Claire Hastie Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Claire Hastie Thesis Hastie, Claire E. (2011) Discovering common genetic variants for hypertension using an extreme case-control strategy. PhD thesis. http://theses.gla.ac.uk/2423/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Discovering Common Genetic Variants for Hypertension Using an Extreme Case-control Strategy Claire E. Hastie, M.Sc. This being a thesis submitted for the degree of Doctor of Philosophy (Ph.D.) in the Faculty of Medicine, University of Glasgow October 2010 BHF Glasgow Cardiovascular Research Centre Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary, and Life Sciences University of Glasgow © C.E. Hastie 2010 Declaration I declare that this thesis has been written entirely by myself and is a record of research performed by myself with the exception of discovery cohort genotyping (Dr Wai K. Lee, Dr Anna Maria Di Blasio, Stewart Laing, and Dr Davide Gentilini), genotyping and association analysis of replication cohorts (undertaken by investigators from each cohort, respectively), and analysis of data from the BRIGHT (Dr Sandosh Padmanabhan), GRECO and HERCULES clinical functional cohorts (undertaken by investigators from each cohort, respectively). This work has not been submitted previously for a higher degree and was carried out under the supervision of Professor Anna F. Dominiczak and Professor Jill P. Pell. Claire E. Hastie Acknowledgements Firstly, I would like to thank my supervisors, Professor Anna Dominiczak and Professor Jill Pell, for their support and guidance. They are both wonderful role models and have provided me with many exciting opportunities over the last four years. Dr Sandosh Padmanabhan, although advisor in name, has always been much more than that. I would not have been able to complete this project without extensive training and advice from him. I also wish to thank Dr Wai Kwong Lee for his patience in helping me to understand the genotyping process. Cristina Menni has been a great source of practical and emotional help through the most difficult stages of this project. Special thanks to all of my colleagues who selflessly gave up their time to view cluster plots; Adyani Md Redzuan, Aiste Monkeviciute, Angela Bradshaw, Annika Delles, Alan Parker, Caline Koh-Tan, Carolyn Haggerty, Chiara Taurino, David Carty, Elisabeth Beattie, Emily Ord, Fernando Martinez Garcia, Jenny Greig, Jennifer McLachlan, Jim Mcculloch, John McClure, Kirsten Douglas, Laura Graham, Laura Denby, Laura Paul, Lorraine Work, Ruth Mackenzie, Samantha Alvarez-Madrazo, Sandra MacDonald, Teresa, Ulf Neisius, Wendy Crawford, Weiling Sarah Li. Finally, I cannot express enough my gratitude towards my parents, brother, and husband for their constant encouragement. 3 Contents Declaration………………………………………………………………………………….2 Acknowledgements…………………………………………………………………………3 Contents……………………………………………………………………………………..4 List of Figures………………………………………………………………………………7 List of Tables………………………………………………………………………………..9 List of Abbreviations, Acronyms & Symbols……………………………………………..10 Publications and Oral Presentations...……………………………………………………..16 Summary…………………………………………………………………………………..19 1 Introduction..................................................................................................................22 1.1 Cardiovascular disease.........................................................................................23 1.2 Human essential hypertension .............................................................................27 1.2.1 Causation of hypertension............................................................................28 1.3 Genetic factors in hypertension............................................................................30 1.3.1 Evidence of genetic determinants of blood pressure regulation and hypertension.................................................................................................30 1.3.2 Monogenic forms of hypertension...............................................................34 1.3.3 Linkage studies.............................................................................................36 1.3.4 Association studies.......................................................................................38 1.3.5 Candidate gene studies.................................................................................40 1.4 Genome-wide association studies........................................................................40 1.4.1 Subject ascertainment/ phenotyping ............................................................42 1.4.2 Phenotypic enrichment for genetic effects...................................................42 1.4.3 Population stratification...............................................................................44 1.4.4 Solutions to population stratification...........................................................45 1.4.5 Common Disease Common Variant Hypothesis .........................................47 1.4.6 Significance thresholds for GWAS..............................................................50 1.4.7 Statistical power...........................................................................................51 1.4.8 Replication ...................................................................................................54 1.4.9 GWAS of hypertension and blood pressure.................................................56 1.4.9.1 Wellcome Trust Case Control Consortium (WTCCC)............................58 1.4.9.2 Global Blood Pressure Genetics (Global BPgen) Consortium ................64 1.4.9.3 Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) Consortium...........................................................................65 1.4.9.4 Potential candidate genes for blood pressure regulation identified by Global BPgen and/or CHARGE...............................................................71 1.5 Aims.....................................................................................................................72 2 Materials and methods .................................................................................................73 2.1 Description of samples.........................................................................................74 2.1.1 Nordic Diltiazem study (NORDIL) .............................................................74 