of Puerto Rico, San Juan, Puerto Rico 1.197 Detecting Human Emissions of Volatile Brian McDonald, University of Colorado, Chemical Products in Urban Atmospheres Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, USA; NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, Colorado, USA Abstract ID Abstract Title Presenting Author & Affiliation 1.205 The Tropospheric Ozone Assessment Report Owen Cooper, CIRES, University of (TOAR): A community-wide effort to Colorado/NOAA Earth System Research quantify tropospheric ozone in a rapidly Laboratory, Boulder changing world 1.208 Effect of Megacities on the Transport and Maria Dolores Andrés Hernández, University Transformation of Pollutants on the Regional of Bremen, Institute of Environmental to Global Scales (EMeRGe): an overview of Physics, Bremen, Germany the HALO airborne campaigns in Europe and Asia. 1.218 Source apportionment of particulate matter David Hagan, Massachusetts Institute of using a low-cost multi-pollutant air quality Technology, Department of Civil & sensor in an Indian megacity Environmental Engineering, Cambridge, AM 02139 (Early Career Scientist) Session 2: Atmospheric Chemistry & Fundamentals 2.003 An updated isoprene oxidation and Jean-François Müller, Royal Belgian Institute deposition scheme in the IMAGES model for Space Aeronomy 2.010 Reconciling organic auto-oxidation, new- Neil Donahue, Center for Atmospheric particle formation, and chamber secondary Particle Studies, Carnegie Mellon University, organic aerosol formation Pittsburgh PA 15213 USA 2.028 Kinetics of Criegee Intermediates Jim Lin, Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan 2.038 Aerosol formation and aging under MIN HU, State Key Joint Laboratory of atmospheric conditions in Environmental Simulation and Pollution China:application of a quasi-atmospheric Control, College of Environmental Sciences aerosol evolution study (QUALITY) chamber and Engineering, Peking University, Beijing, 100871, China 2.051 Insight into the in-cloud formation of oxalate Guohua Zhang, Guangzhou Institute of based on in situ measurement by single Geochemistry, Chinese Academy of particle mass spectrometry Sciences 2.085 Role of Sulfate Radical Anion Chemistry in Man Nin Chan, Earth System Science Heterogeneous OH Oxidation of Programme, Faculty of Science, The Chinese Organosulfates University of Hong Kong, Hong Kong 2.100 OH, HO2 and RO2 Radical and OH Reactivity Eloise Slater, School of Chemistry, University Observations during Wintertime and of Leeds, Leeds, West Yorkshire, United Summertime in Beijing, and comparison with Kingdom (Early Career Scientist) both steady state calculations and box model simulations. 2.104 ROOOH: the Missing Piece of the Puzzle for Christa Fittschen, University Lille / CNRS OH measurements in low NO Environments 2.113 Air/sea interfacial photochemistry is a global Christian George, Univ Lyon, Université source of organic vapors and aerosol Claude Bernard Lyon 1, CNRS, IRCELYON, F- particles 69626, Villeurbanne, France 2.119 Impact of temperature on molecular Cheng Wu, Department of Environmental composition of secondary organic aerosols Science and Analytical Chemistry, University from anthropogenic and biogenic sources: of Stockholm, Sweden (Early Career from lab to field Scientist) Abstract ID Abstract Title Presenting Author & Affiliation 2.141 The significant role of cloud chemistry in Christopher Holmes, Earth, Ocean, and tropospheric NOx and oxidant cycles Atmospheric Science, Florida State University, USA 2.152 A Comprehensive Test of the Recent Yuhan Liu, 1. State Key Joint Laboratory of Proposed HONO Sources in Field Environment Simulation and Pollution Measurements at Rural North China Plain Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China (Early Career Scientist) 2.159 Influence of Relative Humidity on the Christopher Cappa, Dept. of Civil & Heterogeneous Oxidation of Secondary Environmental Engineering, University of Organic Aerosol California, Davis, CA USA Session 3: Atmospheric Chemistry & Ecosystems 3.044 Development of an aerosol reanalysis Keiya Yumimoto, Research Institute for product - JRAero Applied Mechanics, Kyushu University, Kasuga, Fukuoka, Japan 3.059 Summertime observations of ultrafine Jonathan Abbatt, Department of Chemistry, particles and their growth to CCN sizes in the University of Toronto, Toronto,
Recommended publications
