Ribo-Tag Translatomic Profiling of Drosophila Oenocyte Reveals Down

Total Page:16

File Type:pdf, Size:1020Kb

Ribo-Tag Translatomic Profiling of Drosophila Oenocyte Reveals Down bioRxiv preprint doi: https://doi.org/10.1101/272179; this version posted February 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ribo-tag translatomic profiling of Drosophila oenocyte reveals down-regulation of 2 peroxisome and mitochondria biogenesis under aging and oxidative stress 3 Kerui Huang1*, Wenhao Chen2, Hua Bai1* 4 5 1 Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 6 50011, USA 7 2 Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, 8 USA 9 10 *Corresponding Authors: 11 12 Kerui Huang 13 Phone: 515-294-3842 14 Email: [email protected] 15 16 Hua Bai 17 Phone: 515-294-9395 18 Email: [email protected] 19 20 Running title: 21 Drosophila oenocyte Ribo-tag profiling 22 23 24 25 26 27 28 29 30 31 bioRxiv preprint doi: https://doi.org/10.1101/272179; this version posted February 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 32 Abstract 33 Background: Reactive oxygen species (ROS) has been well established as toxic, owing to its 34 direct damage on genetic materials, protein and lipids. ROS is not only tightly associated with 35 chronic inflammation and tissue aging but also regulates cell proliferation and cell signaling. Yet 36 critical questions remain in the field, such as detailed genome-environment interaction on aging 37 regulation, and how ROS and chronic inflammation alter genome that leads to aging. Here we 38 used cell-type-specific ribosome profiling (Ribo-tag) to study the impacts of aging and oxidative 39 stress on the expression of actively translated mRNA in Drosophila oenocytes, a specialized 40 hepatocyte-like cells and an understudied insect tissue. 41 Results: Through ribosome profiling, we obtain oenocyte translatome, from which we identify 42 genes specifically expressed in adult oenocyte. Many of them are cuticular proteins, including 43 tweedle family proteins, which are critical for structural constituent of cuticle. Oenocytes are 44 enriched with genes involved in unsaturated fatty acids, ketone body synthesis and degradation, 45 and xenobiotics. Aging and paraquat exhibit distinct regulation on oenocyte translatome. 3411 46 genes are differentially regulated under aging, only 1053 genes under paraquat treatment. Gene 47 set enrichment analysis identify pathways with overall declined expression under aging and 48 paraquat treatment, especially peroxisome, mitochondrial function and metabolic pathways. In 49 comparing to human liver-elevated proteins, we identify orthologues specifically enriched in 50 oenocyte. Those orthologues are involved in liver ketogenesis, ethanol metabolism, and glucose 51 metabolism. Gene Ontology (GO) analysis shows different functions between oenocyte and fat 52 body, which is another widely accepted model for liver in Drosophila. Lastly, 996 genes are 53 regulated to paraquat stress in young age, however in aged flies, the number decreased to 385. 54 Different sets of genes are regulated in response to stress between young and old flies. 55 Conclusions: Our analysis reveals 17 oenocyte specific genes, which help to define oenocyte’s 56 function. Oenocyte shares some aspects of human liver function, makes the oenocytes applicable 57 as a model system. Our gene set analysis provides insight into fundamental changes of oenocyte 58 under aging and oxidative stress. The finding that peroxisome is down-regulated under oxidative 59 stress suggests peroxisome plays important role in regulating oenocyte homeostasis under aging, 60 which can have a significant impact on whole body and fat metabolism. 61 Keywords: oxidative stress, aging, oenocyte, hepatocyte-like cells, ribosomal profiling, 62 mitochondria ribosomal proteins, peroxisome bioRxiv preprint doi: https://doi.org/10.1101/272179; this version posted February 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 63 Introduction 64 Oenocyte 65 Oenocytes are secretory cells that are found in most pterygote insects [1]. Oenocyte is 66 important for growth, because oenocyte ablation will trigger growth arrest and lethality before 67 reaching pupariation [2]. Several studies have attempted to decipher oenocyte’s function on 68 transcriptional level. Studies have shown that 51 transcripts are enriched in larvae oenocytes, and 69 22 of them have human homologues that are fat-metabolizing genes expressed in hepatocytes 70 [2]. Chatterjee et al., 2014 conducted tissue-specific expression profiling on oenocyte, 71 confirming its role on lipid mobilization during fasting. Transcriptome of oenocytes from Aedes 72 aegypti pupae reveals that oenocyte highly expresses transcripts from cytochrome P450 73 superfamily, whose members are crucial for detoxification and lipid metabolism [3]. Despite the 74 importance of oenocyte, a comprehensive understanding on Drosophila adult oenocyte function 75 is still lacking, mainly due to the challenge for obtaining samples without contamination. 76 Hall marks of aging and Oxidative stress 77 Aging has been characterized as gradual decline of cell physiological integrity and 78 maintenance, leading to cell death and vulnerability to diseases. The topic has embarked 79 extensive research and investigation. Recently molecular and cellular hallmarks of aging have 80 been identified. The nine hallmarks are considered to contribute to aging process and lead to the 81 aging phenotypes. Amelioration of these processes can retard normal aging process and increase 82 lifespan. The nine hallmarks are: 1) genomic instability, because of DNA damaged by 83 endogenous and exogenous threats, including reactive oxygen species (ROS). 2) Telomere 84 attribution. 3) Epigenetic alterations involve modification of histones, DNA methylation and 85 chromatin remodeling. 4) Loss of proteostasis involves inability to stabilize folded proteins 86 through chaperone, and failure of protein degradation by lysosome or proteasome. 5) 87 Dysregulated nutrient sensing, including insulin signaling pathway, nutrient-sensing systems. 