2.1.2 Malmö Diet and Cancer Study (MDC)........................................................75 2.1.3 Use of hypercontrols....................................................................................75 2.1.4 Case inclusion criteria..................................................................................76 2.1.5 Control inclusion and exclusion criteria ......................................................76 2.2 Software ...............................................................................................................76 2.2.1 DNA extraction and genotyping ..................................................................78 2.2.2 PLINK..........................................................................................................78 2.2.3 Haploview....................................................................................................79 2.2.4 EIGENSTRAT.............................................................................................80 2.3 Statistical analysis................................................................................................81 2.3.1 Power calculations .......................................................................................81 4 2.3.2 Summary of phenotypic data .......................................................................83 2.3.3 Reformatting of Illumina output files ..........................................................83 2.3.4 Quality control .............................................................................................85 2.3.5 Assessment of population stratification.......................................................85 2.3.6 Association...................................................................................................86 2.3.7 Examination of cluster plots ........................................................................86 2.3.8 Meta-analysis ...............................................................................................87 2.3.9 Annotation of top hits ..................................................................................91 2.3.10 Clinical functional studies............................................................................95 3 Genome-wide association study in extremes of blood pressure distribution...............97 3.1 Sample quality control .........................................................................................98 3.1.1 Specification of gender ................................................................................98 3.1.2 Cryptic relatedness.......................................................................................98
Recommended publications
  • Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data
    INTEROPERABILITY IN TOXICOLOGY: CONNECTING CHEMICAL, BIOLOGICAL, AND COMPLEX DISEASE DATA Sean Mackey Watford A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Gillings School of Global Public Health (Environmental Sciences and Engineering). Chapel Hill 2019 Approved by: Rebecca Fry Matt Martin Avram Gold David Reif Ivan Rusyn © 2019 Sean Mackey Watford ALL RIGHTS RESERVED ii ABSTRACT Sean Mackey Watford: Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data (Under the direction of Rebecca Fry) The current regulatory framework in toXicology is expanding beyond traditional animal toXicity testing to include new approach methodologies (NAMs) like computational models built using rapidly generated dose-response information like US Environmental Protection Agency’s ToXicity Forecaster (ToXCast) and the interagency collaborative ToX21 initiative. These programs have provided new opportunities for research but also introduced challenges in application of this information to current regulatory needs. One such challenge is linking in vitro chemical bioactivity to adverse outcomes like cancer or other complex diseases. To utilize NAMs in prediction of compleX disease, information from traditional and new sources must be interoperable for easy integration. The work presented here describes the development of a bioinformatic tool, a database of traditional toXicity information with improved interoperability, and efforts to use these new tools together to inform prediction of cancer and complex disease. First, a bioinformatic tool was developed to provide a ranked list of Medical Subject Heading (MeSH) to gene associations based on literature support, enabling connection of compleX diseases to genes potentially involved.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Methamphetamine Induces Alterations in the Long Non-Coding Rnas Expression Profile in the Nucleus Accumbens of the Mouse
    Zhu et al. BMC Neuroscience (2015) 16:18 DOI 10.1186/s12868-015-0157-3 RESEARCH ARTICLE Open Access Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse Li Zhu1,2†,JieZhu1,2†,YufengLiu3, Yanjiong Chen4, Yanlin Li1,2,LirenHuang3,SisiChen3,TaoLi1,2,YonghuiDang1,2 andTengChen1,2* Abstract Background: Repeated exposure to addictive drugs elicits long-lasting cellular and molecular changes. It has been reported that the aberrant expression of long non-coding RNAs (lncRNAs) is involved in cocaine and heroin addiction, yet the expression profile of lncRNAs and their potential effects on methamphetamine (METH)-induced locomotor sensitization are largely unknown. Results: Using high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq), here we examined the alterations in the lncRNAs expression profile in the nucleus accumbens (NAc) of METH-sensitized mice. We found that the expression levels of 6246 known lncRNAs (6215 down-regulated, 31 up-regulated) and 8442 novel lncRNA candidates (8408 down-regulated, 34 up-regulated) were significantly altered in the METH-sensitized mice. Based on characterizations of the genomic contexts of the lncRNAs, we further showed that there were 5139 differentially expressed lncRNAs acted via cis mechanisms, including sense intronic (4295 down-regulated and one up-regulated), overlapping (25 down-regulated and one up-regulated), natural antisense transcripts (NATs, 148 down-regulated and eight up-regulated), long intergenic non-coding RNAs (lincRNAs, 582 down-regulated and five up-regulated), and bidirectional (72 down-regulated and two up-regulated). Moreover, using the program RNAplex, we identified 3994 differentially expressed lncRNAs acted via trans mechanisms.
