Pub1068 Web.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Pub1068 Web.Pdf RADIOLOGICAL CONDITIONS OF THE WESTERN KARA SEA ASSESSMENT OF THE RADIOLOGICAL IMPACT OF THE DUMPING OF RADIOACTIVE WASTE IN THE ARCTIC SEAS REPORT ON THE INTERNATIONAL ARCTIC SEAS ASSESSMENT PROJECT (IASAP) The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HAITI PARAGUAY ALBANIA HOLY SEE PERU ALGERIA HUNGARY PHILIPPINES ARGENTINA ICELAND POLAND ARMENIA INDIA PORTUGAL AUSTRALIA INDONESIA QATAR AUSTRIA IRAN, ISLAMIC REPUBLIC OF REPUBLIC OF MOLDOVA BANGLADESH IRAQ ROMANIA BELARUS IRELAND RUSSIAN FEDERATION BELGIUM ISRAEL SAUDI ARABIA BOLIVIA ITALY SENEGAL BOSNIA AND JAMAICA SIERRA LEONE HERZEGOVINA JAPAN SINGAPORE BRAZIL JORDAN SLOVAKIA BULGARIA KAZAKHSTAN SLOVENIA BURKINA FASO KENYA SOUTH AFRICA CAMBODIA KOREA, REPUBLIC OF SPAIN CAMEROON KUWAIT SRI LANKA CANADA LATVIA SUDAN CHILE LEBANON SWEDEN CHINA LIBERIA SWITZERLAND COLOMBIA LIBYAN ARAB JAMAHIRIYA SYRIAN ARAB REPUBLIC COSTA RICA LIECHTENSTEIN THAILAND COTE D’IVOIRE LITHUANIA THE FORMER YUGOSLAV CROATIA LUXEMBOURG REPUBLIC OF MACEDONIA CUBA MADAGASCAR TUNISIA CYPRUS MALAYSIA TURKEY CZECH REPUBLIC MALI UGANDA DEMOCRATIC REPUBLIC MALTA UKRAINE OF THE CONGO MARSHALL ISLANDS UNITED ARAB EMIRATES DENMARK MAURITIUS UNITED KINGDOM OF DOMINICAN REPUBLIC MEXICO GREAT BRITAIN AND ECUADOR MONACO NORTHERN IRELAND EGYPT MONGOLIA UNITED REPUBLIC EL SALVADOR MOROCCO OF TANZANIA ESTONIA MYANMAR UNITED STATES ETHIOPIA NAMIBIA OF AMERICA FINLAND NETHERLANDS URUGUAY FRANCE NEW ZEALAND UZBEKISTAN GABON NICARAGUA VENEZUELA GEORGIA NIGER VIET NAM GERMANY NIGERIA YEMEN GHANA NORWAY YUGOSLAVIA GREECE PAKISTAN ZAMBIA GUATEMALA PANAMA ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situ- ated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. © IAEA, 1998 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Austria December 1998 STI/PUB/1068 RADIOLOGICAL ASSESSMENT REPORTS SERIES RADIOLOGICAL CONDITIONS OF THE WESTERN KARA SEA ASSESSMENT OF THE RADIOLOGICAL IMPACT OF THE DUMPING OF RADIOACTIVE WASTE IN THE ARCTIC SEAS REPORT ON THE INTERNATIONAL ARCTIC SEAS ASSESSMENT PROJECT (IASAP) INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1998 VIC Library Cataloguing in Publication Data Radiological conditions of the Western Kara Sea ; assessment of the radiological impact of the dumping of radioactive waste in the Arctic seas, report on the International Arctic Seas Assessment Project (IASAP). — Vienna : International Atomic Energy Energy, 1998. p. ; 24 cm. — (Radiological assessment reports series, ISSN 1020–6566) STI/PUB/1068 ISBN 92–0–104098–9 Includes bibliographical references. 1. Radioactive pollution—Kara Sea (Russia). 2. Kara Sea (Russia)— Environmental conditions. I. International Atomic Energy Agency. II. Series. VICL 98–00210 FOREWORD This report presents the findings of the International Arctic Seas Assessment Project (IASAP), which was instituted in 1993 and concluded in 1996 to address concerns over the potential health and environmental impacts of high level radioactive waste dumped in the shallow waters of the Arctic Seas. The IASAP study was endorsed by the Contracting Parties to the Convention on Prevention of Marine Pollution by Dumping of Waste and Other Matter, and a summary of the results and conclusions was provided to the Contracting Parties in February 1997. The study covered the following aspects: (i) examination of the current radiological situation in Arctic waters due to the dumped wastes; (ii) the evaluation of potential future releases from the dumped wastes; (iii) prediction of environ- mental transport of potential releases and assessment of the associated radiological impact on humans and biota; and (iv) examination of the feasibility, costs and benefits of possible remedial measures. Information on the situation