Rogen Moraine Paper

Total Page:16

File Type:pdf, Size:1020Kb

Rogen Moraine Paper Morphological characteristics, formation and glaciological significance of Rogen moraine in northern Scotland Andrew G. Finlayson* and Tom Bradwell British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, UK * Corresponding author. E-mail: [email protected]. Abstract Rogen moraine are enigmatic landforms whose exact origin is still debated. We use NEXTMap digital surface models and aerial photographs to map the distribution of previously unreported fields of Rogen moraine in the vicinity of Loch Shin, northern Scotland. Existing models of formation are tested against detailed morphological Rogen moraine characteristics obtained from the remote sensing data and field observations. Detailed morphometric analyses combined with their geographical setting lead us to postulate a likely mechanism of formation. Rogen moraine appear to have formed in areas where there were strong basal ice-flow velocity gradients. Thrusting by compression, or fracturing by extension of preexisting partially frozen sediment probably occurred in these areas, resulting in Rogen moraine formation. A general down-ice increase in ridge crest spacing suggests that the latter process may have been dominant, and is consistent with the location of Rogen moraine in the lee of topographic obstructions, in areas that experienced overall extensional ice flow. We also suggest that at least one field of Rogen moraine formed where lateral basal ice-flow velocity gradients were strongest – possibly in a subglacial shear margin setting. Given their location, the landforms may be consistent with formation during headward scavenging of the Moray Firth palaeo-ice stream into a shrinking core of cold-based ice. Keywords: digital surface models; transverse ridges; ice-flow velocity; ice stream 1 1. Introduction Rogen moraine form a landscape of curved to sinuous ridges at approximately right angles to ice movement. Their formation has been linked to a range of ice-sheet behaviour, including thawing beds (Hättestrand, 1997; Hättestrand and Kleman, 1999), freezing beds (Sollid and Sørbil, 1994), ice-stream onset (Dyke et al., 1992), ice-stream shutdown (Stokes et al., 2006), 90° changes in ice-flow direction (Boulton, 1987), and subglacial outburst floods (Fisher and Shaw, 1992; Shaw, 2002). As a result, the exact genesis of these landforms remains open to debate. Rogen moraine are typically, though not exclusively, found in core areas of former ice sheets. Individual ridges are shown to vary in internal composition and include disaggregated bedrock, subglacial till, and stratified sand and gravel (Hättestrand, 1997). A characteristic feature of classic Rogen moraine is the transformation into, or superimposition of, fluted or drumlinoid forms (Lundqvist, 1989, 1997). Where such features are absent, the North American term ribbed moraine (Hughes, 1964) is used in the literature to describe the ridges. Early researchers considered Rogen moraine formation to take place in an ice- marginal environment (Frödin, 1925; Cowan, 1968); however, observation of superimposed eskers and drumlins led other workers to favour a subglacial origin (e.g., Lundqvist, 1969). Since the late 1970s, four main mechanisms for Rogen moraine formation have been proposed: (i) cavity infilling of megaripples eroded into basal ice during subglacial outburst floods (Fisher and Shaw, 1992; Shaw, 2002); (ii) remoulding of preexisting landforms such as ice marginal moraines (Möller, 2006), or drumlins and flutes following a ~ 90° change in ice- flow direction under deforming bed conditions (Boulton, 1987); (iii) shearing and stacking or folding of debris-rich basal ice or preexisting sediments during compressive ice flow (Shaw, 1979; Aylsworth and Shilts, 1989; Bouchard, 1989; Lindén et al., 2008); and (iv) fracturing and extension of sediment sheets during a transition from cold- to warm-based ice conditions (Lundqvist, 1969; Hättestrand, 1997; Hättestrand and Kleman, 1999; Sarla, 2006). This range of hypotheses currently restricts confidence in palaeoglaciological reconstructions based on any one mechanism of formation (e.g., Kleman and Hättestrand, 1999). Based on unimodal distributions of ribbed moraine characteristics for over 33,000 ridges, Dunlop and Clark (2006) suggest a single formation mechanism may exist. However, Lindén et al. (2008) argue that the landforms are probably polygenetic. The wide range in morphological characteristics presented by Dunlop and Clark (2006) suggests differing processes may have operated in their formation, highlighting the need for detailed, location-specific data on these landforms in areas where they are developed. 2 To date, Rogen moraine have been described from North America (e.g., Hughes, 1964; Aylsworth and Shilts, 1989; Bouchard, 1989; Fisher and Shaw, 1992; Stokes et al., 2006), Fennoscandia (e.g., Lundqvist, 1969, 1989, 1997; Hättestrand, 1997; Raunholm et al., 2003; Möller, 2006), and Ireland (e.g., Knight and McCabe, 1997; Clarke and Meehan, 2001), while only sparse accounts exist of the landforms in Britain (e.g., Golledge and Merritt, 2005; Golledge, 2006; Bradwell et al., 2008). This paper presents clear examples of Rogen moraine from the Loch Shin area in northern Scotland (Fig. 1) – the first to be described in detail from Britain. Landform characteristics are presented to assess current hypotheses of formation and to explore implications for ice-sheet conditions during the latter stages of the Main Late Devensian glaciation in northern Scotland. 2. Study area and glaciological context The region around Loch Shin in northern Scotland forms a relatively low-lying area to the SE of the mountainous terrain of Assynt (Fig. 1). A number of wide, shallow valleys trend in a SE direction, draining toward the Dornoch Firth. The local bedrock chiefly comprises Neoproterozoic psammites and semipelites belonging to the Moine Supergroup. Using high- level weathering limits, Ballantyne et al. (1998) suggested that the ice-sheet surface at the Last Glacial Maximum (LGM) lay between 750 – 800 m over Assynt, with an ice divide lying near or slightly east of the present drainage divide. To the SE, ice coalesced to feed a major grounded ice stream in the Moray Firth during ice-sheet deglaciation (Merritt et al., 1995; Bradwell et al., in press). During the Loch Lomond (Younger Dryas) Stadial (12.7 – 11.5 ka cal BP), an icefield formed over the mountains of Assynt and NW Sutherland reaching the northern tip of Loch Shin (Lukas, 2005; Bradwell, 2006). 3. Methods Fields of transverse ridges in the vicinity of Loch Shin (Coir’ an Laoigh, Strath Grudie, and Strath Tirry, shown on Fig. 1) were mapped in a spatially attributed ESRI ArcMap GIS using a digital surface model (DSM) with 1.5-m vertical and 5-m horizontal resolution, derived from NEXTMap Britain topographic data. The DSM was illuminated from various directions, limiting the bias introduced by relief-shading and enabling subtle landforms to be identified (cf. Smith and Clark, 2005). Black and white stereoscopic air photos at 1:25,000 scale and georectified colour monoscopic air photos at 1:10,000 scale were also examined to provide further landform detail. Scanned, georectified field maps from early twentieth 3 century geological surveys (Geological Survey of Scotland, 1921a, 1921b, 1921c) of the area were consulted in the GIS to aid identification of areas where bedrock lies at, or close to the surface. Individual ridges were delimited by clear breaks in slope at their bases. Spatial dimensions for twenty randomly selected ridges in each of the fields shown in Fig. 1 were measured in the GIS. Heights and cross profiles were obtained by viewing geometric data extracted from the DSM as profile graphs. For each field of transverse ridges, crest spacing was measured in the GIS along transects parallel to palaeo-ice flow (inferred from regional streamlined landforms and glacial striations). Ridge crest spacing was measured along three regularly spaced transects at Coir’ an Laoigh and Strath Tirry. However, only one transect was used at Strath Grudie due to the narrowness of the field. On the ground, a walk-over survey of each field of transverse ridges was conducted to verify the remote sensing data. Natural sections are small and sparse, but where found sedimentological observations were made, including descriptions of texture, compactness and sedimentary structures. Absence of larger natural sections has precluded in depth sedimentological investigation at this stage. 4. Results The results of the geomorphological mapping are shown in Figs 2, 3, and 4. Each location is described in turn below. 4.1. Coir’ an Laoigh Coir’ an Laoigh is a shallow valley to the SE of an elevated bedrock outcrop (Figs. 2A, B). The valley continues toward flatter ground at ~ 180 m above UK Ordnance Datum (OD), which eventually drops down into the deeper valleys of Glen Cassley to the east and Glen Oykel to the south. A SE trending, 1.5-km-wide field of transverse ridges extends from Coir’ an Laoigh across the flatter ground, disappearing on the steeper slopes. The ridges are typically 150 – 420 m long, 75 – 270 m wide, and 4 – 12 m high (Table 1). Many are concave downvalley and possess an asymmetrical cross-profile with gentle upvalley and steeper downvalley slopes (Fig. 5A). Aerial photographs show NW to SE aligned streamlined forms superimposed on some of the ridges (Fig. 2C), particularly toward the southeastern end of the field. Ridge crest spacing is relatively regular for the upper 2 km of the field, generally between 100 and 300 m (Fig. 6A). However, downvalley ridge spacing 4 becomes much more variable. The longest transect, A2-A2’, shows an increase in frequency of ridges > 300 m apart from 3 km onwards. Crest spacing in transect A1-A1’ increases to > 400 m from 1.5 to 2.8 km and then decreases to < 200 m at 3.5 km down the field, before increasing to > 600 m at 4.5 km. Transect A3-A3’ shows highly variable crest spacing between 100 and 650 m from 2.5 to 4.5 km. Natural exposures in the transverse ridges are sparse with small (c.
Recommended publications
  • Ribbed Bedforms in Palaeo-Ice Streams Reveal Shear Margin
    https://doi.org/10.5194/tc-2020-336 Preprint. Discussion started: 21 November 2020 c Author(s) 2020. CC BY 4.0 License. Ribbed bedforms in palaeo-ice streams reveal shear margin positions, lobe shutdown and the interaction of meltwater drainage and ice velocity patterns Jean Vérité1, Édouard Ravier1, Olivier Bourgeois2, Stéphane Pochat2, Thomas Lelandais1, Régis 5 Mourgues1, Christopher D. Clark3, Paul Bessin1, David Peigné1, Nigel Atkinson4 1 Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France 2 Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes CEDEX 3, France 10 3 Department of Geography, University of Sheffield, Sheffield, UK 4 Alberta Geological Survey, 4th Floor Twin Atria Building, 4999-98 Ave. Edmonton, AB, T6B 2X3, Canada Correspondence to: Jean Vérité ([email protected]) Abstract. Conceptual ice stream landsystems derived from geomorphological and sedimentological observations provide 15 constraints on ice-meltwater-till-bedrock interactions on palaeo-ice stream beds. Within these landsystems, the spatial distribution and formation processes of ribbed bedforms remain unclear. We explore the conditions under which these bedforms develop and their spatial organisation with (i) an experimental model that reproduces the dynamics of ice streams and subglacial landsystems and (ii) an analysis of the distribution of ribbed bedforms on selected examples of paleo-ice stream beds of the Laurentide Ice Sheet. We find that a specific kind of ribbed bedforms can develop subglacially 20 from a flat bed beneath shear margins (i.e., lateral ribbed bedforms) and lobes (i.e., submarginal ribbed bedforms) of ice streams.
