Pleistocene Geology of the Embarrass Area, St. Louis County

Total Page:16

File Type:pdf, Size:1020Kb

Pleistocene Geology of the Embarrass Area, St. Louis County UNNERSITY OF MINNESOTA This is to certify that I have examined this copy of a master's thesis by James Davis Lehr and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Charles L. Matsch Name of Faculty Advisor Signature of Faculty Advisor May 12, 2000 Date GRADUATE SCHOOL PLEISTOCENE GEOLOGY OF THE EMBARRASS ST. LOUIS COUNTY, MINNESOTA A THESIS SUBMITTED TO THE FA CUL TY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY JAMES DA VIS LEHR IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE May,2000 © James Davis Lehr 2000 TABLE OF CONTENTS Page TABLE OF CONTENTS ..................................................................................................... i LIST OF ILLUSTRATIONS .................................................................. ........................... iv ACKNOWLEDGMENTS ................................................................................................ vii INTRODUCTION ............................................................................................................... 1 STUDY AREALOCATION ................................................................................... l STUDY OBJECTIVES ............................................................................................ 3 METHODS OF INVESTIGATION ........................................................................ 3 FIELD METHODS .................................... .................................................. 3 LABORATORY METHODS ...................................................................... 4 LOCATION NUMBERING SYSTEM ................................................................... 5 PHYSIOGRAPHY ................................................................................................... 5 BEDROCK GEOLOGY ........................................................................................ 10 PREVIOUS QUATERNARY INVESTIGATIONS ............................................ .12 PLEISTOCENE SEDIMENTS .......................................................................................... 17 INTRODUCTION ................................................................................................. 17 SUBGLACIAL TILL ............................................................................................. 21 SEDIMENT DESCRIPTION .................................................................... 22 MORPHOLOGY OF THE TRANSVERSE RIDGES .............................. 24 ORIGIN OF ROGEN MORAINE ............................................................. 27 OTHER OCCURRENCES OF SUBGLACIAL TILL .............................. 33 SUMMARY OF ENVIRONMENT OF DEPOSITION ............................ 36 SUPRAGLACIAL SEDIMENT ............................................................................ 36 SEDIMENT DESCRIPTION .................................................................... 37 SUPRAGLACIAL TILL ................. .............................................. 37 SUPRAGLACIAL SEDIMENT COMPLEX .......................... ...... 39 GEOMORPHOLOGY .......................................... ..................................... 43 SUPRAGLACIAL TILL ............................................................... 43 Page SUPRAGLACIAL SEDIMENT COMPLEX ............................... .43 PROCESSES OF SUPRAGLACIAL DEPOSITION .............................. .47 ICE-CONTACT DEPOSITS ...................................................... , .......................... 51 SEDIMENT DESCRIPTION .................................................................... 51 GEOMORPHOLOGY ............................................................................... 55 SEDIMENTARY ENVIRONMENT ......................................................... 60 SUMMARY OF THE NATURE OF THE VERMILION MORAINE ..... 68 OUTWASH SAND AND GRAVEL ...... ...............................................................71 SEDIMENT DESCRIPTION .................................................................... 71 GEOMORPHOLOGY ............................................................................... 73 SEDIMENTARY ENVIRONMENT ......................................................... 73 JOKULHLAUP DEPOSITS .................................................................................. 74 SEDIMENT DESCRIPTION .................................................................... 74 GEOMORPHOLOGY .......... :.............. ................. ..................................... 76 SEDIMENTARY ENVIRONMENT ......................................................... 78 LACUSTRINE SEDIMENT ................................................................................. 82 SEDIMENT DESCRIPTION .................................................................... 82 GEOMORPHOLOGY ................................................................................ 84 SEDIMENTARY ENVIRONMENT ......................................................... 87 EOLIAN SEDIMENT ........................................................................................... 89 SEDIMENT DESCRIPTION .................................................................... 91 SEDIMENTARY ENVIRONMENT ......................................................... 91 PRE-WISCONSINAN TILL ................................................................................. 93 EMBARRASS MINE SECTION .............................................................. 94 DUNKA MINE SECTION ........................................................................ 