at the dumping sites and surrounding sea areas was obtained by means of exploratory visits organized by the Joint Norwegian–Russian Expert Group. The study was partially supported by the Government of the United States of America. This report represents the joint efforts of the scientists taking part in the IASAP Advisory Group and various working groups. Their names are listed at the end of the report. The main drafters of the sections were A. Salo, Finland (Section 2), P. Povinec, IAEA-RIML (Section 3), N. Lynn, UK (Section 4), M. Scott, UK (Section 5), J. Schwarz, Germany (Section 6) and J. Cooper, UK (Section 7). A special acknowledgement is due to the Chairperson of the Advisory Group, A. Salo, the Chairpersons of the working groups R. Dyer (USA), M. Scott and J. Schwarz. The IAEA staff member responsible for co-ordinating the study was K-L. Sjoeblom of the Division of Radiation and Waste Safety. Other reports issued or to be issued under the IASAP study are: Predicted Radionuclide Release from Marine Reactors Dumped in the Kara Sea: Report of the Source Term Working Group of the International Arctic Seas Assessment Project (IASAP), IAEA-TECDOC-938 (1997). Anthropogenic Radionuclides in the Arctic Seas: Report to the International Arctic Seas Assessment Project (IASAP), IAEA-TECDOC (in preparation). Modelling of the Radiological Impact of Radioactive Waste Dumping in the Arctic Seas: Report of the Modelling and Assessment Working Group of the International Arctic Seas Assessment Project (IASAP), IAEA-TECDOC (in preparation). EDITORIAL NOTE Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the IAEA as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The contributors to drafting are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyright. CONTENTS EXECUTIVE SUMMARY . 1 1. Background . 1 2. Radiological protection considerations . 1 3. Current radiological situation . 2 4. Future radiological situation . 3 5. Remediation . 5 6. Conclusions . 6 7. Recommendations . 7 1. INTRODUCTION . 9 1.1. Radioactive waste disposal at sea and the international system for its control . 9 1.1.1. London Convention 1972 . 9 1.1.2. Dumping operations . 10 1.1.3. Dumping in the Arctic in relation to the London Convention 1972 . 12 1.2. Rationale for establishing IASAP . 13 2. RADIOLOGICAL PROTECTION AND DECISION MAKING . 15 2.1. Basic concepts in radiological protection relevant to IASAP . 15 2.1.1. Practices . 15 2.1.1.1. Exclusion, exemption and clearance . 15 2.1.2. Intervention . 15 2.2. Basic requirements of radiological protection as established in the basic safety standards . 16 2.2.1. Practices . 16 2.2.2. Intervention . 16 2.3. Previous sea dumping in the Arctic — A practice or an intervention situation? . 16 2.4. Making decisions regarding remedial actions . 17 2.4.1. Decision aiding techniques . .17 3. THE ARCTIC ENVIRONMENT . 21 3.1. Description of the region . 21 3.1.1. Oceanography . 21 3.1.1.1. Arctic Ocean . 21 3.1.1.2. Barents Sea . 23 3.1.1.3. Kara Sea . 25 3.1.1.4. Kara Sea dumpsites . 27 3.1.2. Ecology . 30 3.1.2.1. Biological production in the Arctic . 30 3.1.2.2. Marine food webs in the Arctic . 32 3.1.2.3. Fish and fisheries in the Barents and Kara Seas . 34 3.2. Radioactivity of the Arctic Seas . 35 3.2.1. Marine radioactivity database . 35 3.2.2. Pre-1992 radionuclide concentrations . 35 3.2.2.1. Water . .35 3.2.2.2. Sediment . 39 3.2.3. Present radionuclide concentrations in the Kara Sea . 39 3.2.3.1. Dumpsites . 39 3.2.3.2. The open Kara Sea . 42 3.2.3.3. Ob and Yenisey estuaries . 43 3.2.3.4. Biota . .43 3.2.3.5. Conclusions on radionuclide concentrations in the Kara Sea . 43 3.2.4. Intercomparison exercises . .43 3.3. Distribution coefficients and concentration factors . 45 4. THE RADIOACTIVE SOURCE TERM . 47 4.1. Source term development . ..