    [Show full text]
  • Perennial Ice and Snow Masses
    " :1 i :í{' ;, fÎ :~ A contribution to the International Hydrological' Decade Perennial ice and snow masses A guide for , compilation and assemblage of data for a world inventory unesco/iash " ' " I In this series: '1 Perennial Ice and Snow Masses. A Guide for Compilation and Assemblage of Data for a World Inventory. 2 Seasonal Snow Cower. A Guide for Measurement, Compilation and Assemblage of Data. 3 Variations of Existing Glaciers. A Guide to International Practices for their Measurement.. 4 Antartie Glaciology in the International Hydrological Decade. S Combined Heat, Ice and Water Balances at Selected Glacier Basins. A Guide for Compilation and Assemblage of Data for Glacier Mass Balance ( Measurements. (- ~------------------ ", _.::._-~,.:- r- ,.; •.'.:-._ ': " :;-:"""':;-iij .if( :-:.:" The selection and presentation of material and the opinions expressed in this publication are the responsibility of the authors concerned 'and do not necessarily reflect , , the views of Unesco. Nor do the designations employed or the presentation of the material imply the expression of any opinion whatsoever on the part of Unesco concerning the legal status of any country or territory, or of its authorities, or concerning the frontiers of any country or territory. Published in 1970 by the United Nations Bducational, Scientific and Cultal al OrganIzatIon, Place de Fontenoy, 75 París-r-. Printed by Imprimerie-Reliure Marne. © Unesco/lASH 1970 Printed in France SC.6~/XX.1/A. ...•.•• :. ;'::'~~"::::'??<;~;~8~~~ (,: :;H,.,Wfuif:: Preface The International Hydrological Decade _(IHD) As part of Unesco's contribution to the achieve- 1965-1974was launched hy the General Conference ment of the objectives of, the IHD the General of Unesco at its thirteenth session to promote Conference authorized the Director-General to international co-operation in research and studies collect, exchange and disseminate information and the training of specialists and technicians in concerning research on scientific hydrology and to scientific hydrology.
    [Show full text]
  • Perennial Ice and Snow Masses
    Technical papers in hydrology 1 In this series: 1 Perennial Ice and Snow Masses. A Guide for Compilation and Assemblage of Data for a World Inventory. 2 Seasonal Snow Cower. A Guide for Measurement, Compilation and Assemblage of Data. 3 Variations of Existing Glaciers. A Guide to International Practices for their Measurement. 4 Antartic Glaciology in the International Hydrological Decade. 5 Combined Heat, Ice and Water Balances at Selected Glacier Basins. A Guide for Compilation and Assemblage of Data for Glacier Mass Balance Measurements. A contribution to the International Hydrological Decade Perennial ice and snow masses A guide for compilation and assemblage of data for a world inventory nesco/iash The selection and presentation of material and the opinions expressed in this publication are the responsibility of the authors concerned and do not necessarily reflect the views of Unesco. Nor do the designations employed or the presentation of the material imply the expression of any opinion whatsoever on the part of Unesco concerning the legal status of any country or territory, or of its authorities, or concerning the frontiers of any country or territory. Published in 1970 by the United Nations Educational, Scientific and Cultural Organization, Place de Fontenoy, 75 Paris-7C. Printed by Imprimerie-Reliure Mame. © Unesco/I ASH 1970 Printed in France SC.68/XX.1/A. Preface The International Hydrological Decade (IHD) As part of Unesco's contribution to the achieve­ 1965-1974 was launched by the General Conference ment of the objectives of the IHD the General of Unesco at its thirteenth session to promote Conference authorized the Director-General to international co-operation in research and studies collect, exchange and disseminate information and the training of specialists and technicians in concerning research on scientific hydrology and to scientific hydrology.
    [Show full text]
  • May Be Xeroxed
    CENTRE FOR NEWFOUNDLAND STUDIES TOTAL OF 10 PAGES ONLY MAY BE XEROXED (Without Author's Permiss•on) ,. (J Contemporary Frontal Moraine Formation in the Yoho Valley , Br~tish Columbia . b y Martin J. Batterson B.A. (Hens.) , University of Wales, l978 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of ~aster of Science . Departmen~ of Geography ~emorial Unlversity or Newroundland 1980 Abstract The northern terminus or Emerald Glacier (510 3 l' N, 116 0 32 ' W) in the Yoho Valley , British Columbia was bordered by a small , actively forming frontal moraine during summer 1979 . Strati- graphic and morphological contrasts existed r ound the ice front , which primarily resulted from a contrast in the distribution of supraglacial debris . Sedimentological and geotechnical techniques were utilised to determine the origin of stratigraphic units within the moraine ridge . Moraine A, at the margin of heavily debris covered ice , exhibited a complex stratigraphy. At most sites a lens of subglacially derived till was evident , between units of supra- glacially derived material . It is proposed that the moraine forming process involved the initial development of an ice- front talus apron , which was subsequently pushed and over- ridden . A plastic subglacial till was squeezed from beneath the supra- morainal ice margin , and overlain by a sorted supraglacial unit during glacier retreat . The moraine was actively advancing during the field season due to the main- tenance of glacier- moraine contact resulting rrom the retardation of ice- melt afforded by the supraglacial debris co':er . Moraine B is located at the margin or debris-free ice .
