Gas Processing)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sanctions Intelligence Update
July 17, 2014 SANCTIONS INTELLIGENCE UPDATE GENNADY TIMCHENKO & VOLGA GROUP adapting BUSINESS FOLLOWING U.S. & Canadian sanctions Overview In March and April, the US government sanctioned Russian businessman Gennady Timchenko, his Luxembourg-registered holding company Volga Group, and ten related subsidiaries. Timchenko was identified as a “member of the Russian leadership’s inner circle,” whose involvement in the energy sector was “directly linked to [President] Putin.” To date, Canada has sanctioned Timchenko, Volga Group, and nine Volga Group subsidiaries. The European Union has not acted against Timchenko or Volga Group. Since the announcement of US and Canadian sanctions, Timchenko and Volga Group- controlled firms have announced new projects in Asia, Europe, and Syria with reported financing from Chinese and Russian banks, including institutions sanctioned by the US on July 16. Financial institutions engaged in global business should consider the implications for AML and sanctions risk management. Timchenko’s post-sanctionS business ventures in China In late April 2014, President Putin appointed Gennady Timchenko to lead the Russia-China Business Council (RCBC), a body created in 2004 to expand partnerships between the two countries. Timchenko told reporters after President Putin’s RCBC announcement: “You know what Putin said? He introduced me by As head of RCBC, Timchenko is advancing Volga Group interests in saying Mr. Timchenko is the head of our business council. In other China. words – it is my words here – he is our main man for China.” • In late May 2014, Volga Group is constructing a terminal for announced a joint-venture with coal and iron ore shipments in the state-owned China Harbour Russia’s Far East. -
LNG Plant Cost Reduction 2014–18
October 2018 LNG Plant Cost Reduction 2014–18 OIES PAPER: NG137 Brian Songhurst Research Associate, OIES The contents of this paper are the author’s sole responsibility. They do not necessarily represent the views of the Oxford Institute for Energy Studies or any of its members. Copyright © 2018 Oxford Institute for Energy Studies (Registered Charity, No. 286084) This publication may be reproduced in part for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the Oxford Institute for Energy Studies. ISBN: 978-1-78467-120-4 DOI: https://doi.org/10.26889/9781784671204 i LNG Plant Cost Reduction 2014–18 – October 2018 Acknowledgements My thanks to fellow OIES colleague Claudio-Steuer for his contributions during the drafting of this paper. My thanks also to the following industry colleagues for their review and comments on the draft: Toby Chancellor-Weale, Chair, IChemE Oil and Natural Gas Special Interest Group (SONG) Chris Spilsbury, LNG Specialists Ltd John Rushbrook, Consultant ii LNG Plant Cost Reduction 2014–18 – October 2018 Preface In his recent papers for OIES on the future of gas in Europe and the global energy economy, Jonathan Stern identified affordability as a key factor in determining whether gas would play a major role in Non-OECD countries. As the majority of traded gas will be LNG, the key question is therefore whether the cost of developing new liquefaction projects can be low enough to allow the gas to be competitive when it reaches the end consumer. -
Annual Report 2007
INDONESIAN PETROLEUM ASSOCIATION 2007 ANNUAL REPORT THIRTY-SIXTH GENERAL MEETING DECEMBER 5th, 2007 TABLE OF CONTENTS SECTION DESCRIPTION 1 President’s Report 2 Treasurer’s Report 3 Communications Committee Report 4 Convention Committee Report 5 Data Management Committee Report 6 Downstream Committee Report 7 Environment & Safety Committee Report 8 Finance & Tax Committee Report 9 Human Resources Committee Report 10 Indonesian Crude Price (ICP) Committee Report 11 KRIS Committee Report 12 LNG & Gas Sales Committee Report 13 Professional Division Committee Report 14 Regulatory Affairs Committee Report 15 Security & Local Relations Committee Report 16 Service Companies Committee Report 17 University Assistance Committee Report 