In the Frontal Zone of the Ob River Estuary

Total Page:16

File Type:pdf, Size:1020Kb

In the Frontal Zone of the Ob River Estuary EGU2020-123 https://doi.org/10.5194/egusphere-egu2020-123 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Geographic features of the distribution of bottom fluxes of nutrients (N, P, Si) in the frontal zone of the Ob River estuary Gennadii Borisenko Shirshov Institute of Oceanology RAS, Biohydrochemistry, Moscow, Russian Federation ([email protected]) Gulf of Ob - the closing estuary of the Ob River, where fresh and saltwater are mixing. This is a very large and long stretch of water: about 800km in length and 30 to 90 km in width. The impressive size of the Gulf of Ob and the impact on the Kara Sea (runoff 530 km3 / year) give to Ob Estuary regional significance. River Ob bringing the largest amount (75%) of freshwater to the Gulf of Ob - an important industry flux and transport artery of Western Siberia, which in turn creates anthropogenic load on the estuary (surfactants, oil products, excess amounts of organic substances). Changes in salinity, acidity, alkalinity in frontal zones cause a chain reaction of subsequent physicochemical processes leading, in turn, to the deposition of more than 90% of sedimentary material and dissolved organic matter inputted by Ob. Inorganic forms flows of phosphorus from the sediment at the frontal zone is low, which is explained by the high content of Ferrum(III+) oxide. The fluxes of silicon and nitrogen did not significantly change, however, high absolute values of the silicon content in the mixing zone of fresh and sea waters are observed, which may be associated with the phenomenon of "avalanche" sedimentation observed in this zone. This work was supported by the grant of the Russian Science Foundation 19-17-00196 Dissolved transformation runoff in estuarine regions of Russian rivers of various climatic zones Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Satellite Ice Extent, Sea Surface Temperature, and Atmospheric 2 Methane Trends in the Barents and Kara Seas
    The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237 Manuscript under review for journal The Cryosphere Discussion started: 22 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Satellite ice extent, sea surface temperature, and atmospheric 2 methane trends in the Barents and Kara Seas 1 2 3 2 4 3 Ira Leifer , F. Robert Chen , Thomas McClimans , Frank Muller Karger , Leonid Yurganov 1 4 Bubbleology Research International, Inc., Solvang, CA, USA 2 5 University of Southern Florida, USA 3 6 SINTEF Ocean, Trondheim, Norway 4 7 University of Maryland, Baltimore, USA 8 Correspondence to: Ira Leifer ([email protected]) 9 10 Abstract. Over a decade (2003-2015) of satellite data of sea-ice extent, sea surface temperature (SST), and methane 11 (CH4) concentrations in lower troposphere over 10 focus areas within the Barents and Kara Seas (BKS) were 12 analyzed for anomalies and trends relative to the Barents Sea. Large positive CH4 anomalies were discovered around 13 Franz Josef Land (FJL) and offshore west Novaya Zemlya in early fall. Far smaller CH4 enhancement was found 14 around Svalbard, downstream and north of known seabed seepage. SST increased in all focus areas at rates from 15 0.0018 to 0.15 °C yr-1, CH4 growth spanned 3.06 to 3.49 ppb yr-1. 16 The strongest SST increase was observed each year in the southeast Barents Sea in June due to strengthening of 17 the warm Murman Current (MC), and in the south Kara Sea in September. The southeast Barents Sea, the south 18 Kara Sea and coastal areas around FJL exhibited the strongest CH4 growth over the observation period.