    [Show full text]
  • Hydrologic and Mass-Movement Hazards Near Mccarthy Wrangell-St
    Hydrologic and Mass-Movement Hazards near McCarthy Wrangell-St. Elias National Park and Preserve, Alaska By Stanley H. Jones and Roy L Glass U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 93-4078 Prepared in cooperation with the NATIONAL PARK SERVICE Anchorage, Alaska 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY ROBERT M. HIRSCH, Acting Director For additional information write to: Copies of this report may be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Earth Science Information Center 4230 University Drive, Suite 201 Open-File Reports Section Anchorage, Alaska 99508-4664 Box 25286, MS 517 Denver Federal Center Denver, Colorado 80225 CONTENTS Abstract ................................................................ 1 Introduction.............................................................. 1 Purpose and scope..................................................... 2 Acknowledgments..................................................... 2 Hydrology and climate...................................................... 3 Geology and geologic hazards................................................ 5 Bedrock............................................................. 5 Unconsolidated materials ............................................... 7 Alluvial and glacial deposits......................................... 7 Moraines........................................................ 7 Landslides....................................................... 7 Talus..........................................................
    [Show full text]
  • The Dynamics and Mass Budget of Aretic Glaciers
    DA NM ARKS OG GRØN L ANDS GEO L OG I SKE UNDERSØGELSE RAP P ORT 2013/3 The Dynamics and Mass Budget of Aretic Glaciers Abstracts, IASC Network of Aretic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) • GEOLOGICAL SURVEY OF D EN MARK AND GREENLAND DANISH MINISTAV OF CLIMATE, ENEAGY AND BUILDING ~ G E U S DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 201 3 / 3 The Dynamics and Mass Budget of Arctic Glaciers Abstracts, IASC Network of Arctic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING Indhold Preface 5 Programme 6 List of participants 11 Minutes from a special session on tidewater glaciers research in the Arctic 14 Abstracts 17 Seasonal and multi-year fluctuations of tidewater glaciers cliffson Southern Spitsbergen 18 Recent changes in elevation across the Devon Ice Cap, Canada 19 Estimation of iceberg to the Hansbukta (Southern Spitsbergen) based on time-lapse photos 20 Seasonal and interannual velocity variations of two outlet glaciers of Austfonna, Svalbard, inferred by continuous GPS measurements 21 Discharge from the Werenskiold Glacier catchment based upon measurements and surface ablation in summer 2011 22 The mass balance of Austfonna Ice Cap, 2004-2010 23 Overview on radon measurements in glacier meltwater 24 Permafrost distribution in coastal zone in Hornsund (Southern Spitsbergen) 25 Glacial environment of De Long Archipelago
    [Show full text]
  • Glacial Processes and Landforms-Transport and Deposition
    Glacial Processes and Landforms—Transport and Deposition☆ John Menziesa and Martin Rossb, aDepartment of Earth Sciences, Brock University, St. Catharines, ON, Canada; bDepartment of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada © 2020 Elsevier Inc. All rights reserved. 1 Introduction 2 2 Towards deposition—Sediment transport 4 3 Sediment deposition 5 3.1 Landforms/bedforms directly attributable to active/passive ice activity 6 3.1.1 Drumlins 6 3.1.2 Flutes moraines and mega scale glacial lineations (MSGLs) 8 3.1.3 Ribbed (Rogen) moraines 10 3.1.4 Marginal moraines 11 3.2 Landforms/bedforms indirectly attributable to active/passive ice activity 12 3.2.1 Esker systems and meltwater corridors 12 3.2.2 Kames and kame terraces 15 3.2.3 Outwash fans and deltas 15 3.2.4 Till deltas/tongues and grounding lines 15 Future perspectives 16 References 16 Glossary De Geer moraine Named after Swedish geologist G.J. De Geer (1858–1943), these moraines are low amplitude ridges that developed subaqueously by a combination of sediment deposition and squeezing and pushing of sediment along the grounding-line of a water-terminating ice margin. They typically occur as a series of closely-spaced ridges presumably recording annual retreat-push cycles under limited sediment supply. Equifinality A term used to convey the fact that many landforms or bedforms, although of different origins and with differing sediment contents, may end up looking remarkably similar in the final form. Equilibrium line It is the altitude on an ice mass that marks the point below which all previous year’s snow has melted.