18 List of Companies & Associates SECTION 1 INDONESIAN PETROLEUM ASSOCIATION PRESIDENT’S REPORT - 2007 by Chris A. Prattini On behalf of IPA Board of Directors December 2007 www.ipa.or.id Page 1 of 16 CONTENTS PAGE INTRODUCTION 4 IPA MEMBERSHIP AND OBJECTIVES 5 IPA PERFORMANCE AGAINST OBJECTIVES 6 GENERAL COMMENTARY 9 IN CONCLUSION 11 Page 2 of 16 LIST OF FIGURES FIGURE 1 HISTORICAL OIL & CONDENSATE PRODUCTION FIGURE 2 LIQUIDS PRODUCTION VS COMSUMPTION FIGURE 3 HISTORICAL INDONESIA LICENSE AWARDS FIGURE 4 – 9 2007 IPA OBJECTIVES FIGURE 10 HISTORICAL COST RECOVERY Page 3 of 16 INDONESIAN PETROLEUM ASSOCIATION President’s Report for 2007 INTRODUCTION Throughout this year, much emphasis has been placed on the critical need to restore and sustain growth in oil and gas production volumes. Preliminary figures suggest that gas production will continue its historical growth trend with a forecasted 7% increase from 2006 and projections of sustained growth over the next 3 years. Gas reserves have also increased as a result of numerous discoveries in both producing and exploration PSCs. -
Prices and Crisis – LNG and Australia's East Coast Gas Market
March 2018 Prices and crisis: LNG and Australia’s East Coast gas market Introduction In 2017, a gas crisis emerged in Australia’s East Coast gas market. Gas prices had increased rapidly from mid-2016 as the full effect of the three LNG projects starting operations on Curtis Island worked through the gas market, putting domestic energy users under pressure. In March 2017, the Australian Energy Market Operator (AEMO) forecast gas shortages in coming years, potentially leading to blackouts and industrial closures. While gas shortages are no longer forecast, challenges in the East Coast gas market remain. This paper examines recent events in Australia’s East Coast gas market, the challenges ahead, and the relevance of these developments for other countries.1 The paper identifies three phases in the East Coast gas market’s recent history. Firstly, between 2010 and mid-2016, prices in the East Coast gas market rose gradually, driven by LNG netbacks and the rising cost of gas production. Then, between mid-2016 and mid-2017, prices climbed above export parity levels, as gas that was previously being supplied to domestic consumers (both by LNG projects and by other producers) was diverted for export, leading to a deterioration in competition in the domestic market. Finally, as of mid-2017, prices appear to have stabilised around export parity levels,2 with LNG projects and other producers increasing gas sales to the domestic market. The episode of high prices during much of 2016 and 2017 highlights the impact that LNG projects can have on domestic gas prices on Australia’s East Coast. -
Changing LNG Market Dynamics – Implications on Supply Security in the APEC Region
Changing LNG Market Dynamics – Implications on Supply Security in the APEC Region APEC Oil and Gas Security Studies | Series 17 APEC Energy Working Group September 2020 APEC Project: EWG 01 2020S Produced by Asia Pacific Energy Research Centre (APERC) Institute of Energy Economics, Japan Inui Building, Kachidoki 11F, 1-13-1 Kachidoki Chuo-ku, Tokyo 104-0054 Japan Tel: (813) 5144-8551 Fax: (813) 5144-8555 E-mail: [email protected] (administration) Website: http://aperc.or.jp/ For Asia-Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace Singapore 119616 Tel: (65) 68919 600 Fax: (65) 68919 690 Email: [email protected] Website: www.apec.org © 2020 APEC Secretariat APEC#220-RE-01.9 ISBN: 978-981-14-7794-2 OGSS Series 17 Changing LNG Market Dynamics – Implications on Supply Security in the APEC Region 3 | P a g e TABLE OF CONTENTS Table of Contents .......................................................................................................................... 3 Foreword ....................................................................................................................................... 6 Acknowledgements ....................................................................................................................... 7 Project coordinators .................................................................................................................. 7 Authors ...................................................................................................................................... 7 Editors -