    [Show full text]
  • Bioinformatics Analysis of Differentially Expressed Genes in Rotator Cuff Tear
    Ren et al. Journal of Orthopaedic Surgery and Research (2018) 13:284 https://doi.org/10.1186/s13018-018-0989-5 RESEARCHARTICLE Open Access Bioinformatics analysis of differentially expressed genes in rotator cuff tear patients using microarray data Yi-Ming Ren†, Yuan-Hui Duan†, Yun-Bo Sun†, Tao Yang and Meng-Qiang Tian* Abstract Background: Rotator cuff tear (RCT) is a common shoulder disorder in the elderly. Muscle atrophy, denervation and fatty infiltration exert secondary injuries on torn rotator cuff muscles. It has been reported that satellite cells (SCs) play roles in pathogenic process and regenerative capacity of human RCT via regulating of target genes. This study aims to complement the differentially expressed genes (DEGs) of SCs that regulated between the torn supraspinatus (SSP) samples and intact subscapularis (SSC) samples, identify their functions and molecular pathways. Methods: The gene expression profile GSE93661 was downloaded and bioinformatics analysis was made. Results: Five hundred fifty one DEGs totally were identified. Among them, 272 DEGs were overexpressed, and the remaining 279 DEGs were underexpressed. Gene ontology (GO) and pathway enrichment analysis of target genes were performed. We furthermore identified some relevant core genes using gene–gene interaction network analysis such as GNG13, GCG, NOTCH1, BCL2, NMUR2, PMCH, FFAR1, AVPR2, GNA14, and KALRN, that may contribute to the understanding of the molecular mechanisms of secondary injuries in RCT. We also discovered that GNG13/calcium signaling pathway is highly correlated with the denervation atrophy pathological process of RCT. Conclusion: These genes and pathways provide a new perspective for revealing the underlying pathological mechanisms and therapy strategy of RCT.
    [Show full text]
  • Common Differentially Expressed Genes and Pathways Correlating Both Coronary Artery Disease and Atrial Fibrillation
    EXCLI Journal 2021;20:126-141– ISSN 1611-2156 Received: December 08, 2020, accepted: January 11, 2021, published: January 18, 2021 Supplementary material to: Original article: COMMON DIFFERENTIALLY EXPRESSED GENES AND PATHWAYS CORRELATING BOTH CORONARY ARTERY DISEASE AND ATRIAL FIBRILLATION Youjing Zheng, Jia-Qiang He* Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA * Corresponding author: Jia-Qiang He, Department of Biomedical Sciences and Pathobiology, Virginia Tech, Phase II, Room 252B, Blacksburg, VA 24061, USA. Tel: 1-540-231-2032. E-mail: [email protected] https://orcid.org/0000-0002-4825-7046 Youjing Zheng https://orcid.org/0000-0002-0640-5960 Jia-Qiang He http://dx.doi.org/10.17179/excli2020-3262 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). Supplemental Table 1: Abbreviations used in the paper Abbreviation Full name ABCA5 ATP binding cassette subfamily A member 5 ABCB6 ATP binding cassette subfamily B member 6 (Langereis blood group) ABCB9 ATP binding cassette subfamily B member 9 ABCC10 ATP binding cassette subfamily C member 10 ABCC13 ATP binding cassette subfamily C member 13 (pseudogene) ABCC5 ATP binding cassette subfamily C member 5 ABCD3 ATP binding cassette subfamily D member 3 ABCE1 ATP binding cassette subfamily E member 1 ABCG1 ATP binding cassette subfamily G member 1 ABCG4 ATP binding cassette subfamily G member 4 ABHD18 Abhydrolase domain
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Ribo-Tag Translatomic Profiling of Drosophila Oenocyte Reveals Down
    bioRxiv preprint doi: https://doi.org/10.1101/272179; this version posted February 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ribo-tag translatomic profiling of Drosophila oenocyte reveals down-regulation of 2 peroxisome and mitochondria biogenesis under aging and oxidative stress 3 Kerui Huang1*, Wenhao Chen2, Hua Bai1* 4 5 1 Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 6 50011, USA 7 2 Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, 8 USA 9 10 *Corresponding Authors: 11 12 Kerui Huang 13 Phone: 515-294-3842 14 Email: [email protected] 15 16 Hua Bai 17 Phone: 515-294-9395 18 Email: [email protected] 19 20 Running title: 21 Drosophila oenocyte Ribo-tag profiling 22 23 24 25 26 27 28 29 30 31 bioRxiv preprint doi: https://doi.org/10.1101/272179; this version posted February 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 32 Abstract 33 Background: Reactive oxygen species (ROS) has been well established as toxic, owing to its 34 direct damage on genetic materials, protein and lipids. ROS is not only tightly associated with 35 chronic inflammation and tissue aging but also regulates cell proliferation and cell signaling. Yet 36 critical questions remain in the field, such as detailed genome-environment interaction on aging 37 regulation, and how ROS and chronic inflammation alter genome that leads to aging.
