Icacgp-IGAC Abstracts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Examples of Point Source Air Pollution
Examples Of Point Source Air Pollution Unmunitioned Istvan spectates some corregidor after unpolite Pierce inaugurated incompletely. Is Garcia storiated or flannelly when asphyxiate some porterhouse squibbing transitionally? Allometric Bradford spancelling prevalently while Everard always letting his clearwings besmears distally, he marver so edgily. Although no effective in. Each other funding opportunities for change in point source examples of pollution changes that p that the moa does escape to search of? It also discusses options for preventing and controlling pollution. These two ph change to birth to close this approach to read the environment can be higher than the relevant or diffuse water? Radiobiology for the Radiologist. NYC DEP participates in form number during State activities relating to NPS pollution, including the New York State Nonpoint Source Coordinating Committee. Choose properly sized woodstoves, certified to meet EPA emission standards; make wine that doors on all woodstoves fit tightly. Cities to source examples of? These effects of each year can be no competing interests of calves from acute effects for pollution examples of point source air pollution is absorbed by the toxics released during the particular illness. Pollution examples of organic chemicals are based on farm. Animals at pollution source pollutants on air pollutants in point source pollution does not be quite harmful effects on protecting healthy people breathe, central space heater. While capture one farm adds much pollution to the hawk, the cumulative amount of diffuse pollution has significant impacts on eye quality. Work on the examples of? Because it typically found in. Blue drain and yellow fish symbol used by the UK Environment Agency to raise awareness of the ecological impacts of contaminating surface drainage. -
Late Breaking Posters
LATE BREAKINGS POSTER SESSION 1 AEROSOL PHYSICS LB1 ON THE CAUSALITY BETWEEN MICROPARTICLE DETACHMENT AND BURST-SWEEP EVENTS Abdelmaged Ibrahim*, Raymond Brach, Patrick Dunn, University of Notre Dame AEROSOLS AND MATERIALS LB2 ALLOY NANOPARTICLES PRODUCED FROM LASER ABLATION OF ELEMENTAL MICROPARTICLE AEROSOLS Daniel O'Brien*, Gokul Malyavanatham, Desiderio Kovar, Michael Becker, John Keto, University of Texas at Austin LB3 GENERATION OF MONODISPERSE NICKEL NANOPARTICLES AS CATALYST FOR DIAMETER-CONTROLLED CARBON NANOTUBES Shintaro Sato, Akio Kawabata, Mizuhisa Nihei, Yuji Awano, Fujitsu Limited LB4 KINETIC MEASUREMENTS OF ALUMINUM NANOPARTICLE OXIDATION USING SINGLE PARTICLE MASS SPECTROMETRY Kihong Park, Ashish Rai, Department of Mechanical Engineering and Chemistry; University of Minnesota; Dong Geun Lee, School of Mechanical Engineering; Pusan National University; Michael Zachariah, Department of Mechanical Engineering and Chemistry; University of Minnesota HEALTH-RELATED AEROSOLS LB5 THE POTENTIAL OF INHALATION METHOD FOR VACCINATION AGAINST INFLUENZA Vladimir Sigaev, RCT&HRB LB6 CAPTURE OF VIRAL PARTICLES IN SOFT X-RAY ENHANCED CORONA SYSTEMS: CHARGE DISTRIBUTION AND TRANSPORT CHARACTERISTICS Pratim Biswas, Washington University in St. Louis; Christopher Hogan*, Cornell University; Myonghwa Lee, Washington Univ. in St. Louis INSTRUMENTATION AND METHODS LB7 A CONTINUOUS, LAMINAR FLOW, WATER-BASED CONDENSATION PARTICLE COUNTER Susanne V. Hering, Mark R. Stolzenburg, Aerosol Dynamics Inc.; Frederick R. Quant, Derek Oberreit, Quant -
Calwater Field Studies Designed to Quantify the Roles of Atmospheric Rivers and Aerosols in Modulating U.S