    [Show full text]
  • Circulation in the Southwestern Part of the Kara Sea in September 2007 A
    ISSN 00014370, Oceanology, 2010, Vol. 50, No. 5, pp. 643–656. © Pleiades Publishing, Inc., 2010. Original Russian Text © A.G. Zatsepin, E.G. Morozov, V.T. Paka, A.N. Demidov, A.A. Kondrashov, A.O. Korzh, V.V. Kremenetskiy, S.G. Poyarkov, D.M. Soloviev, 2010, published in Okeanologiya, 2010, Vol. 50, No. 5, pp. 683–697. MARINE PHYSICS Circulation in the Southwestern Part of the Kara Sea in September 2007 A. G. Zatsepina, E. G. Morozova, V. T. Pakab, A. N. Demidova, A. A. Kondrashovb, A. O. Korzhb, V. V. Kremenetskiya, S. G. Poyarkova, and D. M. Solovievc a Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia Email: [email protected] b Atlantic Branch of the Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia c Marine Hydrophysical Institute, National Academy of Sciences of Ukraine, Sevastopol, Ukraine Received September 16, 2009; in final form, January 2, 2010 Abstract—During cruise 54 of the R/V Akademik Mstislav Keldysh to the southwestern Kara Sea (September 6 to October 7, 2007), a large amount of hydrophysical data with unique spatial resolution was obtained on the basis of measurements using different instruments. The analysis of the data gave us the possibility to study the dynamics and hydrological structure of the southwestern Kara Sea basin. The main elements of the gen eral circulation are the following: the Yamal Current, the Eastern Novaya Zemlya Current, and the St. Anna Trough Current. All these currents are topographically controlled; they flow over the bottom slopes along the isobaths. The Yamal Current begins at the Kara Gates Strait and turns to the east as part of the cyclonic cir culation.
    [Show full text]
  • A Newly Discovered Glacial Trough on the East Siberian Continental Margin
    Clim. Past Discuss., doi:10.5194/cp-2017-56, 2017 Manuscript under review for journal Clim. Past Discussion started: 20 April 2017 c Author(s) 2017. CC-BY 3.0 License. De Long Trough: A newly discovered glacial trough on the East Siberian Continental Margin Matt O’Regan1,2, Jan Backman1,2, Natalia Barrientos1,2, Thomas M. Cronin3, Laura Gemery3, Nina 2,4 5 2,6 7 1,2,8 9,10 5 Kirchner , Larry A. Mayer , Johan Nilsson , Riko Noormets , Christof Pearce , Igor Semilietov , Christian Stranne1,2,5, Martin Jakobsson1,2. 1 Department of Geological Sciences, Stockholm University, Stockholm, 106 91, Sweden 2 Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 10 3 US Geological Survey MS926A, Reston, Virginia, 20192, USA 4 Department of Physical Geography (NG), Stockholm University, SE-106 91 Stockholm, Sweden 5 Center for Coastal and Ocean Mapping, University of New Hampshire, New Hampshire 03824, USA 6 Department of Meteorology, Stockholm University, Stockholm, 106 91, Sweden 7 University Centre in Svalbard (UNIS), P O Box 156, N-9171 Longyearbyen, Svalbard 15 8 Department of Geoscience, Aarhus University, Aarhus, 8000, Denmark 9 Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia 10 Tomsk National Research Polytechnic University, Tomsk, Russia Correspondence to: Matt O’Regan ([email protected]) 20 Abstract. Ice sheets extending over parts of the East Siberian continental shelf have been proposed during the last glacial period, and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean has left the timing, extent and even existence of these ice sheets largely unresolved.
    [Show full text]
  • Radioactivity in the Arctic Seas
    IAEA-TECDOC-1075 XA9949696 Radioactivity in the Arctic Seas Report for the International Arctic Seas Assessment Project (IASAP) ffl INTERNATIONAL ATOMIC ENERGY AGENCA / Y / 1JrrziZr^AA 30-16 The originating Section of this publication in the IAEA was: Radiometrics Section International Atomic Energy Agency Marine Environment Laboratory B.P. 800 MC 98012 Monaco Cedex RADIOACTIVITY IN THE ARCTIC SEAS IAEA, VIENNA, 1999 IAEA-TECDOC-1075 ISSN 1011-4289 ©IAEA, 1999 Printe IAEe th AustriAn y i d b a April 1999 FOREWORD From 199 o 1993t e Internationa6th l Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL s engage IAEA'e wa ) th n di s International Arctic Seas Assessment Project (IASAP whicn i ) h emphasi bees ha sn place criticaa n do l revie f environmentawo l conditions in the Arctic Seas. IAEA-MEe Th L programme, organize framewore th n dIASAi e th f ko P included: (i) an oceanographic and an ecological description of the Arctic Seas; provisioe th (ii )centra a f no l database facilitIASAe th r yfo P programm collectione th r efo , synthesi interpretatiod san datf nmarino n ao e radioactivit Arctie th n yi c Seas; (iii) participation in official expeditions to the Kara Sea organized by the joint Russian- Norwegian Experts Group (1992, 1993 and 1994), the Russian Academy of Sciences (1994), and the Naval Research Laboratory and Norwegian Defence Research Establishment (1995); (iv) assistance wit d n laboratorsiti han u y based radiometric measurement f curreno s t radionuclide concentrations in the Kara Sea; (v) organization of analytical quality assurance intercalibration exercises among the participating laboratories; (vi) computer modellin e potentiath f o g l dispersa f radionuclideo l s released froe mth dumped f assessmeno wast d associatee ean th f o t d radiological consequencee th f o s disposals on local, regional and global scales; (vii) in situ and laboratory based assessment of distribution coefficients (Kd) and concentration factor sArctie (CFth r c)fo environment.