The Oman Liquefied Natural Gas Project L' Usine De
THE OMAN LIQUEFIED NATURAL GAS PROJECT L’ USINE DE LIQUEFACTION DE GAZ NATUREL D’ OMAN G.Searle General Manager and CEO M.J.J.Koekkoek Operations Manager Oman LNG, Qalhat Sultanate of Oman ABSTRACT Oman Liquefied Natural Gas L.L.C. (OLNG) is a limited liability incorporated joint venture Company organised, since 1994, under the Laws of the Sultanate of Oman. It engages in the business of producing and selling Liquefied Natural Gas (LNG) and by- product Natural Gas Liquids (NGL’s). The plant liquefies Natural gas using two identical process trains, with currently the single largest LNG production capacity of 3.3. mtpa in the world. Since the start in April 2000 the plant is now delivering LNG to Korea and Japan on a regular basis as well as spot cargoes to USA and Spain. The LNG plant has been successfully commissioned well within budget and on time due to the good collaboration between OLNG and its Contractors. Technically the plant is characterized by a very low specific capital cost, compared to other recent LNG projects. The paper describes the experience during engineering, construction and initial operation of the project characteristics that are new in the LNG industry and gives an overview of the key lessons learned. RESUME La societe Oman LNG LLC (OLNG) est une entreprise en coparticipation etablie en 1994 sous le regime du Sultanat d'Oman. Son activite premiere est la production et la commercialisation de Gaz Naturel Liquefie (GNL) et d'essence legere. L’ usine de GNL, comporte deux modules de liquefaction, chacun d’une capacite de 3,3 millions de tonnes par an qui sont actuellement les plus grands au monde de ce type. -
Yamal Lng: Meeting the Challenges of Natural Gas Liquefaction in the Arctic
YAMAL LNG: MEETING THE CHALLENGES OF NATURAL GAS LIQUEFACTION IN THE ARCTIC Christopher Ott1, Igor Chasnyk2, Sander Kaart2, Christian Bladanet3, Benoit Laflotte3, Guillaume Le-Ridant3, Benoit Delva3, and Oriano Zucchi4 1 3 Air Products and Chemicals, Inc. Yamgaz (TechnipFMC) 2 4 JSC Yamal LNG Baker Hughes, a GE Company The Yamal liquefied natural gas (LNG) facility is an integrated project located north of the arctic circle on the Yamal Peninsula in northern Russia. The project consists of three LNG trains that produce a total of 16.5 million tonnes per annum (mtpa), along with substantial infrastructure that includes extensive living accommodations, power generation utilities, an ice-free deep-water sea port, and an international airport. The geo-political context, project finance and the extraordinary human endeavor of a project of this size in the arctic were challenges rarely seen in the past. As this is the northern-most operating LNG facility in the world, this paper will cover the achievements of the project, including developing the largest Air Products AP-C3MR™ LNG Process train, constructing a highly modularized project in a harsh environment and successfully loading the first cargo during the polar winter night. This paper focuses on technological features that had to be carefully managed, for example: - Successfully implementing a new high availability, maximum capacity, parallel C3/MR compressor arrangement that required extensive collaboration between the main contractor, compressor supplier, plant operator, and process licensor to achieve the 5.5 mtpa capacity per train - Ethane and propane refrigerant make-up could be produced early due to the turbo-expander based NGL recovery unit - The commissioning and defrosting, under conditions where water exists only as a solid, also required adapting the warm climate methodology - Managing hydrates - Air cooling, in an environment with a very large winter-to-summer range (-40°C to +10°C) The paper will conclude by describing the successful operation and performance test of all three Yamal LNG trains. -