    [Show full text]
  • West Antarctic Ice Sheet Divide Ice Core Climate, Ice Sheet History, Cryobiology
    WAIS DIVIDE SCIENCE COORDINATION OFFICE West Antarctic Ice Sheet Divide Ice Core Climate, Ice Sheet History, Cryobiology A GUIDE FOR THE MEDIA AND PUBLIC Field Season 2011-2012 WAIS (West Antarctic Ice Sheet) Divide is a United States deep ice coring project in West Antarctica funded by the National Science Foundation (NSF). WAIS Divide’s goal is to examine the last ~100,000 years of Earth’s climate history by drilling and recovering a deep ice core from the ice divide in central West Antarctica. Ice core science has dramatically advanced our understanding of how the Earth’s climate has changed in the past. Ice cores collected from Greenland have revolutionized our notion of climate variability during the past 100,000 years. The WAIS Divide ice core will provide the first Southern Hemisphere climate and greenhouse gas records of comparable time resolution and duration to the Greenland ice cores enabling detailed comparison of environmental conditions between the northern and southern hemispheres, and the study of greenhouse gas concentrations in the paleo-atmosphere, with a greater level of detail than previously possible. The WAIS Divide ice core will also be used to test models of WAIS history and stability, and to investigate the biological signals contained in deep Antarctic ice cores. 1 Additional copies of this document are available from the project website at http://www.waisdivide.unh.edu Produced by the WAIS Divide Science Coordination Office with support from the National Science Foundation, Office of Polar Programs. 2 Contents
    [Show full text]
  • Quaternary Geology of Manitoba: Digital Compilation of Point and Line Data, with Updating of the Dataset Using Remotely Sensed (SPOT) Imagery by M.S
    GS-18 Quaternary geology of Manitoba: digital compilation of point and line data, with updating of the dataset using remotely sensed (SPOT) imagery by M.S. Trommelen, G.R. Keller and B.K. Lenton Trommelen, M.S., Keller, G.R. and Lenton, B.K. 2012: Quaternary geology of Manitoba: digital compilation of point and line data, with updating of the dataset using remotely sensed (SPOT) imagery; in Report of Activities 2012, Manitoba Innovation, Energy and Mines, Manitoba Geological Survey, p. 189–193. Summary in Manitoba at the most detailed The aim of this project is to provide an up-to-date scales available, along with a digital compilation of historic and new ice-flow and database index of metadata, has geomorphic data to better assist drift prospecting, land-use been completed (Figure GS-18-1). Tables GS-18-1 and and research projects in Manitoba. Current objectives of -2 provide a list of the included line and point features. the project are to compile data, complete quality control, Line features are digitized to scale, whereas points update with high-resolution remote-sensing imagery represent features occurring at a site but are not to scale. (SPOT1) and digitized aerial photographs, and augment Because this is a compilation, not all original data—such with newly acquired field data. as site numbers, striae characteristics (type, position, abundance) and fossil radiocarbon lab numbers—are Introduction preserved. Instead, the compiled database will serve as a Up-to-date, queryable surficial geological data are guide and the reader will be referred to the original maps essential for the successful interpretation of ice flow and publications for more information.