    [Show full text]
  • Russia to “Launder” Warpath the Inf Treaty Iranian Oil?
    MONTHLY October 2018 MONTHLY AugustOctober 2018 2018 The publication prepared exclusively for PERN S.A. Date of publication in the public domain: 19th17th NovemberSeptember 2018. 2018. CONTENTS 12 19 28 PUTIN AGAIN ON THE GREAT GAME OVER RUSSIA TO “LAUNDER” WARPATH THE INF TREATY IRANIAN OIL? U.S. NATIONAL SECURITY ADVISOR PUTIN’S ANOTHER BODYGUARD JOHN BOLTON GLADDENED 3 TO BE APPOINTED GOVERNOR 18 MOSCOW’S “PARTY OF WAR” RUSSIAN ARMY TO ADD MORE GREAT GAME OVER THE INF 4 FIREPOWER IN KALININGRAD 19 TREATY PURGE IN RUSSIA’S REGIONS AS RUSSIA AND PAKISTAN TO HOLD PUTIN GETS RID OF POLITICAL JOINT MILITARY DRILLS IN THE 6 VETERANS 21 PAKISTANI MOUNTAINS SECHIN LOSES BATTLE FOR ITALY TO WITHDRAW FROM 7 RUSSIA’S STRATEGIC OIL PORT 22 ROSNEFT PROJECT SPETSNAZ, FLEET AND NUCLEAR GAS GAMES: POLISH-RUSSIANS FORCES: RUSSIA’S INTENSE 24 TENSIONS OVER A NEW LNG DEAL 9 MILITARY DRILLS RUSSIA GETS NEW ALLY AS SHOIGU GAZPROM TO RESUME IMPORTS 25 PAYS VISIT TO MONGOLIA 10 OF TURKMEN GAS MORE TENSIONS IN THE SEA 12 PUTIN AGAIN ON THE WARPATH OF AZOV: RUSSIA TO SCARE ON 27 EASTERN FLANK NOVATEK DISCOVERS NEW 13 PROFITABLE GAS DEPOSITS 28 RUSSIA TO “LAUNDER” IRANIAN OIL? NOT ONLY BALTIC LNG PLANT: MOSCOW HOPES FOR IRAQ’S CLOSE TIES BETWEEN SHELL 29 NEW GOVERNMENT 15 AND GAZPROM GAZPROM AND UKRAINE FACE PUTIN VISITS INDIA TO MARK ANOTHER LITIGATION OVER 16 PURCHASE OF RUSSIA’S MISSILES 31 GAS SUPPLIES www.warsawinstitute.org 2 SOURCE: KREMLIN.RU 8 October 2018 PUTIN’S ANOTHER BODYGUARD TO BE APPOINTED GOVERNOR According to the autumn tradition, Russia’s President Vladimir Putin dismisses some governors while appointing new ones.