CALWATER FIELD STUDIES DESIGNED TO QUANTIFY THE ROLES OF ATMOSPHERIC RIVERS AND AEROSOLS IN MODULATING U.S. WEST COAST PRECIPITATION IN A CHANGING CLIMATE BY F. M. RALPH, K. A. PRATHER, D. CAYAN, J. R. SPAckmAN, P. DEMOTT, M. DETTINGER, C. FAIRALL, R. LEUNG, D. ROSENFELD, S. RUTLEDGE, D. WALISER, A. B. WHITE, J. COrdEIRA, A. MARTIN, J. HELLY, AND J. INTRIERI A group of meteorologists, hydrologists, climate scientists, atmospheric chemists, and oceanographers have created an interdisciplinary research effort to explore the causes of variability of rainfall, flooding and water supply along the U.S. West Coast. alWater is a multiyear program of field cam- air pollution, aerosol chemistry, and climate. The paigns, numerical modeling experiments, and purpose of the CalWater workshop was threefold: 1) to C scientific analysis focused on phenomena that discuss key science gaps and the potential for lever- are key to the water supply and associated extremes aging long-term Hydrometeorology Testbed (HMT) (drought, flood) in the U.S. West Coast region. Table 1 data collection in California (Ralph et al. 2013), 2) to summarizes CalWater’s development timeline. The explore interest in the potential impacts of anthropo- results from CalWater are also relevant in many genic aerosols on California’s water supply, and 3) to other regions around the globe. CalWater began as build on the Suppression of Precipitation (SUPRECIP) a workshop at Scripps Institution of Oceanography experiment from 2005 to 2007 (Rosenfeld et al. 2008b) (SIO) in 2008 that brought -
Department of Atmospheric and Environmental Sciences 2013-14
August 22, 2013 Department of Atmospheric and Environmental Sciences 2013-14 Incoming Graduate Students Back (L-R): Chao-Yuan Yang, Hannah Huelsing, Casey Peirano, Chu-Chun Huang, Yang-Yang Song, Adrian Santiago and Ben Moore Front (L-R): Geng Xia, Joshua Alland, Matt Vaughan, Eric Adamchick, Jeremy Berman, Ted Letcher and Michael Fischer Missing from photo: Chris Selca & Paul Slaski July 29, 2013 National Geographic Daily News Why Predicting Sea Ice Cover Is So Difficult It's hard to pinpoint when the Arctic will be sea ice free in the summer. Meltwater streams from ice near Svalbard, Norway. - Photograph by Ralph Lee Hopkins, National Geographic Jane J. Lee National Geographic Published July 16, 2013 Predicting Mother Nature is never an exact science. Weather forecasters can get it wrong, leaving people dressed for a rainy day high and dry. And the further out researchers try to predict things like air temperature or sea ice cover, the more uncertainty there is. But knowing how Earth's climate will react to natural and human-induced changes is important for governments and industry. (Related: "As Arctic Ice Melts, Rush Is on for Shipping Lanes, More.") Perhaps nowhere are the stakes as high as in the Arctic. The mineral, gas, and biological bounties are powerful economic attractions, drawing countries into a modern-age gold rush fueled by disappearing sea ice. (Related: "Russia Plants Underwater Flag, Claims Arctic Seafloor.") Predicting when the Arctic will be sea ice free in the summer months has occupied researchers for years. Estimates under high greenhouse gas emissions range from the year 2011 to 2098. -
Influence of Sea Salt Aerosols on the Development of Mediterranean
Atmos. Chem. Phys., 21, 13353–13368, 2021 https://doi.org/10.5194/acp-21-13353-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones Enrique Pravia-Sarabia1, Juan José Gómez-Navarro1, Pedro Jiménez-Guerrero1,2, and Juan Pedro Montávez1 1Physics of the Earth, Regional Campus of International Excellence (CEIR) “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain 2Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain Correspondence: Juan Pedro Montávez ([email protected]) Received: 23 December 2020 – Discussion started: 11 February 2021 Revised: 26 July 2021 – Accepted: 16 August 2021 – Published: 9 September 2021 Abstract. Medicanes are mesoscale tropical-like cyclones 1 Introduction that develop in the Mediterranean basin and represent a great hazard for the coastal population. The skill to accurately simulate them is of utmost importance to prevent econom- Mediterranean tropical-like cyclones, also known as medi- ical and personal damage. Medicanes are fueled by the la- canes (from mediterranean hurricanes), are mesoscale per- tent heat released in the condensation process associated turbations that exhibit tropical characteristics, such as an with convective activity, which is regulated by the pres- eye-like feature and warm core. These storms are character- ence and activation of cloud condensation nuclei, mainly ized by high wind speeds and vertically aligned geopoten- originating from sea salt aerosols (SSAs) for marine envi- tial height perturbations along different pressure levels. Just ronments. Henceforth, the purpose of this contribution is like regular tropical cyclones, medicanes represent a hazard twofold: assessing the effects of an interactive calculation of for the population of coastal areas. -