Recommended publications
  • Satellite Ice Extent, Sea Surface Temperature, and Atmospheric 2 Methane Trends in the Barents and Kara Seas
    The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237 Manuscript under review for journal The Cryosphere Discussion started: 22 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Satellite ice extent, sea surface temperature, and atmospheric 2 methane trends in the Barents and Kara Seas 1 2 3 2 4 3 Ira Leifer , F. Robert Chen , Thomas McClimans , Frank Muller Karger , Leonid Yurganov 1 4 Bubbleology Research International, Inc., Solvang, CA, USA 2 5 University of Southern Florida, USA 3 6 SINTEF Ocean, Trondheim, Norway 4 7 University of Maryland, Baltimore, USA 8 Correspondence to: Ira Leifer ([email protected]) 9 10 Abstract. Over a decade (2003-2015) of satellite data of sea-ice extent, sea surface temperature (SST), and methane 11 (CH4) concentrations in lower troposphere over 10 focus areas within the Barents and Kara Seas (BKS) were 12 analyzed for anomalies and trends relative to the Barents Sea. Large positive CH4 anomalies were discovered around 13 Franz Josef Land (FJL) and offshore west Novaya Zemlya in early fall. Far smaller CH4 enhancement was found 14 around Svalbard, downstream and north of known seabed seepage. SST increased in all focus areas at rates from 15 0.0018 to 0.15 °C yr-1, CH4 growth spanned 3.06 to 3.49 ppb yr-1. 16 The strongest SST increase was observed each year in the southeast Barents Sea in June due to strengthening of 17 the warm Murman Current (MC), and in the south Kara Sea in September. The southeast Barents Sea, the south 18 Kara Sea and coastal areas around FJL exhibited the strongest CH4 growth over the observation period.
    [Show full text]
  • Circulation in the Southwestern Part of the Kara Sea in September 2007 A
    ISSN 00014370, Oceanology, 2010, Vol. 50, No. 5, pp. 643–656. © Pleiades Publishing, Inc., 2010. Original Russian Text © A.G. Zatsepin, E.G. Morozov, V.T. Paka, A.N. Demidov, A.A. Kondrashov, A.O. Korzh, V.V. Kremenetskiy, S.G. Poyarkov, D.M. Soloviev, 2010, published in Okeanologiya, 2010, Vol. 50, No. 5, pp. 683–697. MARINE PHYSICS Circulation in the Southwestern Part of the Kara Sea in September 2007 A. G. Zatsepina, E. G. Morozova, V. T. Pakab, A. N. Demidova, A. A. Kondrashovb, A. O. Korzhb, V. V. Kremenetskiya, S. G. Poyarkova, and D. M. Solovievc a Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia Email: [email protected] b Atlantic Branch of the Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia c Marine Hydrophysical Institute, National Academy of Sciences of Ukraine, Sevastopol, Ukraine Received September 16, 2009; in final form, January 2, 2010 Abstract—During cruise 54 of the R/V Akademik Mstislav Keldysh to the southwestern Kara Sea (September 6 to October 7, 2007), a large amount of hydrophysical data with unique spatial resolution was obtained on the basis of measurements using different instruments. The analysis of the data gave us the possibility to study the dynamics and hydrological structure of the southwestern Kara Sea basin. The main elements of the gen eral circulation are the following: the Yamal Current, the Eastern Novaya Zemlya Current, and the St. Anna Trough Current. All these currents are topographically controlled; they flow over the bottom slopes along the isobaths. The Yamal Current begins at the Kara Gates Strait and turns to the east as part of the cyclonic cir culation.