LNG Unlimited 17 November Layout 1
LNG Unlimited LNG JOURNAL PUBLICATION 17 November 2020 French shipping line CMA CGM begins new era for European LNG bunkering UNLIMITED Marseille-based firm AGENDA starts fuel operations ENGINEERING in Rotterdam for its growing LNG-fueled fleet Japan’s JGC says LNG Canada is LNG News Editor progressing as other contracts expected The bunkering programme has started in the port of Rotterdam 2 for France-based container group CMA CGM with its first vessel, one PROJECTS of 26 the Marseilles shipping line has ordered, being refuelled after arriving on its maiden voyage from Dutch port will be main provider of LNG for container- Asia. The CMA CGM group pro- late head of CMA CGM after whom The bunkering vessel in the gramme to operate a new class of the newly-bunkered vessel is Rotterdam operation, the “Gas LNG-powered vessels is now well named. Agility”, is currently the largest in Kosmos venture for underway with the “CMA CGM “As well as being reliable, LNG the LNG fuel sector. CMA CGM has Mauritania-Senegal FLNG is advancing Jacques Saade” receiving fuel on is the best available technology a contract with French energy amid output boost November 12. for significantly improving air major Total for LNG bunkering for quality and contributing towards its container fleet. 3 Key role tackling global warming,” added The “Gas Agility” is owned The Port of Rotterdam will play Saadé. by Japanese shipping company CORPORATE a key role in refuelling the LNG- In November 2017, CMA CGM Mitsui OSK Lines and chartered Air Products reports powered fleet, which will operate made the decision to order the to Total. -
Oil and Gas in Indonesia Investment and Taxation Guide
Oil and Gas in Indonesia Investment and Taxation Guide September 2019, 10th Edition www.pwc.com/id This page and cover photo courtesy of: PT Medco Energi Internasional Tbk. DISCLAIMER: This publication has been prepared for general guidance on matters of interest only, and does not constitute professional advice. You should not act upon the information contained in this publication without obtaining specific professional advice. No representation or warranty (express or implied) is given as to the accuracy or completeness of the information contained in this publication and, to the extent permitted by law, KAP Tanudiredja, Wibisana, Rintis & Rekan, PT Prima Wahana Caraka, PT PricewaterhouseCoopers Indonesia Advisory, PT PricewaterhouseCoopers Consulting Indonesia, and Melli Darsa & Co., Advocates & Legal Consultants, its members, employees, and agents do not accept or assume any liability, responsibility, or duty of care for any consequences of you or anyone else acting, or refraining to act, in reliance upon the information contained in this publication or for any decision based on it. Regulatory information is current to 31 July 2019. 1 Contents Glossary 4 Foreword 10 1 Industry Overview 12 2 Regulatory Framework 24 3 (Conventional) Upstream Sector 40 106 4 Gross Split PSCs 5 Downstream Sector 118 Service Providers 6 to the Upstream Sector 136 Appendices 142 About PwC | PwC Oil & Gas Contacts Insertion - Indonesian Oil & Gas Concessions and Major Infrastructure Map 147 Glossary Term Definition AFE Authorisation for Expenditure APBN Anggaran -
Integrated Gas
UPSTREAM 17 SHELL INVESTORS’ HANDBOOK 2013 INTEGRATED GAS Strong growth in gas markets is a major opportunity The Repsol LNG portfolio acquisition in late 2013 LNG LEADERSHIP [A] for Shell. Our integrated gas earnings have is another growth leg for integrated gas, with new increased by around 400% since 2009 to some equity supply in South America, and new year-end mtpa $9 billion in 2013 or about 60% of Upstream trading opportunities. earnings. This was mainly driven by several large 40 liquefied natural gas (LNG) and gas-to-liquids (GTL) LNG projects that came on-stream, including Pearl GTL, Shell is a pioneer of the LNG industry with expertise Pluto LNG Train 1 (Woodside), North Rankin based on 50 years of experience. Shell was 30 Redevelopment, Qatargas 4 and Sakhalin-2. instrumental