    [Show full text]
  • On Deck Part 2
    PART 2 The New Zealand Company of Master Mariners March 2015 SNIPPETS FROM THE MARITIME BIOSPHERE US NAVY’S NEW LASER WEAPON. “At less than a dollar per shot, there’s no question DOES THIS SPELL THE END OF about the value LaWS provides,” said Klunder. “With CONVENTIONAL WEAPONS? affordability a serious concern for our defense budgets, this will more effectively manage resources to ‘Shades of Buck Rogers’ ensure our Sailors and Marines are never in a fair The U.S. Navy has achieved a historic milestone with a fight.” cutting-edge new laser weapon system that can In the future, factors from the successful deployment destroy targets for less than $1 per shot. and demonstration aboard the USS Ponce will help The Navy made the announcement recently that for guide the development of weapons under ONR’s Solid- the first time ever the new laser weapon system, known as LaWS, was successfully deployed and State Laser-Technology Maturation program. According operated aboard a Navy ship in the Arabian Gulf. The to the U.S. Navy, combat-ready laser prototypes that weapon, which uses a form of concentrated directed- could be installed on vessels such as guided-missile energy to destroy a target, has been under destroyers and the Littoral Combat Ship in the early development by the Office of Naval Research for 2020s. several years. See it in action here: http://gcaptain.com/watch-u-s- navys-new-laser-weapon-action-photos- video/?utm_source=feedburner&utm_medium=feed&u tm_campaign=Feed%3A+Gcaptain+%28gCaptain.com %29 TIME-LAPSE VIDEO: ALLSEAS AUDACIA OFFSHORE PIPELAY VESSEL IN ACTION Check out this greatMIKE time SCHULER-lapse video showing exactly what Allseas’ newest pipelay vessel was built to do.
    [Show full text]
  • Arctic Cephalopod Distributions and Their Associated Predatorspor 146 209..227 Kathleen Gardiner & Terry A
    Arctic cephalopod distributions and their associated predatorspor_146 209..227 Kathleen Gardiner & Terry A. Dick Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Keywords Abstract Arctic Ocean; Canada; cephalopods; distributions; oceanography; predators. Cephalopods are key species of the eastern Arctic marine food web, both as prey and predator. Their presence in the diets of Arctic fish, birds and mammals Correspondence illustrates their trophic importance. There has been considerable research on Terry A. Dick, Biological Sciences, University cephalopods (primarily Gonatus fabricii) from the north Atlantic and the west of Manitoba, Winnipeg, Manitoba R3T 2N2, side of Greenland, where they are considered a potential fishery and are taken Canada. E-mail: [email protected] as a by-catch. By contrast, data on the biogeography of Arctic cephalopods are doi:10.1111/j.1751-8369.2010.00146.x still incomplete. This study integrates most known locations of Arctic cepha- lopods in an attempt to locate potential areas of interest for cephalopods, and the predators that feed on them. International and national databases, museum collections, government reports, published articles and personal communica- tions were used to develop distribution maps. Species common to the Canadian Arctic include: G. fabricii, Rossia moelleri, R. palpebrosa and Bathypolypus arcticus. Cirroteuthis muelleri is abundant in the waters off Alaska, Davis Strait and Baffin Bay. Although distribution data are still incomplete, groupings of cephalopods were found in some areas that may be correlated with oceanographic variables. Understanding species distributions and their interactions within the ecosys- tem is important to the study of a warming Arctic Ocean and the selection of marine protected areas.
    [Show full text]
  • Deep Structure, Tectonics and Petroleum Potential of the Western Sector of the Russian Arctic
    Journal of Marine Science and Engineering Article Deep Structure, Tectonics and Petroleum Potential of the Western Sector of the Russian Arctic Alexey S. Egorov 1, Oleg M. Prischepa 2, Yury V. Nefedov 2,* , Vladimir A. Kontorovich 3 and Ilya Y. Vinokurov 4 1 The Faculty of Geology, Federal State Budget Educational Institution of Higher Education, Saint-Petersburg Mining University, 199106 Saint-Petersburg, Russia; [email protected] 2 Oil and Gas Geology Department, Federal State Budget Educational Institution of Higher Education, Saint-Petersburg Mining University, Saint-199106 Petersburg, Russia; [email protected] 3 Siberian Branch, Russian Academy of Science, The Trofimuk Institute of Petroleum Geology and Geophysics, 630090 Novosibirsk, Russia; [email protected] 4 Deep Geophysics Department, Russian Geological Research Institute, 199106 Saint-Petersburg, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-911-230-56-36 Abstract: The evolutionary-genetic method, whereby modern sedimentary basins are interpreted as end-products of a long geological evolution of a system of conjugate palaeo-basins, enables the assessment of the petroleum potential of the Western sector of the Russian Arctic. Modern basins in this region contain relics of palaeo-basins of a certain tectonotype formed in varying geodynamic regimes. Petroleum potential estimates of the Western Arctic vary broadly—from 34.7 to more than 100 billion tons of oil equivalent with the share of liquid hydrocarbons from 5.3 to 13.4 billion tons of oil equivalent. At each stage of the development of palaeo-basins, favourable geological, geochemical and thermobaric conditions have emerged and determined the processes of oil and gas formation, Citation: Egorov, A.S.; Prischepa, migration, accumulation, and subsequent redistribution between different complexes.