97 BEDROCK-DRIFT COMPLEX ........................................................................... 99 THE RELATIONSHIP OF BEDROCK TO GEOMORPHOLOGY ................................ 99 DRIFT THICKNESS ............................................................................................. 99 DIFFERENTIAL GLACIAL EROSION ................................................ ............ 100 ORIGIN OF THE GIANTS RANGE AND THE EMBARRASS GAP .. 100 OTHER EXAMPLES OF DIFFERENTIAL GLACIAL EROSION ...... 104 DEPTH OF GLACIAL EROSION ................ ................... ................................... 105 11 Page QUATERNARY HISTORY ............................................................................................ 105 PRE-LATE WISCONSINAN .............................................................................. 106 LATE WISCONSINAN ...................................................................................... 108 HAWK CREEK PHASE ......................................................................... 108 GRANITE FALLS PHASE ..................................................................... 109 TORONTO PHASE ................................................................................. 109 ALEXANDRIA PHASE .......................................................................... 110 HEWITT PHASE ..................................................................................... 110 ST. CROIXPHASE ..... ........................... ........................ ......................... 111 AUTOMBA PHASE ... ...................... .. ........................ ................ ............. 113 VERMILLION PHASE .. ............. .. .......................................................... 115 ALBORN PHASE ................................................................................... 126 EMBARRASS PHASE ............................................................................ 128 CASS PHASE .. ............................................................ .................. ... ....... 130 LOCKHART PHASE ............................................. ................... .............. 131 MOORHEAD PHASE .. ... ........ ................................................................ 132 EMERSON PHASE ................................................................................. 132 REFERENCES CITED ......................................................... ...... ..................................... 134 APPENDIX A: GRAIN-SIZE ANALYSIS DATA AND MUNSELL COLORS ......... .150 PLATES .................................................................................................................. in pocket PLATE I: PLEISTOCENE GEOLOGY OF THE EMBARRASS AREA PLATE II: GEOMORPHOLOGY OF THE LAURENTIAN DIVIDE AREA PLATE III: BEDROCK TOPOGRAPHY OF THE EMBARRASS AREA 111 LIST OF ILLUSTRATIONS Page Figure 1. Study area location ............................................................................ ! ••.••••..•..•••••••.•.•..••• 2 2. Sediment classification scheme ... .. ............ ...................................................... ................ 6 3. Location numbering system ........................................................................................... 7 4. Physiographic areas of northeastern Minnesota ............... .. .......................... .................. 9 5. Bedrock geology of Vermilion district and adjacent areas .................................... .11 6. INQUA till classification diagram ................................................................................ 20 7. Matrix texture of subglacial till .................................................................................... 23 8. Overall texture of sub glacial till ........................................................................... ........ 23 9. Exposure of subglacial till in Rogen moraine ... ... ......................................................
Recommended publications
  • Ribbed Bedforms in Palaeo-Ice Streams Reveal Shear Margin
    https://doi.org/10.5194/tc-2020-336 Preprint. Discussion started: 21 November 2020 c Author(s) 2020. CC BY 4.0 License. Ribbed bedforms in palaeo-ice streams reveal shear margin positions, lobe shutdown and the interaction of meltwater drainage and ice velocity patterns Jean Vérité1, Édouard Ravier1, Olivier Bourgeois2, Stéphane Pochat2, Thomas Lelandais1, Régis 5 Mourgues1, Christopher D. Clark3, Paul Bessin1, David Peigné1, Nigel Atkinson4 1 Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France 2 Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes CEDEX 3, France 10 3 Department of Geography, University of Sheffield, Sheffield, UK 4 Alberta Geological Survey, 4th Floor Twin Atria Building, 4999-98 Ave. Edmonton, AB, T6B 2X3, Canada Correspondence to: Jean Vérité ([email protected]) Abstract. Conceptual ice stream landsystems derived from geomorphological and sedimentological observations provide 15 constraints on ice-meltwater-till-bedrock interactions on palaeo-ice stream beds. Within these landsystems, the spatial distribution and formation processes of ribbed bedforms remain unclear. We explore the conditions under which these bedforms develop and their spatial organisation with (i) an experimental model that reproduces the dynamics of ice streams and subglacial landsystems and (ii) an analysis of the distribution of ribbed bedforms on selected examples of paleo-ice stream beds of the Laurentide Ice Sheet. We find that a specific kind of ribbed bedforms can develop subglacially 20 from a flat bed beneath shear margins (i.e., lateral ribbed bedforms) and lobes (i.e., submarginal ribbed bedforms) of ice streams.