    [Show full text]
  • A Newly Discovered Glacial Trough on the East Siberian Continental Margin
    Clim. Past Discuss., doi:10.5194/cp-2017-56, 2017 Manuscript under review for journal Clim. Past Discussion started: 20 April 2017 c Author(s) 2017. CC-BY 3.0 License. De Long Trough: A newly discovered glacial trough on the East Siberian Continental Margin Matt O’Regan1,2, Jan Backman1,2, Natalia Barrientos1,2, Thomas M. Cronin3, Laura Gemery3, Nina 2,4 5 2,6 7 1,2,8 9,10 5 Kirchner , Larry A. Mayer , Johan Nilsson , Riko Noormets , Christof Pearce , Igor Semilietov , Christian Stranne1,2,5, Martin Jakobsson1,2. 1 Department of Geological Sciences, Stockholm University, Stockholm, 106 91, Sweden 2 Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 10 3 US Geological Survey MS926A, Reston, Virginia, 20192, USA 4 Department of Physical Geography (NG), Stockholm University, SE-106 91 Stockholm, Sweden 5 Center for Coastal and Ocean Mapping, University of New Hampshire, New Hampshire 03824, USA 6 Department of Meteorology, Stockholm University, Stockholm, 106 91, Sweden 7 University Centre in Svalbard (UNIS), P O Box 156, N-9171 Longyearbyen, Svalbard 15 8 Department of Geoscience, Aarhus University, Aarhus, 8000, Denmark 9 Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia 10 Tomsk National Research Polytechnic University, Tomsk, Russia Correspondence to: Matt O’Regan ([email protected]) 20 Abstract. Ice sheets extending over parts of the East Siberian continental shelf have been proposed during the last glacial period, and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean has left the timing, extent and even existence of these ice sheets largely unresolved.
    [Show full text]
  • Radioactivity in the Arctic Seas
    IAEA-TECDOC-1075 XA9949696 Radioactivity in the Arctic Seas Report for the International Arctic Seas Assessment Project (IASAP) ffl INTERNATIONAL ATOMIC ENERGY AGENCA / Y / 1JrrziZr^AA 30-16 The originating Section of this publication in the IAEA was: Radiometrics Section International Atomic Energy Agency Marine Environment Laboratory B.P. 800 MC 98012 Monaco Cedex RADIOACTIVITY IN THE ARCTIC SEAS IAEA, VIENNA, 1999 IAEA-TECDOC-1075 ISSN 1011-4289 ©IAEA, 1999 Printe IAEe th AustriAn y i d b a April 1999 FOREWORD From 199 o 1993t e Internationa6th l Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL s engage IAEA'e wa ) th n di s International Arctic Seas Assessment Project (IASAP whicn i ) h emphasi bees ha sn place criticaa n do l revie f environmentawo l conditions in the Arctic Seas. IAEA-MEe Th L programme, organize framewore th n dIASAi e th f ko P included: (i) an oceanographic and an ecological description of the Arctic Seas; provisioe th (ii )centra a f no l database facilitIASAe th r yfo P programm collectione th r efo , synthesi interpretatiod san datf nmarino n ao e radioactivit Arctie th n yi c Seas; (iii) participation in official expeditions to the Kara Sea organized by the joint Russian- Norwegian Experts Group (1992, 1993 and 1994), the Russian Academy of Sciences (1994), and the Naval Research Laboratory and Norwegian Defence Research Establishment (1995); (iv) assistance wit d n laboratorsiti han u y based radiometric measurement f curreno s t radionuclide concentrations in the Kara Sea; (v) organization of analytical quality assurance intercalibration exercises among the participating laboratories; (vi) computer modellin e potentiath f o g l dispersa f radionuclideo l s released froe mth dumped f assessmeno wast d associatee ean th f o t d radiological consequencee th f o s disposals on local, regional and global scales; (vii) in situ and laboratory based assessment of distribution coefficients (Kd) and concentration factor sArctie (CFth r c)fo environment.