in delivery of the world’s first LNG Integrated gas earnings incorporate LNG, including plant, in Algeria, which came on-stream in 1964. LNG marketing and trading, and GTL operations. In the years since, LNG has become a truly global 20 In addition, the associated upstream oil and gas commodity with demand expected to grow rapidly production activities from the Sakhalin-2, North in the coming years. Currently around 240 mpta, West Shelf, Pluto LNG Train 1 (Woodside), the global LNG market is expected to reach about 10 Qatargas 4 and Pearl GTL projects are included 430 mtpa by 2025. This growth will be driven by in integrated gas earnings. Power generation expanding economies in China, India and the and coal gasification activities are also part Middle East, by demand in Europe and by new 0 of integrated gas. -
Shipping LNG from a Remote Arctic Plant
Shipping LNG from a Remote Arctic Plant Frederic Hannon LNG Shipping Project Manager TOTAL – Gas, Renewables & Power Division YAMAL LNG, a Pilot Project in the Arctic – Some Key Features Shareholders 9.9% 20.0% 50.1% Source: Public information 20.0% ● LNG Plant located in Sabetta, North-East Wells 208 directional and horizontal of the Yamal Peninsula, Russia Capacity 3 x 5.5 MMtpa + 1 x 0,94 MMtpa LNG, 1.2 MMtpa Condensates ● Arctic conditions (Temperatures -52°C / 3 months of polar night) Capex 27 G$ (Yamal LNG) ● Ice free port: 5 months Trains 1,2,3 started ( nameplate 16,5 Mmtpa) T4 pilot under Construction Status ● South Tambey Gas-Condensate Field: construction exploration and development license until 15 ARC7 LNG Carriers, 11 Conventional LNGCs , 2 ARC7 2045 Shipping Condensate tankers Trans-shipment capacity in Zeebrugge and Ship-to-Ship Transfers ● Reservoirs: 1000- 3500 m deep LNG Deliveries Asia, Europe ● Proved & Probable Reserves : 926 billion cubic meters of natural gas An Integrated Project : • Presidential decree on October 10th, 2010 • Final Investment Decision on December 13th, 2013 with Pioneering Solutions in field of logistics and transportation schemes : The Shipping Scheme for the Export of LNG Westbound : annual ice Eastbound : pluri-annual ice Average ice extension : 830 Nmiles / 2,900 Average ice extension 2,100 Nm / 4,900 Nm – 7/9 days Nm – 14/16 days Year Round Northern Sea Route Route Sabetta 16,5 mtpa LNG / Trans-shipment # 220 cargoes Terminal /year Summer Route TRANSHIPMENT : SHIP – STORAGE - SHIP Winter -
2005-2009 Financial and Operational Information
FIVE-YEAR FACT BOOK Royal Dutch Shell plc FINaNcIAL aND OPERATIoNAL INFoRMATIoN 2005–2009 ABBREVIATIONS WE help meet ThE world’S growing demand for energy in Currencies € euro economically, environmentally £ pound sterling and socially responsible wayS. $ US dollar Units of measurement acre approximately 0.4 hectares or 4 square kilometres About This report b(/d) barrels (per day) bcf/d billion cubic feet per day This five-year fact book enables the reader to see our boe(/d) barrel of oil equivalent (per day); natural gas has financial and operational performance over varying been converted to oil equivalent using a factor of timescales – from 2005 to 2009, with every year in 5,800 scf per barrel between. Wherever possible, the facts and figures have dwt deadweight tonnes kboe/d thousand barrels of oil equivalent per day been made comparable. The information in this publication km kilometres is best understood in combination with the narrative km2 square kilometres contained in our Annual Report and Form 20-F 2009. m metres MM million Information from this and our other reports is available for MMBtu million British thermal unit online reading and downloading at: mtpa million tonnes per annum www.shell.com/annualreports mscm million standard cubic metres MW megawatts The webpages contain interactive chart generators, per day volumes are converted to a daily basis using a downloadable tables in Excel format, hyperlinks to other calendar year webpages and an enhanced search tool. Sections of the scf standard cubic feet reports can also be downloaded separately or combined tcf trillion cubic feet into a custom-made PDF file.