    [Show full text]
  • May Be Xeroxed
    CENTRE FOR NEWFOUNDLAND STUDIES TOTAL OF 10 PAGES ONLY MAY BE XEROXED (Without Author's Permiss•on) ,. (J Contemporary Frontal Moraine Formation in the Yoho Valley , Br~tish Columbia . b y Martin J. Batterson B.A. (Hens.) , University of Wales, l978 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of ~aster of Science . Departmen~ of Geography ~emorial Unlversity or Newroundland 1980 Abstract The northern terminus or Emerald Glacier (510 3 l' N, 116 0 32 ' W) in the Yoho Valley , British Columbia was bordered by a small , actively forming frontal moraine during summer 1979 . Strati- graphic and morphological contrasts existed r ound the ice front , which primarily resulted from a contrast in the distribution of supraglacial debris . Sedimentological and geotechnical techniques were utilised to determine the origin of stratigraphic units within the moraine ridge . Moraine A, at the margin of heavily debris covered ice , exhibited a complex stratigraphy. At most sites a lens of subglacially derived till was evident , between units of supra- glacially derived material . It is proposed that the moraine forming process involved the initial development of an ice- front talus apron , which was subsequently pushed and over- ridden . A plastic subglacial till was squeezed from beneath the supra- morainal ice margin , and overlain by a sorted supraglacial unit during glacier retreat . The moraine was actively advancing during the field season due to the main- tenance of glacier- moraine contact resulting rrom the retardation of ice- melt afforded by the supraglacial debris co':er . Moraine B is located at the margin or debris-free ice .
    [Show full text]
  • Pleistocene Geology of Eastern South Dakota
    Pleistocene Geology of Eastern South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Pleistocene Geology of Eastern South Dakota By RICHARD FOSTER FLINT GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Prepared as part of the program of the Department of the Interior *Jfor the development-L of*J the Missouri River basin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $3 (paper cover) CONTENTS Page Page Abstract_ _ _____-_-_________________--_--____---__ 1 Pre- Wisconsin nonglacial deposits, ______________ 41 Scope and purpose of study._________________________ 2 Stratigraphic sequence in Nebraska and Iowa_ 42 Field work and acknowledgments._______-_____-_----_ 3 Stream deposits. _____________________ 42 Earlier studies____________________________________ 4 Loess sheets _ _ ______________________ 43 Geography.________________________________________ 5 Weathering profiles. __________________ 44 Topography and drainage______________________ 5 Stream deposits in South Dakota ___________ 45 Minnesota River-Red River lowland. _________ 5 Sand and gravel- _____________________ 45 Coteau des Prairies.________________________ 6 Distribution and thickness. ________ 45 Surface expression._____________________ 6 Physical character. _______________ 45 General geology._______________________ 7 Description by localities ___________ 46 Subdivisions. ________-___--_-_-_-______ 9 Conditions of deposition ___________ 50 James River lowland.__________-__-___-_--__ 9 Age and correlation_______________ 51 General features._________-____--_-__-__ 9 Clayey silt. __________________________ 52 Lake Dakota plain____________________ 10 Loveland loess in South Dakota. ___________ 52 James River highlands...-------.-.---.- 11 Weathering profiles and buried soils. ________ 53 Coteau du Missouri..___________--_-_-__-___ 12 Synthesis of pre- Wisconsin stratigraphy.