    [Show full text]
  • Arctic (Palaeo) River Discharge and Environmental Change: Evidence from the Holocene Kara Sea Sedimentary Record R
    ARTICLE IN PRESS Quaternary Science Reviews 23 (2004) 1485–1511 Arctic (palaeo) river discharge and environmental change: evidence from the Holocene Kara Sea sedimentary record R. Steina,*, K. Dittmersa, K. Fahla, M. Krausa, J. Matthiessena, F. Niessena, M. Pirrungb, Ye. Polyakovac, F. Schostera, T. Steinkea, D.K. Futterer. a a Alfred Wegener Institute for Polar and Marine Research, Columbusstrasse, Bremerhaven 27568, Germany b Institut fur. Geowissenschaften, Friedrich-Schiller-Universitat,. Jena, Germany c Moscow State University, Moscow, Russia Abstract In this paper, we summarize data on terrigenous sediment supply in the Kara Sea and its accumulation and spatial and temporal variability during Holocene times. Sedimentological, organic-geochemical, and micropaleontological proxies determined in surface sediments allow to characterize the modern (riverine) terrigenous sediment input. AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the terrigenous sediment fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north duringthe early Holocene before about 9 Cal. kyr BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge. Based on sediment thickness charts, echograph profiles and sediment core data, we estimate an average Holocene (0–11 Cal.
    [Show full text]
  • Patterns of the Kara Sea Primary Production in Autumn: Biotic and Abiotic Forcing of Subsurface Layer
    ÔØ ÅÒÙ×Ö ÔØ Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer Andrey B. Demidov, Sergey A. Mosharov, Peter N. Makkaveev PII: S0924-7963(14)00028-1 DOI: doi: 10.1016/j.jmarsys.2014.01.014 Reference: MARSYS 2487 To appear in: Journal of Marine Systems Received date: 18 April 2013 Revised date: 29 January 2014 Accepted date: 30 January 2014 Please cite this article as: Demidov, Andrey B., Mosharov, Sergey A., Makkaveev, Peter N., Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer, Journal of Marine Systems (2014), doi: 10.1016/j.jmarsys.2014.01.014 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Patterns of the Kara Sea primary production in autumn: biotic and abiotic forcing of subsurface layer Andrey B. Demidov a, *, Sergey A. Mosharov a, Peter N. Makkaveev a a P.P. Shirshov Institute of Oceanology Russian Academy of Sciences, 117997, Moscow, Nachimovsky av. 36, Russia * Corresponding author. E-mail addresses: [email protected] (Andrey B. Demidov), [email protected] (Sergey A. Mosharov), [email protected] (Peter N. Makkaveev). ABSTRACT. Primary production and fundamental environmental factors were measured during September–October 1993, 2007 and 2011 in the Kara Sea.