    [Show full text]
  • Supplementary Material Computational Prediction of SARS
    Supplementary_Material Computational prediction of SARS-CoV-2 encoded miRNAs and their putative host targets Sheet_1 List of potential stem-loop structures in SARS-CoV-2 genome as predicted by VMir. Rank Name Start Apex Size Score Window Count (Absolute) Direct Orientation 1 MD13 2801 2864 125 243.8 61 2 MD62 11234 11286 101 211.4 49 4 MD136 27666 27721 104 205.6 119 5 MD108 21131 21184 110 204.7 210 9 MD132 26743 26801 119 188.9 252 19 MD56 9797 9858 128 179.1 59 26 MD139 28196 28233 72 170.4 133 28 MD16 2934 2974 76 169.9 71 43 MD103 20002 20042 80 159.3 403 46 MD6 1489 1531 86 156.7 171 51 MD17 2981 3047 131 152.8 38 87 MD4 651 692 75 140.3 46 95 MD7 1810 1872 121 137.4 58 116 MD140 28217 28252 72 133.8 62 122 MD55 9712 9758 96 132.5 49 135 MD70 13171 13219 93 130.2 131 164 MD95 18782 18820 79 124.7 184 173 MD121 24086 24135 99 123.1 45 176 MD96 19046 19086 75 123.1 179 196 MD19 3197 3236 76 120.4 49 200 MD86 17048 17083 73 119.8 428 223 MD75 14534 14600 137 117 51 228 MD50 8824 8870 94 115.8 79 234 MD129 25598 25642 89 115.6 354 Reverse Orientation 6 MR61 19088 19132 88 197.8 271 10 MR72 23563 23636 148 188.8 286 11 MR11 3775 3844 136 185.1 116 12 MR94 29532 29582 94 184.6 271 15 MR43 14973 15028 109 183.9 226 27 MR14 4160 4206 89 170 241 34 MR35 11734 11792 111 164.2 37 52 MR5 1603 1652 89 152.7 118 53 MR57 18089 18132 101 152.7 139 94 MR8 2804 2864 122 137.4 38 107 MR58 18474 18508 72 134.9 237 117 MR16 4506 4540 72 133.8 311 120 MR34 10010 10048 82 132.7 245 133 MR7 2534 2578 90 130.4 75 146 MR79 24766 24808 75 127.9 59 150 MR65 21528 21576 99 127.4 83 180 MR60 19016 19049 70 122.5 72 187 MR51 16450 16482 75 121 363 190 MR80 25687 25734 96 120.6 75 198 MR64 21507 21544 70 120.3 35 206 MR41 14500 14542 84 119.2 94 218 MR84 26840 26894 108 117.6 94 Sheet_2 List of stable stem-loop structures based on MFE.