  • Examples of Point Source Air Pollution
    Examples Of Point Source Air Pollution Unmunitioned Istvan spectates some corregidor after unpolite Pierce inaugurated incompletely. Is Garcia storiated or flannelly when asphyxiate some porterhouse squibbing transitionally? Allometric Bradford spancelling prevalently while Everard always letting his clearwings besmears distally, he marver so edgily. Although no effective in. Each other funding opportunities for change in point source examples of pollution changes that p that the moa does escape to search of? It also discusses options for preventing and controlling pollution. These two ph change to birth to close this approach to read the environment can be higher than the relevant or diffuse water? Radiobiology for the Radiologist. NYC DEP participates in form number during State activities relating to NPS pollution, including the New York State Nonpoint Source Coordinating Committee. Choose properly sized woodstoves, certified to meet EPA emission standards; make wine that doors on all woodstoves fit tightly. Cities to source examples of? These effects of each year can be no competing interests of calves from acute effects for pollution examples of point source air pollution is absorbed by the toxics released during the particular illness. Pollution examples of organic chemicals are based on farm. Animals at pollution source pollutants on air pollutants in point source pollution does not be quite harmful effects on protecting healthy people breathe, central space heater. While capture one farm adds much pollution to the hawk, the cumulative amount of diffuse pollution has significant impacts on eye quality. Work on the examples of? Because it typically found in. Blue drain and yellow fish symbol used by the UK Environment Agency to raise awareness of the ecological impacts of contaminating surface drainage.
    [Show full text]
  • Late Breaking Posters
    LATE BREAKINGS POSTER SESSION 1 AEROSOL PHYSICS LB1 ON THE CAUSALITY BETWEEN MICROPARTICLE DETACHMENT AND BURST-SWEEP EVENTS Abdelmaged Ibrahim*, Raymond Brach, Patrick Dunn, University of Notre Dame AEROSOLS AND MATERIALS LB2 ALLOY NANOPARTICLES PRODUCED FROM LASER ABLATION OF ELEMENTAL MICROPARTICLE AEROSOLS Daniel O'Brien*, Gokul Malyavanatham, Desiderio Kovar, Michael Becker, John Keto, University of Texas at Austin LB3 GENERATION OF MONODISPERSE NICKEL NANOPARTICLES AS CATALYST FOR DIAMETER-CONTROLLED CARBON NANOTUBES Shintaro Sato, Akio Kawabata, Mizuhisa Nihei, Yuji Awano, Fujitsu Limited LB4 KINETIC MEASUREMENTS OF ALUMINUM NANOPARTICLE OXIDATION USING SINGLE PARTICLE MASS SPECTROMETRY Kihong Park, Ashish Rai, Department of Mechanical Engineering and Chemistry; University of Minnesota; Dong Geun Lee, School of Mechanical Engineering; Pusan National University; Michael Zachariah, Department of Mechanical Engineering and Chemistry; University of Minnesota HEALTH-RELATED AEROSOLS LB5 THE POTENTIAL OF INHALATION METHOD FOR VACCINATION AGAINST INFLUENZA Vladimir Sigaev, RCT&HRB LB6 CAPTURE OF VIRAL PARTICLES IN SOFT X-RAY ENHANCED CORONA SYSTEMS: CHARGE DISTRIBUTION AND TRANSPORT CHARACTERISTICS Pratim Biswas, Washington University in St. Louis; Christopher Hogan*, Cornell University; Myonghwa Lee, Washington Univ. in St. Louis INSTRUMENTATION AND METHODS LB7 A CONTINUOUS, LAMINAR FLOW, WATER-BASED CONDENSATION PARTICLE COUNTER Susanne V. Hering, Mark R. Stolzenburg, Aerosol Dynamics Inc.; Frederick R. Quant, Derek Oberreit, Quant
    [Show full text]
  • Calwater Field Studies Designed to Quantify the Roles of Atmospheric Rivers and Aerosols in Modulating U.S
    CALWATER FIELD STUDIES DESIGNED TO QUANTIFY THE ROLES OF ATMOSPHERIC RIVERS AND AEROSOLS IN MODULATING U.S. WEST COAST PRECIPITATION IN A CHANGING CLIMATE BY F. M. RALPH, K. A. PRATHER, D. CAYAN, J. R. SPAckmAN, P. DEMOTT, M. DETTINGER, C. FAIRALL, R. LEUNG, D. ROSENFELD, S. RUTLEDGE, D. WALISER, A. B. WHITE, J. COrdEIRA, A. MARTIN, J. HELLY, AND J. INTRIERI A group of meteorologists, hydrologists, climate scientists, atmospheric chemists, and oceanographers have created an interdisciplinary research effort to explore the causes of variability of rainfall, flooding and water supply along the U.S. West Coast. alWater is a multiyear program of field cam- air pollution, aerosol chemistry, and climate. The paigns, numerical modeling