    [Show full text]
  • Pleistocene Geology of the Embarrass Area, St. Louis County
    UNNERSITY OF MINNESOTA This is to certify that I have examined this copy of a master's thesis by James Davis Lehr and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Charles L. Matsch Name of Faculty Advisor Signature of Faculty Advisor May 12, 2000 Date GRADUATE SCHOOL PLEISTOCENE GEOLOGY OF THE EMBARRASS ST. LOUIS COUNTY, MINNESOTA A THESIS SUBMITTED TO THE FA CUL TY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY JAMES DA VIS LEHR IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE May,2000 © James Davis Lehr 2000 TABLE OF CONTENTS Page TABLE OF CONTENTS ..................................................................................................... i LIST OF ILLUSTRATIONS .................................................................. ........................... iv ACKNOWLEDGMENTS ................................................................................................ vii INTRODUCTION ............................................................................................................... 1 STUDY AREALOCATION ................................................................................... l STUDY OBJECTIVES ............................................................................................ 3 METHODS OF INVESTIGATION ........................................................................ 3 FIELD METHODS .................................... .................................................
    [Show full text]
  • Glaciation in Alaska
    SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1931 GLACIATION IN ALASKA By STEPHEN R. CAPPS INTRODUCTION examination. Interior Alaska, on tke other The history of glaciation in Alaska offers a fas­ presents a great driftless area, in the basins o* the cinating field for study. Because of the remarkable Yukon, Tanana, and Kuskokwim Rivers, where low development and easy accessibility of valley and pied­ relief and dry climate prohibited the formation of mont glaciers in the coastal mountains, Alaska has glaciers. This unglaciated region was encrorehed long been popularly conceived as a land of ice and snow, upon by the continental ice sheets from the eas* and a concept that is only slowly being corrected. To by mountain glaciers from the north and s^utfe. the student of glaciation, however, Alaska affords a Along its margins at several localities there have unique opportunity to observe the formation, move­ already been found evidences of glacial advances ment, and dissipation of the many living glaciers, to preceding the last great glaciation, and it seems ee^ain examine the results of glacial erosion on a gigantic that future studies will bring additional observa tieas scale, and to discover and work out the sequence of that will shed much light on the glacial history cf the Pleistocene events as shown by the topographic forms continent. in both glaciated and unglaciated areas and by the * There is an extensive literature on glaciation in deposits left by ice and water during earlier stages of Alaska, yet in view of the great area of the Terrf.tory, glaciation. the number and size of its living glaciers, and the The evidence for successive glacial advances in extensive area covered by ice during Pleistocene time, many parts of the world during Pleistocene time has it must be confessed that little more than a beginning been largely obtained in regions not far from the outer has been made toward an adequate understanding of margin reached by the glaciers during the different its glacial history.
    [Show full text]
  • Rapid Ice Sheet Retreat Triggered by Ice Stream Debuttressing: Evidence from the North Sea
    Rapid ice sheet retreat triggered by ice stream debuttressing: Evidence from the North Sea Hans Petter Sejrup1, Chris D. Clark2, and Berit O. Hjelstuen1 1Department of Earth Science, University of Bergen, Allegaten 41, 5007 Bergen, Norway 2Department of Geography, University of Sheffield, Sheffield S10 2TN, UK ABSTRACT DATA AND METHODS Using high-resolution bathymetric and shallow seismic data from the North Sea, we have Seabed imagery and bathymetric informa- mapped hitherto unknown glacial landforms that connect and resolve longstanding gaps in tion were obtained from the Olex database (Olex the Quaternary geological history of the basin. We use these data combined with published AS, www.olex.no), representing the seafloor as information and dates from sediment cores to reconstruct the extent of the Fennoscandian a series of 5 × 5 m cells with a vertical accu- and British Ice Sheets (FIS and BIS) in the North Sea during the last phases of the last glacial racy of <1 m (Fig. 1A). Approximately 12,800 stage. It is concluded that the BIS occupied a much larger part of the North Sea than previ- km of subbottom profiles, acquired between ously suggested and that North Sea ice underwent a dramatic disintegration ~18,500 yr ago. 2005 and 2014 by the University of Bergen This was triggered by grounding-line retreat of the Norwegian Channel Ice Stream, which (Norway) with R/V G.O. Sars using a Kongs- debuttressed adjacent ice masses, and led to an unzipping of the BIS and FIS accompanied by berg TOPAS (parametric subbottom profiler) drainage of a large ice-dammed lake.
    [Show full text]