CSL Peer-Reviewed Publications 2015-2020
NOAA Chemical Sciences Laboratory 2015 – 2020 Peer-Reviewed Publications sorted by year of publication, then alphabetical by first author 2020 Akherati, A., Y. He, M. Coggon, A. Koss, A. Hodshire, K. Sekimoto, C. Warneke, J. de Gouw, L. Yee, J. Seinfeld, T. Onasch, S. Herndon, W. Knighton, C. Cappa, M. Kleeman, C. Lim, J. Kroll, J. Pierce, and S. Jathar, Oxygenated aromatic compounds are important precursors of secondary organic aerosol in biomass burning emissions, Environmental Science & Technology, 54(14), 8568-8579, doi:10.1021/acs.est.0c01345, 2020. Angevine, W.M., J.M. Edwards, M. Lothon, M.A. LeMone, and S. Osborne, Transition periods in the diurnally-varying atmospheric boundary layer over land, Boundary-Layer Meteorology, 177, 205-223, doi:10.1007/s10546-020-00515-y, 2020. Angevine, W.M., J. Olson, J. Gristey, I. Glenn, G. Feingold, and D. Turner, Scale awareness, resolved circulations, and practical limits in the MYNN-EDMF boundary layer and shallow cumulus scheme, Monthly Weather Review, 148(11), doi:10.1175/MWR-D-20-0066.1, 2020. Angevine, W.M., J. Peischl, A. Crawford, C. Loughner, I. Pollack, and C. Thompson, Errors in top-down estimates of emissions using a known source, Atmospheric Chemistry and Physics, 20, 11855-11868, doi:10.5194/acp-20-11855-2020, 2020. Archibald, A.T., J.L. Neu, Y. Elshorbany, O.R. Cooper, P.J. Young, H. Akiyoshi, R.A. Cox, M. Coyle, R. Derwent, M. Deushi, A. Finco, G.J. Frost, I.E. Galbally, G. Gerosa, C. Granier, P.T. Griffiths, R. Hossaini, L. Hu, P.Jöckel, B. Josse, M.Y. -
The Postdoc Spring 2013 Table of Contents Saharan & Asian Dust End
http://www7.national-academies.org/rap NRC Research Associateship Programs Newsletter Autumn 2011 RESEARCH ASSOCIATESHIP PROGRAMS The Postdoc Spring 2013 Table of Contents Saharan & Asian dust end Super Science Saturday in Boulder…….2 global journey in California Tabletop Molecular Movies …….... 3-4 Nigerian Technical Conference ….. 5 Radiation Res. Society Annual Mtg …. 6 Saharan & Asian Dust ………...…. ... 7 Raman Spectroscopy …………...…... 8 Better Watch Schedules for Navy..…... 9 Record-Setting X-Ray Jet ……....…... 10 Exploring Optics with iPad ..…… 11-12 Leatherback Sea Turtle Mysteries 13-14 Workshop at Sri Lanka University ….15 Super Science continued ………... 16 Nanoaluminosilicates ………….. 17-18 Turbulence & Ocean Optics …………. 19 Review Dates, Facebook, LinkedIn ….. 20 NOAA’s Hydrometeorology Testbed Project at Sugar Pine Dam continued on page 7 Turbulence, Ocean Optics & Future UNOLS Chief Scientist Optical properties of coastal and open ocean water and their impact on underwater optical signal transmis- sion are important for a wide range of practical and scientific applications. Un- derwater optics are known to be affected by particles in the water, i.e. the turbidity, but less is known about the effect of so-called “optical turbu- lence". Local changes in the index of refraction caused by small-scale tem- perature and salinity microstructure in the water can impact underwater electro- optical (EO) signal transmission. The phenomenon is similar to the "Schlieren" effect seen in air wavering over a hot candle or asphalt road. the UNOLS Figure 2: Dr. Silvia Matt, NRC Associate, looks on as instruments are deployed o٦ research vessel R/V New Horizon. continued on page 19 “The Postdoc” highlights research and activities of NRC Associates and Advisers in participating federal government agency laboratory programs with the NRC. -
Annu Al Repor T 201 1-201 2