experiments, and purpose of the CalWater workshop was threefold: 1) to C scientific analysis focused on phenomena that discuss key science gaps and the potential for lever- are key to the water supply and associated extremes aging long-term Hydrometeorology Testbed (HMT) (drought, flood) in the U.S. West Coast region. Table 1 data collection in California (Ralph et al. 2013), 2) to summarizes CalWater’s development timeline. The explore interest in the potential impacts of anthropo- results from CalWater are also relevant in many genic aerosols on California’s water supply, and 3) to other regions around the globe. CalWater began as build on the Suppression of Precipitation (SUPRECIP) a workshop at Scripps Institution of Oceanography experiment from 2005 to 2007 (Rosenfeld et al. 2008b) (SIO) in 2008 that brought
    [Show full text]
  • Department of Atmospheric and Environmental Sciences 2013-14
    August 22, 2013 Department of Atmospheric and Environmental Sciences 2013-14 Incoming Graduate Students Back (L-R): Chao-Yuan Yang, Hannah Huelsing, Casey Peirano, Chu-Chun Huang, Yang-Yang Song, Adrian Santiago and Ben Moore Front (L-R): Geng Xia, Joshua Alland, Matt Vaughan, Eric Adamchick, Jeremy Berman, Ted Letcher and Michael Fischer Missing from photo: Chris Selca & Paul Slaski July 29, 2013 National Geographic Daily News Why Predicting Sea Ice Cover Is So Difficult It's hard to pinpoint when the Arctic will be sea ice free in the summer. Meltwater streams from ice near Svalbard, Norway. - Photograph by Ralph Lee Hopkins, National Geographic Jane J. Lee National Geographic Published July 16, 2013 Predicting Mother Nature is never an exact science. Weather forecasters can get it wrong, leaving people dressed for a rainy day high and dry. And the further out researchers try to predict things like air temperature or sea ice cover, the more uncertainty there is. But knowing how Earth's climate will react to natural and human-induced changes is important for governments and industry. (Related: "As Arctic Ice Melts, Rush Is on for Shipping Lanes, More.") Perhaps nowhere are the stakes as high as in the Arctic. The mineral, gas, and biological bounties are powerful economic attractions, drawing countries into a modern-age gold rush fueled by disappearing sea ice. (Related: "Russia Plants Underwater Flag, Claims Arctic Seafloor.") Predicting when the Arctic will be sea ice free in the summer months has occupied researchers for years. Estimates under high greenhouse gas emissions range from the year 2011 to 2098.
    [Show full text]
  • Influence of Sea Salt Aerosols on the Development of Mediterranean
    Atmos. Chem. Phys., 21, 13353–13368, 2021 https://doi.org/10.5194/acp-21-13353-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones Enrique Pravia-Sarabia1, Juan José Gómez-Navarro1, Pedro Jiménez-Guerrero1,2, and Juan Pedro Montávez1 1Physics of the Earth, Regional Campus of International Excellence (CEIR) “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain 2Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain Correspondence: Juan Pedro Montávez ([email protected]) Received: 23 December 2020 – Discussion started: 11 February 2021 Revised: 26 July 2021 – Accepted: 16 August 2021 – Published: 9 September 2021 Abstract. Medicanes are mesoscale tropical-like cyclones 1 Introduction that develop in the Mediterranean basin and represent a great hazard for the coastal population. The skill to accurately simulate them is of utmost importance to prevent econom- Mediterranean tropical-like cyclones, also known as medi- ical and personal damage. Medicanes are fueled by the la- canes (from mediterranean hurricanes), are mesoscale per- tent heat released in the condensation process associated turbations that exhibit tropical characteristics, such as an with convective activity, which is regulated by the pres- eye-like feature and warm core. These storms are character- ence and activation of cloud condensation nuclei, mainly ized by high wind speeds and vertically aligned geopoten- originating from sea salt aerosols (SSAs) for marine envi- tial height perturbations along different pressure levels. Just ronments. Henceforth, the purpose of this contribution is like regular tropical cyclones, medicanes represent a hazard twofold: assessing the effects of an interactive calculation of for the population of coastal areas.