    [Show full text]
  • The Dynamics and Mass Budget of Aretic Glaciers
    DA NM ARKS OG GRØN L ANDS GEO L OG I SKE UNDERSØGELSE RAP P ORT 2013/3 The Dynamics and Mass Budget of Aretic Glaciers Abstracts, IASC Network of Aretic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) • GEOLOGICAL SURVEY OF D EN MARK AND GREENLAND DANISH MINISTAV OF CLIMATE, ENEAGY AND BUILDING ~ G E U S DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 201 3 / 3 The Dynamics and Mass Budget of Arctic Glaciers Abstracts, IASC Network of Arctic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING Indhold Preface 5 Programme 6 List of participants 11 Minutes from a special session on tidewater glaciers research in the Arctic 14 Abstracts 17 Seasonal and multi-year fluctuations of tidewater glaciers cliffson Southern Spitsbergen 18 Recent changes in elevation across the Devon Ice Cap, Canada 19 Estimation of iceberg to the Hansbukta (Southern Spitsbergen) based on time-lapse photos 20 Seasonal and interannual velocity variations of two outlet glaciers of Austfonna, Svalbard, inferred by continuous GPS measurements 21 Discharge from the Werenskiold Glacier catchment based upon measurements and surface ablation in summer 2011 22 The mass balance of Austfonna Ice Cap, 2004-2010 23 Overview on radon measurements in glacier meltwater 24 Permafrost distribution in coastal zone in Hornsund (Southern Spitsbergen) 25 Glacial environment of De Long Archipelago
    [Show full text]
  • Glacial Processes and Landforms-Transport and Deposition
    Glacial Processes and Landforms—Transport and Deposition☆ John Menziesa and Martin Rossb, aDepartment of Earth Sciences, Brock University, St. Catharines, ON, Canada; bDepartment of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada © 2020 Elsevier Inc. All rights reserved. 1 Introduction 2 2 Towards deposition—Sediment transport 4 3 Sediment deposition 5 3.1 Landforms/bedforms directly attributable to active/passive ice activity 6 3.1.1 Drumlins 6 3.1.2 Flutes moraines and mega scale glacial lineations (MSGLs) 8 3.1.3 Ribbed (Rogen) moraines 10 3.1.4 Marginal moraines 11 3.2 Landforms/bedforms indirectly attributable to active/passive ice activity 12 3.2.1 Esker systems and meltwater corridors 12 3.2.2 Kames and kame terraces 15 3.2.3 Outwash fans and deltas 15 3.2.4 Till deltas/tongues and grounding lines 15 Future perspectives 16 References 16 Glossary De Geer moraine Named after Swedish geologist G.J. De Geer (1858–1943), these moraines are low amplitude ridges that developed subaqueously by a combination of sediment deposition and squeezing and pushing of sediment along the grounding-line of a water-terminating ice margin. They typically occur as a series of closely-spaced ridges presumably recording annual retreat-push cycles under limited sediment supply. Equifinality A term used to convey the fact that many landforms or bedforms, although of different origins and with differing sediment contents, may end up looking remarkably similar in the final form. Equilibrium line It is the altitude on an ice mass that marks the point below which all previous year’s snow has melted.
    [Show full text]
  • Port Jefferson Geomorphology by Danielle Mulch, Gilbert N
    Port Jefferson Geomorphology By Danielle Mulch, Gilbert N. Hanson Figure 1 (Above)A DEM of Long Island with a close-up of the Port Jefferson Valley and Outwash Plain. Adapted from Gilbert Hanson's DEM. Abstract Research was conducted in the Port Jefferson region to determine the origin of the har- bor itself as well as the gentle sloping plain that begins in Port Jefferson Station and slopes southward past the LIE. Surficial analysis and corroborating evidence (including past re- search, mapping projects and well logs) strongly indicate that Port Jefferson was formed during the late Wisconsinan, specifically, that the Port Jefferson valley, including the harbor, is the remnant of a tunnel valley fed by a subglacial lake and that Port Jefferson Station and south is the resulting outwash fan from a catastrophic subglacial discharge. The research strongly supports the initial hypothesis that the origin of Port Jefferson Harbor was incise- ment by a tunnel valley into the Harbor Hill moraine. Research also strongly supports the catastrophic deposition of the outwash fan. However, the research does raise significant questions that require further study. Two important questions are: What is the stratigraphy and depositional history within the harbor, which is a buried tunnel valley? and What is the nature of Grim's Trench (if it exists) just north of the harbor and how does it interact with the buried tunnel valley? 1 Introduction In this paper, we propose that Port Jefferson valley is a tunnel valley created during the Wisconsinan. This valley cuts the Harbor Hill moraine. We also propose that the fan shaped feature immediately south of the valley is in fact a related alluvial fan that was deposited catastrophically when the sediment-rich water left the tunnel valley and lost energy abruptly.