ANNUAL REPORT 2011-2012 ANNUAL Goddard Earth Sciences Technology and Research Studies and Investigations GESTAR STAFF Abuhassan, Nader Jethva, Hiren Radcliff, Matthew Achuthavarier, Deepthi Jin, Jianjun Randles, Cynthia Anyamba, Assaf Jones, Randall Reale, Oreste Baird, Steve Jusem, Juan Carlos Retscher, Christian Barahona, Donifan Kekesi, Alex Reyes, Malissa Beck, Jefferson Kim, Dongchul Rousseaux, Cecile Bell, Benita Kim, Hyokyung Sayer, Andrew Belvedere, Debbie Kim, Kyu-Myong Schiffer, Robert Bindschadler, Robert Kniffen, Don Schindler, Trent Bridgman, Tom Korkin, Sergey Selkirk, Henry Brucker, Ludovic Kostis, Helen-Nicole Sharghi, Kayvon Brunt, Kelly Kowalewski, Matthew Shi, Jainn Jong (Roger) Buchard-Marchant, Virginie Kreutzinger, Rachel Sippel, Jason Burger, Matthew Kucsera, Tom Smith, Sarah Celarier, Edward Kurtz, Nathan Soebiyanto, Radina Chang, Yehui Kurylo, Michael Sokolowsky, Eric Chase, Tyler Lait, Leslie Southard, Adrian Chern, Jiun-Dar Lamsal, Lok Starr, Cynthia Chettri, Samir Laughlin, Daniel Steenrod, Stephen ACKNOWLEDGEMENTS Colombo, Oscar Lawford, Richard Stoyanova, Silvia Corso, William Lee, Dong Min Strahan, Susan Cote, Charles Lentz, Michael Strode, Sarah Dalnekoff, Julie Lewis, Katherine Sun, Zhibin Damoah, Richard Li, Feng Swanson, Andrew De Lannoy, Gabrielle J. Li, Xiaowen Taha, Ghassan de Matthaeis, Paolo Liang, Qing Tan, Qian Diehl, Thomas Liao, Liang Tao, Zhining Draper, Clara Lim, Young-Kwon Tian, Lin Duberstein, Genna Lin, Xin Ungar, Stephen Eck, Thomas Lyu, Chen-Hsuan (Joseph) Unninayar, Sushel Errico, Ronald -
How Long Could We Survive Without It?
Urban Insight is an initiative launched by Sweco The theme for 2019 is Urban Energy, describing In our insight reports, written by Sweco’s 2019 to illustrate our expertise – encompassing both various facets of sustainable urban develop- experts, we explore how citizens view and local knowledge and global capacity – as the ment about energy usage, renewable energy use urban areas and how local circumstances URBAN ENERGY leading adviser to the urban areas of Europe. and energy efficiency – with future challenges can be improved to create more liveable, This initiative offers unique insights into and opportunities in the new energy land- sustainable cities and communities. REPORT sustainable urban development in Europe, scape. from the citizens’ perspective. Please visit our website to learn more: ELECTRICITY: swecourbaninsight.com HOW LONG COULD WE SURVIVE WITHOUT IT? SWECOURBANINSIGHT.COM URBAN INSIGHT 2019 URBAN INSIGHT 2019 URBAN ENERGY URBAN ENERGY ELECTRICITY: ELECTRICITY: HOW LONG COULD WE HOW LONG COULD WE SURVIVE WITHOUT IT? SURVIVE WITHOUT IT? ELECTRICITY: HOW LONG COULD WE SURVIVE WITHOUT IT? ERKKI HÄRÖ SANNA-MARIA JÄRVENSIVU JUSSI ALILEHTO PASI HARAVUORI iii 1 URBAN INSIGHT 2019 URBAN INSIGHT 2019 URBAN ENERGY URBAN ENERGY ELECTRICITY: ELECTRICITY: HOW LONG COULD WE HOW LONG COULD WE SURVIVE WITHOUT IT? SURVIVE WITHOUT IT? CONTENTS 1 INTRODUCTION 4 CLIMATE CHANGE IS 2 CASE STUDY: WAKING UP WITHOUT ELECTRICITY 6 3 CONSEQUENCES OF POWER FAILURE: SET TO INCREASE HOMES, OFFICES AND SCHOOLS 12 4 CONSEQUENCES OF POWER FAILURE: THE LIKELIHOOD OF GROCERY STORES AND HOSPITALS 18 5 CONSEQUENCES OF POWER FAILURE: SEVERE WEATHER POWER AND PRODUCTION PLANTS 22 6 CHALLENGES ON THE NATIONAL LEVEL 26 AND THEREBY MORE 7 CONCLUSIONS AND RECOMMENDATIONS 36 8 ABOUT THE AUTHORS 40 FREQUENT DAMAGE 9 REFERENCES 42 TO ELECTRICAL SYSTEMS AFFECTING HUNDREDS OF MILLIONS OF PEOPLE. -
WWRP/THORPEX, 15. Targeted Observations For
Commission for Atmospheric TARGETED OBSERVATIONS FOR Sciences IMPROVING NUMERICAL WEATHER PREDICTION: AN OVERVIEW THORPEX International Programme Office Atmospheric Research and Environment Branch World Meteorological Organization Secretariat 7 bis, avenue de la Paix Case postale 2300 CH-1211 Geneva 2 World Weather Research Programme Switzerland www.wmo.int/thorpex WWRP/THORPEX No. 15 ! WORLD METEOROLOGICAL ORGANIZATION WORLD WEATHER RESEARCH PROGRAMME COMMISSION FOR ATMOSPHERIC SCIENCES TARGETED OBSERVATIONS FOR IMPROVING NUMERICAL WEATHER PREDICTION: AN OVERVIEW Prepared by Sharanya J. Majumdar and Co-authors WWRP/THORPEX No. 15 Table of Contents Abstract ................................................................................................................................................................................ i 1. INTRODUCTION..................................................................................................................................................... 