    [Show full text]
  • Persistent Transcription-Blocking DNA Lesions Trigger Somatic Growth Attenuation Associated with Longevity
    ARTICLES Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity George A. Garinis1,2, Lieneke M. Uittenboogaard1, Heike Stachelscheid3,4, Maria Fousteri5, Wilfred van Ijcken6, Timo M. Breit7, Harry van Steeg8, Leon H. F. Mullenders5, Gijsbertus T. J. van der Horst1, Jens C. Brüning4,9, Carien M. Niessen3,9,10, Jan H. J. Hoeijmakers1 and Björn Schumacher1,9,11 The accumulation of stochastic DNA damage throughout an organism’s lifespan is thought to contribute to ageing. Conversely, ageing seems to be phenotypically reproducible and regulated through genetic pathways such as the insulin-like growth factor-1 (IGF-1) and growth hormone (GH) receptors, which are central mediators of the somatic growth axis. Here we report that persistent DNA damage in primary cells from mice elicits changes in global gene expression similar to those occurring in various organs of naturally aged animals. We show that, as in ageing animals, the expression of IGF-1 receptor and GH receptor is attenuated, resulting in cellular resistance to IGF-1. This cell-autonomous attenuation is specifically induced by persistent lesions leading to stalling of RNA polymerase II in proliferating, quiescent and terminally differentiated cells; it is exacerbated and prolonged in cells from progeroid mice and confers resistance to oxidative stress. Our findings suggest that the accumulation of DNA damage in transcribed genes in most if not all tissues contributes to the ageing-associated shift from growth to somatic maintenance that triggers stress resistance and is thought to promote longevity. Ageing represents the progressive functional decline that is exempted levels as a result of pituitary dysfunction (Snell and Ames mice) — have an from evolutionary selection because it largely occurs after reproduc- extended lifespan17–20.
    [Show full text]
  • Lavenex Et Al. Developmental Regulation of Gene Expression and Astrocytic Processes May Explain Selective Hippocampal Vulnerability
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Supplementary Material 1: Lavenex et al. Developmental regulation of gene expression and astrocytic processes may explain selective hippocampal vulnerability Genes differentially expressed in CA1 (Fold change >2), as compared to every other region analyzed (DG, CA3, subiculum, EC) Affymetrix Gene symbol Gene Title Probe Set ID Unigene Entrez Gene Overexpressed (n=8) CACNA1G calcium channel, voltage-dependent, alpha 1G subunit 207869_s_at Hs.591169 8913 CD24 CD24 molecule 209771_x_at Hs.632285 934 CD24 CD24 molecule 216379_x_at Hs.632285 934 DKFZp761H21 hypothetical protein DKFZp761H2121 1553865_a_atHs.134065 171582 NOG Noggin 231798_at Hs.248201 9241 SEZ6L Seizure related 6 homolog (mouse)-like 231650_s_at Hs.194766 23544 SH2D4B SH2 domain containing 4B 1563849_at Hs.147643 387694 SLC35F4 solute carrier family 35, member F4 240799_at Hs.28280 341880 SYNE1 Spectrin repeat containing, nuclear envelope 1 232027_at Hs.12967 23345 MRNA full length insert cDNA clone EUROIMAGE 29222 214896_at Hs.593529 CDNA FLJ42949 fis, clone BRSTN2006583 215126_at Hs.20034 Transcribed locus, moderately similar to NP_055301.1 neuronal thread prote229641_at Hs.49943 Homo sapiens, clone IMAGE:3869276, mRNA 231963_at Hs.26039 Underexpressed (n=108) ACADVL acyl-Coenzyme A dehydrogenase, very long chain 200710_at Hs.437178 37 ACO2 aconitase 2, mitochondrial 200793_s_at Hs.643610 50 ACOT1 /// ACOacyl-CoA thioesterase 2 /// acyl-CoA thioesterase 1 202982_s_at
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus Dromedarius
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Department of Electrical & Computer Engineering, Department Electrical and Computer Engineering of 2009 Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius Abdulaziz M. Al-Swailem King Abdulaziz City for Science and Technology Maher M. Shehata King Abdulaziz City for Science and Technology Faisel M. Abu-Duhier King Abdulaziz City for Science and Technology Essam J. Al-Yamani King Abdulaziz City for Science and Technology Khalid A. Al-Busadah King Faisal University See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons Al-Swailem, Abdulaziz M.; Shehata, Maher M.; Abu-Duhier, Faisel M.; Al-Yamani, Essam J.; Al-Busadah, Khalid A.; Al-Arawi, Mohammed S.; Al-Khider, Ali Y.; Al-Muhaimeed, Abdullah N.; Al-Qahtani, Fahad H.; Manee, Manee M.; Al-Shomrani, Badr M.; Al-Qhtani, Saad M.; Al-Harthi, Amer S.; Akdemir, Kadir C.; Inan, Mehmet S.; and Otu, Hasan H., "Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius" (2009). Faculty Publications from the Department of Electrical and Computer Engineering. 426. https://digitalcommons.unl.edu/electricalengineeringfacpub/426 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Abdulaziz M. Al-Swailem, Maher M.
    [Show full text]