    [Show full text]
  • Quaternary Geology of Manitoba: Digital Compilation of Point and Line Data, with Updating of the Dataset Using Remotely Sensed (SPOT) Imagery by M.S
    GS-18 Quaternary geology of Manitoba: digital compilation of point and line data, with updating of the dataset using remotely sensed (SPOT) imagery by M.S. Trommelen, G.R. Keller and B.K. Lenton Trommelen, M.S., Keller, G.R. and Lenton, B.K. 2012: Quaternary geology of Manitoba: digital compilation of point and line data, with updating of the dataset using remotely sensed (SPOT) imagery; in Report of Activities 2012, Manitoba Innovation, Energy and Mines, Manitoba Geological Survey, p. 189–193. Summary in Manitoba at the most detailed The aim of this project is to provide an up-to-date scales available, along with a digital compilation of historic and new ice-flow and database index of metadata, has geomorphic data to better assist drift prospecting, land-use been completed (Figure GS-18-1). Tables GS-18-1 and and research projects in Manitoba. Current objectives of -2 provide a list of the included line and point features. the project are to compile data, complete quality control, Line features are digitized to scale, whereas points update with high-resolution remote-sensing imagery represent features occurring at a site but are not to scale. (SPOT1) and digitized aerial photographs, and augment Because this is a compilation, not all original data—such with newly acquired field data. as site numbers, striae characteristics (type, position, abundance) and fossil radiocarbon lab numbers—are Introduction preserved. Instead, the compiled database will serve as a Up-to-date, queryable surficial geological data are guide and the reader will be referred to the original maps essential for the successful interpretation of ice flow and publications for more information.
    [Show full text]
  • Palaeo-Ice Stream Pathways and Retreat Style in the Easternmost Amundsen Sea Embayment, West Antarctica, Revealed by Combined Multibeam Bathymetric and Seismic Data
    ÔØ ÅÒÙ×Ö ÔØ Palaeo-ice stream pathways and retreat style in the easternmost Amundsen Sea Embayment, West Antarctica, revealed by combined multibeam bathymetric and seismic data J.P. Klages, G. Kuhn, A.G.C. Graham, C.-D. Hillenbrand, J.A. Smith, F.O. Nitsche, R.D. Larter, K. Gohl PII: S0169-555X(15)30004-0 DOI: doi: 10.1016/j.geomorph.2015.05.020 Reference: GEOMOR 5226 To appear in: Geomorphology Received date: 20 January 2015 Revised date: 19 May 2015 Accepted date: 21 May 2015 Please cite this article as: Klages, J.P., Kuhn, G., Graham, A.G.C., Hillenbrand, C.- D., Smith, J.A., Nitsche, F.O., Larter, R.D., Gohl, K., Palaeo-ice stream pathways and retreat style in the easternmost Amundsen Sea Embayment, West Antarctica, re- vealed by combined multibeam bathymetric and seismic data, Geomorphology (2015), doi: 10.1016/j.geomorph.2015.05.020 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Palaeo-ice stream pathways and retreat style in the easternmost Amundsen Sea Embayment, West Antarctica, revealed by combined multibeam bathymetric and seismic data J.P. Klages a,*, G. Kuhn a, A.G.C.
    [Show full text]
  • Understanding Glacier's Triple Divide Peak
    ISSUE NINE : WINTER 2018 The cover image is of tending water and listening at Water Bar in Greensboro, North Carolina, courte- sy Shanai Matteson, Works Progress, and Water Bar & Public Studio. Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCom- mercial 4.0 International License. This means each author holds the copyright to her or his work, and grants all users the rights to: share (copy and/or redistribute the material in any medium or format) or adapt (remix, transform, and/or build upon the material) the article, as long as the original author and source is cited, and the use is for noncommercial purposes. Open Rivers: Rethinking Water, Place & Community is produced by the University of Minnesota Libraries Publishing and the University of Minnesota Institute for Advanced Study. Editors Editorial Board Editor: Jay Bell, Soil, Water, and Climate, University of Patrick Nunnally, Institute for Advanced Study, Minnesota University of Minnesota Tom Fisher, Metropolitan Design Center, Administrative Editor: University of Minnesota Phyllis Mauch Messenger, Institute for Advanced Study, University of Minnesota Lewis E. Gilbert, Institute on the Environment, University of Minnesota Assistant Editor: Laurie Moberg, Doctoral Candidate, Mark Gorman, Policy Analyst, Washington, D.C. Anthropology, University of Minnesota Jennifer Gunn, History of Medicine, University of Media and Production Manager: Minnesota Joanne Richardson, Institute for Advanced Study, University of Minnesota Katherine Hayes, Anthropology,
    [Show full text]
  • Dating Glacial Landforms I: Archival, Incremental, Relative Dating Techniques and Age- Equivalent Stratigraphic Markers