1 2. REVIEW OF FIELD CAMPAIGNS AND OBSERVATIONS ................................................................................... 1 Pre-THORPEX era.................................................................................................................................................. 2 The THORPEX era.................................................................................................................................................. 2 3. THE TARGETED OBSERVING PROCEDURE..................................................................................................... -
Ucp Abstractbook.Pdf
Index Acquistapace, Claudia ................... 1 Henneberg, Olga ..........................67 Preissler, Jana ............................ 133 Adamidis, Panagiotis ..................... 2 Hernandez-Deckers, Daniel ........68 Pressel, Kyle ............................... 134 Adler, Bianca.................................. 3 Herzog, Michael ...........................69 Protat, Alain ............................... 135 Ament, Felix ................................... 4 Hohenegger, Cathy ......................70 Quaas, Johannes........................ 136 Baars, Holger ................................. 5 Holloway, Chris ............................71 Randall, Dave ............................. 137 Ban, Nikolina ................................. 6 Hoose, Corinna ............................72 Raschke, Ehrhard....................... 138 Bao, Jian-Wen................................ 7 Imamovic, Adel ............................73 Reichardt, Isabelle ..................... 139 Barthlott, Christian........................ 8 Jakob, Christian ............................74 Retsch, Matthias Heinz ............. 140 Baumgartner, Manuel................... 9 Jakub, Fabian ...............................75 Richard, Evelyne ........................ 141 Becker, Tobias ............................. 10 Jaruga, Anna.................................76 Romakkaniemi, Sami ................. 142 Beekmans, Christoph .................. 11 Jensen, Michael ...........................77 Romps, David ............................. 143 Behrendt, Andreas ..................... -
Air Dispersion Modeling Guidelines for Arizona Air Quality Permits
Air Dispersion Modeling Guidelines for Arizona Air Quality Permits PREPARED BY: AIR QUALITY PERMIT SECTION AIR QUALITY DIVISION ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY September 23, 2013 TABLE OF CONTENTS 1 INTRODUCTION.......................................................................................................... 1 1.1 Overview of Regulatory Modeling ........................................................................... 2 1.2 Purpose of an Air Quality Modeling Analysis .......................................................... 2 1.3 Authority for Modeling ............................................................................................. 3 1.4 Acceptable Models.................................................................................................... 3 1.5 Overview of Modeling Protocols and Checklists ..................................................... 4 1.6 Overview of Modeling Reports ................................................................................ 5 2 LEVELS OF MODELING ANALYSIS SOPHISTICATION .................................. 5 2.1 Screening Modeling .................................................................................................. 6 2.2 Refined Modeling ..................................................................................................... 7 3 MODELING ANALYSIS FEATURES ..................................................................... 10 3.1 Modeling Worst-Case Scenarios............................................................................