    [Show full text]
  • Arctic Cephalopod Distributions and Their Associated Predatorspor 146 209..227 Kathleen Gardiner & Terry A
    Arctic cephalopod distributions and their associated predatorspor_146 209..227 Kathleen Gardiner & Terry A. Dick Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Keywords Abstract Arctic Ocean; Canada; cephalopods; distributions; oceanography; predators. Cephalopods are key species of the eastern Arctic marine food web, both as prey and predator. Their presence in the diets of Arctic fish, birds and mammals Correspondence illustrates their trophic importance. There has been considerable research on Terry A. Dick, Biological Sciences, University cephalopods (primarily Gonatus fabricii) from the north Atlantic and the west of Manitoba, Winnipeg, Manitoba R3T 2N2, side of Greenland, where they are considered a potential fishery and are taken Canada. E-mail: [email protected] as a by-catch. By contrast, data on the biogeography of Arctic cephalopods are doi:10.1111/j.1751-8369.2010.00146.x still incomplete. This study integrates most known locations of Arctic cepha- lopods in an attempt to locate potential areas of interest for cephalopods, and the predators that feed on them. International and national databases, museum collections, government reports, published articles and personal communica- tions were used to develop distribution maps. Species common to the Canadian Arctic include: G. fabricii, Rossia moelleri, R. palpebrosa and Bathypolypus arcticus. Cirroteuthis muelleri is abundant in the waters off Alaska, Davis Strait and Baffin Bay. Although distribution data are still incomplete, groupings of cephalopods were found in some areas that may be correlated with oceanographic variables. Understanding species distributions and their interactions within the ecosys- tem is important to the study of a warming Arctic Ocean and the selection of marine protected areas.
    [Show full text]
  • Deep Structure, Tectonics and Petroleum Potential of the Western Sector of the Russian Arctic
    Journal of Marine Science and Engineering Article Deep Structure, Tectonics and Petroleum Potential of the Western Sector of the Russian Arctic Alexey S. Egorov 1, Oleg M. Prischepa 2, Yury V. Nefedov 2,* , Vladimir A. Kontorovich 3 and Ilya Y. Vinokurov 4 1 The Faculty of Geology, Federal State Budget Educational Institution of Higher Education, Saint-Petersburg Mining University, 199106 Saint-Petersburg, Russia; [email protected] 2 Oil and Gas Geology Department, Federal State Budget Educational Institution of Higher Education, Saint-Petersburg Mining University, Saint-199106 Petersburg, Russia; [email protected] 3 Siberian Branch, Russian Academy of Science, The Trofimuk Institute of Petroleum Geology and Geophysics, 630090 Novosibirsk, Russia; [email protected] 4 Deep Geophysics Department, Russian Geological Research Institute, 199106 Saint-Petersburg, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-911-230-56-36 Abstract: The evolutionary-genetic method, whereby modern sedimentary basins are interpreted as end-products of a long geological evolution of a system of conjugate palaeo-basins, enables the assessment of the petroleum potential of the Western sector of the Russian Arctic. Modern basins in this region contain relics of palaeo-basins of a certain tectonotype formed in varying geodynamic regimes. Petroleum potential estimates of the Western Arctic vary broadly—from 34.7 to more than 100 billion tons of oil equivalent with the share of liquid hydrocarbons from 5.3 to 13.4 billion tons of oil equivalent. At each stage of the development of palaeo-basins, favourable geological, geochemical and thermobaric conditions have emerged and determined the processes of oil and gas formation, Citation: Egorov, A.S.; Prischepa, migration, accumulation, and subsequent redistribution between different complexes.
    [Show full text]
  • Arctic (Palaeo) River Discharge and Environmental Change: Evidence from the Holocene Kara Sea Sedimentary Record R
    ARTICLE IN PRESS Quaternary Science Reviews 23 (2004) 1485–1511 Arctic (palaeo) river discharge and environmental change: evidence from the Holocene Kara Sea sedimentary record R. Steina,*, K. Dittmersa, K. Fahla, M. Krausa, J. Matthiessena, F. Niessena, M. Pirrungb, Ye. Polyakovac, F. Schostera, T. Steinkea, D.K. Futterer. a a Alfred Wegener Institute for Polar and Marine Research, Columbusstrasse, Bremerhaven 27568, Germany b Institut fur. Geowissenschaften, Friedrich-Schiller-Universitat,. Jena, Germany c Moscow State University, Moscow, Russia Abstract In this paper, we summarize data on terrigenous sediment supply in the Kara Sea and its accumulation and spatial and temporal variability during Holocene times. Sedimentological, organic-geochemical, and micropaleontological proxies determined in surface sediments allow to characterize the modern (riverine) terrigenous sediment input. AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the terrigenous sediment fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north duringthe early Holocene before about 9 Cal. kyr BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge. Based on sediment thickness charts, echograph profiles and sediment core data, we estimate an average Holocene (0–11 Cal.