    [Show full text]
  • CSL Peer-Reviewed Publications 2015-2020
    NOAA Chemical Sciences Laboratory 2015 – 2020 Peer-Reviewed Publications sorted by year of publication, then alphabetical by first author 2020 Akherati, A., Y. He, M. Coggon, A. Koss, A. Hodshire, K. Sekimoto, C. Warneke, J. de Gouw, L. Yee, J. Seinfeld, T. Onasch, S. Herndon, W. Knighton, C. Cappa, M. Kleeman, C. Lim, J. Kroll, J. Pierce, and S. Jathar, Oxygenated aromatic compounds are important precursors of secondary organic aerosol in biomass burning emissions, Environmental Science & Technology, 54(14), 8568-8579, doi:10.1021/acs.est.0c01345, 2020. Angevine, W.M., J.M. Edwards, M. Lothon, M.A. LeMone, and S. Osborne, Transition periods in the diurnally-varying atmospheric boundary layer over land, Boundary-Layer Meteorology, 177, 205-223, doi:10.1007/s10546-020-00515-y, 2020. Angevine, W.M., J. Olson, J. Gristey, I. Glenn, G. Feingold, and D. Turner, Scale awareness, resolved circulations, and practical limits in the MYNN-EDMF boundary layer and shallow cumulus scheme, Monthly Weather Review, 148(11), doi:10.1175/MWR-D-20-0066.1, 2020. Angevine, W.M., J. Peischl, A. Crawford, C. Loughner, I. Pollack, and C. Thompson, Errors in top-down estimates of emissions using a known source, Atmospheric Chemistry and Physics, 20, 11855-11868, doi:10.5194/acp-20-11855-2020, 2020. Archibald, A.T., J.L. Neu, Y. Elshorbany, O.R. Cooper, P.J. Young, H. Akiyoshi, R.A. Cox, M. Coyle, R. Derwent, M. Deushi, A. Finco, G.J. Frost, I.E. Galbally, G. Gerosa, C. Granier, P.T. Griffiths, R. Hossaini, L. Hu, P.Jöckel, B. Josse, M.Y.
    [Show full text]
  • The Postdoc Spring 2013 Table of Contents Saharan & Asian Dust End
    http://www7.national-academies.org/rap NRC Research Associateship Programs Newsletter Autumn 2011 RESEARCH ASSOCIATESHIP PROGRAMS The Postdoc Spring 2013 Table of Contents Saharan & Asian dust end Super Science Saturday in Boulder…….2 global journey in California Tabletop Molecular Movies …….... 3-4 Nigerian Technical Conference ….. 5 Radiation Res. Society Annual Mtg …. 6 Saharan & Asian Dust ………...…. ... 7 Raman Spectroscopy …………...…... 8 Better Watch Schedules for Navy..…... 9 Record-Setting X-Ray Jet ……....…... 10 Exploring Optics with iPad ..…… 11-12 Leatherback Sea Turtle Mysteries 13-14 Workshop at Sri Lanka University ….15 Super Science continued ………... 16 Nanoaluminosilicates ………….. 17-18 Turbulence & Ocean Optics …………. 19 Review Dates, Facebook, LinkedIn ….. 20 NOAA’s Hydrometeorology Testbed Project at Sugar Pine Dam continued on page 7 Turbulence, Ocean Optics & Future UNOLS Chief Scientist Optical properties of coastal and open ocean water and their impact on underwater optical signal transmis- sion are important for a wide range of practical and scientific applications. Un- derwater optics are known to be affected by particles in the water, i.e. the turbidity, but less is known about the effect of so-called “optical turbu- lence". Local changes in the index of refraction caused by small-scale tem- perature and salinity microstructure in the water can impact underwater electro- optical (EO) signal transmission. The phenomenon is similar to the "Schlieren" effect seen in air wavering over a hot candle or asphalt road. the UNOLS Figure 2: Dr. Silvia Matt, NRC Associate, looks on as instruments are deployed o٦ research vessel R/V New Horizon. continued on page 19 “The Postdoc” highlights research and activities of NRC Associates and Advisers in participating federal government agency laboratory programs with the NRC.