    [Show full text]
  • Pub1068 Web.Pdf
    RADIOLOGICAL CONDITIONS OF THE WESTERN KARA SEA ASSESSMENT OF THE RADIOLOGICAL IMPACT OF THE DUMPING OF RADIOACTIVE WASTE IN THE ARCTIC SEAS REPORT ON THE INTERNATIONAL ARCTIC SEAS ASSESSMENT PROJECT (IASAP) The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HAITI PARAGUAY ALBANIA HOLY SEE PERU ALGERIA HUNGARY PHILIPPINES ARGENTINA ICELAND POLAND ARMENIA INDIA PORTUGAL AUSTRALIA INDONESIA QATAR AUSTRIA IRAN, ISLAMIC REPUBLIC OF REPUBLIC OF MOLDOVA BANGLADESH IRAQ ROMANIA BELARUS IRELAND RUSSIAN FEDERATION BELGIUM ISRAEL SAUDI ARABIA BOLIVIA ITALY SENEGAL BOSNIA AND JAMAICA SIERRA LEONE HERZEGOVINA JAPAN SINGAPORE BRAZIL JORDAN SLOVAKIA BULGARIA KAZAKHSTAN SLOVENIA BURKINA FASO KENYA SOUTH AFRICA CAMBODIA KOREA, REPUBLIC OF SPAIN CAMEROON KUWAIT SRI LANKA CANADA LATVIA SUDAN CHILE LEBANON SWEDEN CHINA LIBERIA SWITZERLAND COLOMBIA LIBYAN ARAB JAMAHIRIYA SYRIAN ARAB REPUBLIC COSTA RICA LIECHTENSTEIN THAILAND COTE D’IVOIRE LITHUANIA THE FORMER YUGOSLAV CROATIA LUXEMBOURG REPUBLIC OF MACEDONIA CUBA MADAGASCAR TUNISIA CYPRUS MALAYSIA TURKEY CZECH REPUBLIC MALI UGANDA DEMOCRATIC REPUBLIC MALTA UKRAINE OF THE CONGO MARSHALL ISLANDS UNITED ARAB EMIRATES DENMARK MAURITIUS UNITED KINGDOM OF DOMINICAN REPUBLIC MEXICO GREAT BRITAIN AND ECUADOR MONACO NORTHERN IRELAND EGYPT MONGOLIA UNITED REPUBLIC EL SALVADOR MOROCCO OF TANZANIA ESTONIA MYANMAR UNITED STATES ETHIOPIA NAMIBIA OF AMERICA FINLAND NETHERLANDS URUGUAY FRANCE NEW ZEALAND UZBEKISTAN GABON NICARAGUA VENEZUELA GEORGIA NIGER VIET NAM GERMANY NIGERIA YEMEN GHANA NORWAY YUGOSLAVIA GREECE PAKISTAN ZAMBIA GUATEMALA PANAMA ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situ- ated in Vienna.
    [Show full text]
  • Nord Stream 2
    urgewald CLIMATE DISASTER ... stranded asset, geopolitical hornets’ nest – Why Nord Stream 2 is a bad deal. Gas is part of the problem, not part of the solution Content 1. Executive summary ................................................... 3 2. The interests behind Nord Stream 2 ..................................... 4 3. The companies behind Nord Stream 2 .................................... 6 3.1 The company behind the pipeline: Gazprom ...........................7 3.2 A perfect partner: Wintershall Dea ....................................8 3.3 The other German player: Uniper .....................................9 3.4 The new producer in Siberia: OMV ..................................10 3.5 Expanding its business in Russia: Shell ..............................11 3.6 The big French gas player: Engie ....................................12 4. Where the gas comes from: Devastating effects on Indigenous livelihoods and the environment in Yamal ............................... 13 FAQ: Unpacking the industry’s lies about the need for Nord Stream 2. 16 Cover: ©iStock_Ladislav Kubeš, Shutterstock_Ksanawo Kubeš, ©iStock_Ladislav Cover: 2 1. Executive summary Nord Stream 2 is part of a system of underwater pipelines This briefing paper outlines the involvement of Nord in the Baltic Sea intended to transport gas over 1200 km Stream 2 AG owner Gazprom and the five financiers of the from Russia to Germany. The pipeline would connect gas project: Wintershall Dea, Uniper, OMV, Shell, and Engie. facilities in Ust-Luga in the Leningrad region with a termi- All of these companies either have long-term contracts nal in Lubmin, a small town on Germany’s Northeastern with Gazprom or joint gas and oil operations in Russia, coast. Nord Stream 2 is disastrous for the climate and not some of which lie in gas fields that will feed Nord Stream 2.
    [Show full text]