    [Show full text]
  • Patterns of the Kara Sea Primary Production in Autumn: Biotic and Abiotic Forcing of Subsurface Layer
    ÔØ ÅÒÙ×Ö ÔØ Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer Andrey B. Demidov, Sergey A. Mosharov, Peter N. Makkaveev PII: S0924-7963(14)00028-1 DOI: doi: 10.1016/j.jmarsys.2014.01.014 Reference: MARSYS 2487 To appear in: Journal of Marine Systems Received date: 18 April 2013 Revised date: 29 January 2014 Accepted date: 30 January 2014 Please cite this article as: Demidov, Andrey B., Mosharov, Sergey A., Makkaveev, Peter N., Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer, Journal of Marine Systems (2014), doi: 10.1016/j.jmarsys.2014.01.014 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Patterns of the Kara Sea primary production in autumn: biotic and abiotic forcing of subsurface layer Andrey B. Demidov a, *, Sergey A. Mosharov a, Peter N. Makkaveev a a P.P. Shirshov Institute of Oceanology Russian Academy of Sciences, 117997, Moscow, Nachimovsky av. 36, Russia * Corresponding author. E-mail addresses: [email protected] (Andrey B. Demidov), [email protected] (Sergey A. Mosharov), [email protected] (Peter N. Makkaveev). ABSTRACT. Primary production and fundamental environmental factors were measured during September–October 1993, 2007 and 2011 in the Kara Sea.
    [Show full text]
  • Geology: Control on Sediment and Organic Carbon Delivery to the Arctic Ocean Revealed with Space-Borne Synthetic Aperture Radar;
    Control on sediment and organic carbon delivery to the Arctic Ocean revealed with space-borne synthetic aperture radar: Ob’ River, Siberia Laurence C. Smith Department of Geog raphy, University of California, Los Ang eles, Box 951524, Bunche Hall, Los Ang eles, California 90095-1524 Douglas E. Alsdorf Department of Geolog ical Sciences, Cornell University, Snee Hall, Ithaca, New York 14853-1504 ABSTRACT An important control on river biogeochemistry and sediment load is the process of water ex- change between primary channels and the flood plain, particularly in low-relief areas containing lakes, ephemeral channels, and other aquatic ecosystems. Flood-plain exchange may be a domi- nant process on the lowland rivers of Arctic Russia, which are among the world’s largest in water discharge yet are strikingly deficient in their delivery of sediment to the Arctic shelf. Temporal synthetic aperture radar (SAR) amplitude and interferometric images of the Ob’ River, Siberia, reveal a time-varying limnological network controlling water, sediment, and nutrient exchange between flood-plain wetlands and the main channel. The amount of hydrologic exchange decreases by one order of magnitude from June to September, enhancing sedimentation over as much as 90% of the flood plain and enriching channel waters with colloidal organic carbon. This observation, combined with Russian field measurements of water discharge and sediment load, indicates that a major sediment sink on the lower Ob’ flood plain may be responsible for the low amount of sediment delivery
    [Show full text]
  • Comprehensive Research on the Kara Sea Ecosystem (128Th Cruise of Research Vessel Professor Shtokman) M
    ISSN 00014370, Oceanology, 2015, Vol. 55, No. 4, pp. 657–659. © Pleiades Publishing, Inc., 2015. Original Russian Text © M.V. Flint, S.G. Poyarkov, 2015, published in Okeanologiya, 2015, Vol. 55, No. 4, pp. 723–726. INFORMATION Comprehensive Research on the Kara Sea Ecosystem (128th Cruise of Research Vessel Professor Shtokman) M. V. Flint and S. G. Poyarkov Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow email: [email protected] Received November 12, 2014 DOI: 10.1134/S0001437015040074 The Kara Sea is a key Arctic region, the study of account the current climatic condition of the Arctic which allows us to address not only localbasin region; related but also general regional problems. The Kara ⎯to assess the specifics of physical, hydrochemi Sea receives about 45% of the total freshwater runoff cal, biological, and geochemical processes near a large to the Arctic (1200 km2). River runoff strongly fresh desalinated surface lens formed by the runoff of the Ob ens the surface sea layer, which significantly affects and Yenisei rivers and its role in forming biological intrabasinal water exchange processes, vertical water production, as well as in the transformation and cross column mixing, nturient regimes, and thus environ shelf transfer of substances; mental conditions for. Freshwater flow carries out ⎯to study the zonal specifics of physical, hydro over 150 million tons of allochthonous materials to the chemical, biological, and geochemical phenomena and Arctic shelf, including a wide range of contaminants. processes in the eastern, practically unstudied, and the The Kara region is strongly influenced by the cli coldest and most icebound region of the Kara Sea; matic processes characteristic of the Arctic over the ⎯to investigate the hydrophysical, hydrochemical, past decades, primarily, summer icecover degrada biological, and geochemical phenomena and pro tion.