    [Show full text]
  • Annu Al Repor T 201 1-201 2
    ANNUAL REPORT 2011-2012 ANNUAL Goddard Earth Sciences Technology and Research Studies and Investigations GESTAR STAFF Abuhassan, Nader Jethva, Hiren Radcliff, Matthew Achuthavarier, Deepthi Jin, Jianjun Randles, Cynthia Anyamba, Assaf Jones, Randall Reale, Oreste Baird, Steve Jusem, Juan Carlos Retscher, Christian Barahona, Donifan Kekesi, Alex Reyes, Malissa Beck, Jefferson Kim, Dongchul Rousseaux, Cecile Bell, Benita Kim, Hyokyung Sayer, Andrew Belvedere, Debbie Kim, Kyu-Myong Schiffer, Robert Bindschadler, Robert Kniffen, Don Schindler, Trent Bridgman, Tom Korkin, Sergey Selkirk, Henry Brucker, Ludovic Kostis, Helen-Nicole Sharghi, Kayvon Brunt, Kelly Kowalewski, Matthew Shi, Jainn Jong (Roger) Buchard-Marchant, Virginie Kreutzinger, Rachel Sippel, Jason Burger, Matthew Kucsera, Tom Smith, Sarah Celarier, Edward Kurtz, Nathan Soebiyanto, Radina Chang, Yehui Kurylo, Michael Sokolowsky, Eric Chase, Tyler Lait, Leslie Southard, Adrian Chern, Jiun-Dar Lamsal, Lok Starr, Cynthia Chettri, Samir Laughlin, Daniel Steenrod, Stephen ACKNOWLEDGEMENTS Colombo, Oscar Lawford, Richard Stoyanova, Silvia Corso, William Lee, Dong Min Strahan, Susan Cote, Charles Lentz, Michael Strode, Sarah Dalnekoff, Julie Lewis, Katherine Sun, Zhibin Damoah, Richard Li, Feng Swanson, Andrew De Lannoy, Gabrielle J. Li, Xiaowen Taha, Ghassan de Matthaeis, Paolo Liang, Qing Tan, Qian Diehl, Thomas Liao, Liang Tao, Zhining Draper, Clara Lim, Young-Kwon Tian, Lin Duberstein, Genna Lin, Xin Ungar, Stephen Eck, Thomas Lyu, Chen-Hsuan (Joseph) Unninayar, Sushel Errico, Ronald
    [Show full text]
  • How Long Could We Survive Without It?
    Urban Insight is an initiative launched by Sweco The theme for 2019 is Urban Energy, describing In our insight reports, written by Sweco’s 2019 to illustrate our expertise – encompassing both various facets of sustainable urban develop- experts, we explore how citizens view and local knowledge and global capacity – as the ment about energy usage, renewable energy use urban areas and how local circumstances URBAN ENERGY leading adviser to the urban areas of Europe. and energy efficiency – with future challenges can be improved to create more liveable, This initiative offers unique insights into and opportunities in the new energy land- sustainable cities and communities. REPORT sustainable urban development in Europe, scape. from the citizens’ perspective. Please visit our website to learn more: ELECTRICITY: swecourbaninsight.com HOW LONG COULD WE SURVIVE WITHOUT IT? SWECOURBANINSIGHT.COM URBAN INSIGHT 2019 URBAN INSIGHT 2019 URBAN ENERGY URBAN ENERGY ELECTRICITY: ELECTRICITY: HOW LONG COULD WE HOW LONG COULD WE SURVIVE WITHOUT IT? SURVIVE WITHOUT IT? ELECTRICITY: HOW LONG COULD WE SURVIVE WITHOUT IT? ERKKI HÄRÖ SANNA-MARIA JÄRVENSIVU JUSSI ALILEHTO PASI HARAVUORI iii 1 URBAN INSIGHT 2019 URBAN INSIGHT 2019 URBAN ENERGY URBAN ENERGY ELECTRICITY: ELECTRICITY: HOW LONG COULD WE HOW LONG COULD WE SURVIVE WITHOUT IT? SURVIVE WITHOUT IT? CONTENTS 1 INTRODUCTION 4 CLIMATE CHANGE IS 2 CASE STUDY: WAKING UP WITHOUT ELECTRICITY 6 3 CONSEQUENCES OF POWER FAILURE: SET TO INCREASE HOMES, OFFICES AND SCHOOLS 12 4 CONSEQUENCES OF POWER FAILURE: THE LIKELIHOOD OF GROCERY STORES AND HOSPITALS 18 5 CONSEQUENCES OF POWER FAILURE: SEVERE WEATHER POWER AND PRODUCTION PLANTS 22 6 CHALLENGES ON THE NATIONAL LEVEL 26 AND THEREBY MORE 7 CONCLUSIONS AND RECOMMENDATIONS 36 8 ABOUT THE AUTHORS 40 FREQUENT DAMAGE 9 REFERENCES 42 TO ELECTRICAL SYSTEMS AFFECTING HUNDREDS OF MILLIONS OF PEOPLE.