    TREATISE ON GEOMORPHOLOGY, 2ND EDITION. Editor: Umesh Haritashya CRYOSPHERIC GEOMORPHOLOGY: Dating Glacial Landforms I: archival, incremental, relative dating techniques and age- equivalent stratigraphic markers Bethan J. Davies1* 1Centre for Quaternary Research, Department of Geography, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX *[email protected] Manuscript Code: 40019 Abstract Combining glacial geomorphology and understanding the glacial process with geochronological tools is a powerful method for understanding past ice-mass response to climate change. These data are critical if we are to comprehend ice mass response to external drivers of change and better predict future change. This chapter covers key concepts relating to the dating of glacial landforms, including absolute and relative dating techniques, direct and indirect dating, precision and accuracy, minimum and maximum ages, and quality assurance protocols. The chapter then covers the dating of glacial landforms using archival methods (documents, paintings, topographic maps, aerial photographs, satellite images), relative stratigraphies (morphostratigraphy, Schmidt hammer dating, amino acid racemization), incremental methods that mark the passage of time (lichenometry, dendroglaciology, varve records), and age-equivalent stratigraphic markers (tephrochronology, palaeomagnetism, biostratigraphy). When used together with radiometric techniques, these methods allow glacier response to climate change to be characterized across the Quaternary, with resolutions from annual to thousands of years, and timespans applicable over the last few years, decades, centuries, millennia and millions of years. All dating strategies must take place within a geomorphological and sedimentological framework that seeks to comprehend glacier processes, depositional pathways and post-depositional processes, and dating techniques must be used with knowledge of their key assumptions, best-practice guidelines and limitations.
    [Show full text]
  • The Last British Ice Sheet: a Review of the Evidence Utilised in the Compilation of the Glacial Map of Britain
    This is a repository copy of The last British Ice Sheet: A review of the evidence utilised in the compilation of the Glacial Map of Britain . White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/915/ Article: Evans, D.J.A., Clark, C.D. and Mitchell, W.A. (2005) The last British Ice Sheet: A review of the evidence utilised in the compilation of the Glacial Map of Britain. Earth-Science Reviews, 70 (3-4). pp. 253-312. ISSN 0012-8252 https://doi.org/10.1016/j.earscirev.2005.01.001 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ White Rose Consortium ePrints Repository http://eprints.whiterose.ac.uk/ This is an author produced version of a paper published in Earth-Science Reviews.
    [Show full text]
  • Border Ecologies in Boundary Waters
    University of Calgary PRISM: University of Calgary's Digital Repository University of Calgary Press University of Calgary Press Open Access Books 2016-11 Border Flows: A Century of the Canadian-American Water Relationship Heasley, Lynne; Macfarlane, Daniel University of Calgary Press http://hdl.handle.net/1880/51751 book http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution Non-Commercial No Derivatives 4.0 International Downloaded from PRISM: https://prism.ucalgary.ca BORDER FLOWS: A Century of the Canadian- American Water Relationship Edited by Lynne Heasley and Daniel Macfarlane ISBN 978-1-55238-896-9 THIS BOOK IS AN OPEN ACCESS E-BOOK. It is an electronic version of a book that can be purchased in physical form through any bookseller or on-line retailer, or from our distributors. Please support this open access publication by requesting that your university purchase a print copy of this book, or by purchasing a copy yourself. If you have any questions, please contact us at [email protected] Cover Art: The artwork on the cover of this book is not open access and falls under traditional copyright provisions; it cannot be reproduced in any way without written permission of the artists and their agents. The cover can be displayed as a complete cover image for the purposes of publicizing this work, but the artwork cannot be extracted from the context of the cover of this specific work without breaching the artist’s copyright. COPYRIGHT NOTICE: This open-access work is published under a Creative Commons licence. This means that you are free to copy, distribute, display or perform the work as long as you clearly attribute the work to its authors and publisher, that you do not use this work for any commercial gain in any form, and that you in no way alter, transform, or build on the work outside of its use in normal academic scholarship without our express permission.
    [Show full text]