    [Show full text]
  • 7 Laptev Sea
    7/18:&LME&FACTSHEET&SERIES& LAPTEV SEA LME tic LMEs Arc LAPTEV'SEA'LME'MAP 18 of Laptev Sea Map Russia Central LME Arctic Ocean Iceland North Pole Kara Sea 7 "1 ARCTIC LMEs Large&! Marine& Ecosystems& (LMEs)& are& defined& as& regions& of& work&of&the&ArcNc&Council&in&developing&and&promoNng&the& ocean& space& of& 200,000& km²& or& greater,& that& encompass& Ecosystem& Approach& to& management& of& the& ArcNc& marine& coastal& areas& from& river& basins& and& estuaries& to& the& outer& environment.& margins& of& a& conNnental& shelf& or& the& seaward& extent& of& a& predominant&coastal&current.&LMEs&are&defined&by&ecological& Joint'EA'Expert'group' criteria,&including&bathymetry,&hydrography,&producNvity,&and& PAME& established& an& Ecosystem& Approach& to& Management& tropically& linked& populaNons.& PAME& developed& a& map& expert& group& in& 2011& with& the& parNcipaNon& of& other& ArcNc& delineaNng&17&ArcNc&Large&Marine&Ecosystems&(ArcNc&LME's)& Council&working&groups&(AMAP,&CAFF&and&SDWG).&This&joint& in&the&marine&waters&of&the&ArcNc&and&adjacent&seas&in&2006.& Ecosystem&Approach&Expert&Group&(EAYEG)&has&developed&a& In&a&consultaNve&process&including&agencies&of&ArcNc&Council& framework& for& EA& implementaNon& where& the& first& step& is& member&states&and&other&ArcNc&Council&working&groups,&the& idenNficaNon& of& the& ecosystem& to& be& managed.& IdenNfying& ArcNc& LME& map& was& revised& in& 2012&to&include&18&ArcNc& the&ArcNc&LMEs&represents&this&first&step. LMEs.& This& is& the& current& map& of& ArcNc& LMEs& used& in& the& This'factsheet'is'one'of'18'in'a'series'of'the'Arc<c'LMEs.
    [Show full text]
  • FRANZ JOSEF LAND and the KARA SEA Current Route: Tromso, Norway to Oslo, Norway
    EXPLORING THE RUSSIAN ARCTIC: FRANZ JOSEF LAND AND THE KARA SEA Current route: Tromso, Norway to Oslo, Norway 24 Days National Geographic Endurance 126 Guests Expeditions in: Jun From $27,210 to $53,600 * summary summary summary summary summary summary Call us at 1.800.397.3348 or call your Travel Agent. In Australia, call 1300.361.012 • www.expeditions.com DAY 1-2: Oslo, Norway/Tromsø/Embark padding Fly to Oslo, and check in to our hotel upon arrival. 2022 Departure Dates: In the afternoon, get acquainted with the charming capital on a guided tour. Walk among the city’s 29 Jun famed Vigeland sculptures—hundreds of life-size, Advance Payment: expressive human figures that adorn terraced parklands. Then, delve into Norway’s history of $3,000 polar exploration at the Fram Museum and climb aboard its namesake, a record-setting, wooden extended text extended text extended ship. Enjoy an evening at leisure. Take a charter text flight to Tromsø, known as the “gateway to the extended text extended text extended Arctic” due to the numerous polar expeditions that text originated here, and embark National Geographic Endurance. (Day 2: B,D; Day 3: B,L,D) Special Offers DAY 3: Norway’s Fjords padding Explore Norway’s spectacular northern coast, FREE BAR TAB AND CREW which was carved by glaciers over millions of TIPS INCLUDED years. Glide through sublime, steep-walled fjords, marveling at the mountainous islands and chiseled We will cover your bar tab and all tips for peaks that lace these shores. Watch for seabirds the crew on all National Geographic and marine mammals and learn about the region’s Endurance voyages.
    [Show full text]