    [Show full text]
  • WWRP/THORPEX, 15. Targeted Observations For
    Commission for Atmospheric TARGETED OBSERVATIONS FOR Sciences IMPROVING NUMERICAL WEATHER PREDICTION: AN OVERVIEW THORPEX International Programme Office Atmospheric Research and Environment Branch World Meteorological Organization Secretariat 7 bis, avenue de la Paix Case postale 2300 CH-1211 Geneva 2 World Weather Research Programme Switzerland www.wmo.int/thorpex WWRP/THORPEX No. 15 ! WORLD METEOROLOGICAL ORGANIZATION WORLD WEATHER RESEARCH PROGRAMME COMMISSION FOR ATMOSPHERIC SCIENCES TARGETED OBSERVATIONS FOR IMPROVING NUMERICAL WEATHER PREDICTION: AN OVERVIEW Prepared by Sharanya J. Majumdar and Co-authors WWRP/THORPEX No. 15 Table of Contents Abstract ................................................................................................................................................................................ i 1. INTRODUCTION..................................................................................................................................................... 1 2. REVIEW OF FIELD CAMPAIGNS AND OBSERVATIONS ................................................................................... 1 Pre-THORPEX era.................................................................................................................................................. 2 The THORPEX era.................................................................................................................................................. 2 3. THE TARGETED OBSERVING PROCEDURE.....................................................................................................
    [Show full text]
  • Ucp Abstractbook.Pdf
    Index Acquistapace, Claudia ................... 1 Henneberg, Olga ..........................67 Preissler, Jana ............................ 133 Adamidis, Panagiotis ..................... 2 Hernandez-Deckers, Daniel ........68 Pressel, Kyle ............................... 134 Adler, Bianca.................................. 3 Herzog, Michael ...........................69 Protat, Alain ............................... 135 Ament, Felix ................................... 4 Hohenegger, Cathy ......................70 Quaas, Johannes........................ 136 Baars, Holger ................................. 5 Holloway, Chris ............................71 Randall, Dave ............................. 137 Ban, Nikolina ................................. 6 Hoose, Corinna ............................72 Raschke, Ehrhard....................... 138 Bao, Jian-Wen................................ 7 Imamovic, Adel ............................73 Reichardt, Isabelle ..................... 139 Barthlott, Christian........................ 8 Jakob, Christian ............................74 Retsch, Matthias Heinz ............. 140 Baumgartner, Manuel................... 9 Jakub, Fabian ...............................75 Richard, Evelyne ........................ 141 Becker, Tobias ............................. 10 Jaruga, Anna.................................76 Romakkaniemi, Sami ................. 142 Beekmans, Christoph .................. 11 Jensen, Michael ...........................77 Romps, David ............................. 143 Behrendt, Andreas .....................
    [Show full text]
  • Air Dispersion Modeling Guidelines for Arizona Air Quality Permits
    Air Dispersion Modeling Guidelines for Arizona Air Quality Permits PREPARED BY: AIR QUALITY PERMIT SECTION AIR QUALITY DIVISION ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY September 23, 2013 TABLE OF CONTENTS 1 INTRODUCTION.......................................................................................................... 1 1.1 Overview of Regulatory Modeling ........................................................................... 2 1.2 Purpose of an Air Quality Modeling Analysis .......................................................... 2 1.3 Authority for Modeling ............................................................................................. 3 1.4 Acceptable Models.................................................................................................... 3 1.5 Overview of Modeling Protocols and Checklists ..................................................... 4 1.6 Overview of Modeling Reports ................................................................................ 5 2 LEVELS OF MODELING ANALYSIS SOPHISTICATION .................................. 5 2.1 Screening Modeling .................................................................................................. 6 2.2 Refined Modeling ..................................................................................................... 7 3 MODELING ANALYSIS FEATURES ..................................................................... 10 3.1 Modeling Worst-Case Scenarios............................................................................
    [Show full text]