6) 88 Mitochondrial dysfunction with aging results in increased production of ROS, which can cause 89 further mitochondrial damage and cellular damage. 7) Cellular senescence. 8) stem cell 90 exhaustion. 9) Altered intercellular communication [4]. 91 Liver aging 92 Aging is the major risk factor for chronic liver diseases. Studies have found that aging is 93 associated with alterations of hepatic structure, function as well as changes in liver cells. For bioRxiv preprint doi: https://doi.org/10.1101/272179; this version posted February 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 94 example, the volume and blood flow of liver decreases with aging, diminished regenerative 95 ability, as well as declines in the Phase I metabolism of certain drugs. The blood cholesterol, 96 neutral fat levels and high-density lipoprotein cholesterol increases with time, which will 97 eventually lead to non-alcoholic fatty liver disease (NAFLD). The metabolism for low-density 98 lipoprotein cholesterol decreases by 35% [5]. Aging leads to be polyploidy nuclei, decreased 99 area of smooth endoplasmic reticulum, which reduce the synthesis of microsomal proteins in the 100 liver and dysfunction of mitochondria [6]. Aging alters stress-induced expression of heme 101 oxygenase-1, which may lead to lower stress tolerance and sensitivity [7]. In addition, a recent 102 study indicated that age-associated change on CCAAT/enhancer-binding protein (C/EBP) 103 protein family caused liver injury after carbon tetrachloride (CCl4) treatments [8]. They observed 104 altered chromatin structure in old wild type mice and young mice which express an aged-like 105 isoform of C/EBPɑ. They also found age-related repression on C/EBPɑ, Farnesoid X Receptor 106 (FXR) and telomere reverse transcriptase [9]. Molecular mechanism for altered liver function 107 during aging include increased ROS formation, DNA damage, activation of p300-C/EBP- 108 dependent neutral fat synthesis [10], a decreased autophagy [11], increased M1 macrophage 109 inflammatory responses [12], and activation of nuclear factor-휅B pathways [13,14]. Despite of 110 many advances in detailed genetic control of aging, very little is known about how translatome 111 changes with liver aging and what initiated the aging process. 112 Oxidative stress generated by imbalanced ROS level could be the key cause for liver 113 damage during aging. Aging is accompanied by increased level of ROS [15], which can damage 114 cellular contents. Paradoxically elevated ROS can act as signaling molecules in maintaining 115 cellular function, a process termed redox biology. Evidence suggests that increasing ROS can 116 promote healthy aging by activating stress-response pathways [16]. The detailed molecular 117 mechanism for redox biology induced pathology or beneficial effect is pressingly needed to 118 solve this paradox. Moreover, what cellular functions changed during liver aging are caused by 119 redox biology is still unknown. 120 The aim of this study is to establish Drosophila oenocyte as a liver model to study its 121 translatome changes
Recommended publications
  • Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data
    INTEROPERABILITY IN TOXICOLOGY: CONNECTING CHEMICAL, BIOLOGICAL, AND COMPLEX DISEASE DATA Sean Mackey Watford A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Gillings School of Global Public Health (Environmental Sciences and Engineering). Chapel Hill 2019 Approved by: Rebecca Fry Matt Martin Avram Gold David Reif Ivan Rusyn © 2019 Sean Mackey Watford ALL RIGHTS RESERVED ii ABSTRACT Sean Mackey Watford: Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data (Under the direction of Rebecca Fry) The current regulatory framework in toXicology is expanding beyond traditional animal toXicity testing to include new approach methodologies (NAMs) like computational models built using rapidly generated dose-response information like US Environmental Protection Agency’s ToXicity Forecaster (ToXCast) and the interagency collaborative ToX21 initiative. These programs have provided new opportunities for research but also introduced challenges in application of this information to current regulatory needs. One such challenge is linking in vitro chemical bioactivity to adverse outcomes like cancer or other complex diseases. To utilize NAMs in prediction of compleX disease, information from traditional and new sources must be interoperable for easy integration. The work presented here describes the development of a bioinformatic tool, a database of traditional toXicity information with improved interoperability, and efforts to use these new tools together to inform prediction of cancer and complex disease. First, a bioinformatic tool was developed to provide a ranked list of Medical Subject Heading (MeSH) to gene associations based on literature support, enabling connection of compleX diseases to genes potentially involved.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Bioinformatics Analysis of Differentially Expressed Genes in Rotator Cuff Tear
    Ren et al. Journal of Orthopaedic Surgery and Research (2018) 13:284 https://doi.org/10.1186/s13018-018-0989-5 RESEARCHARTICLE Open Access Bioinformatics analysis of differentially expressed genes in rotator cuff tear patients using microarray data Yi-Ming Ren†, Yuan-Hui Duan†, Yun-Bo Sun†, Tao Yang and Meng-Qiang Tian* Abstract Background: Rotator cuff tear (RCT) is a common shoulder disorder in the elderly. Muscle atrophy, denervation and fatty infiltration exert secondary injuries on torn rotator cuff muscles. It has been reported that satellite cells (SCs) play roles in pathogenic process and regenerative capacity of human RCT via regulating of target genes. This study aims to complement the differentially expressed genes (DEGs) of SCs that regulated between the torn supraspinatus (SSP) samples and intact subscapularis (SSC) samples, identify their functions and molecular pathways. Methods: The gene expression profile GSE93661 was downloaded and bioinformatics analysis was made. Results: Five hundred fifty one DEGs totally were identified. Among them, 272 DEGs were overexpressed, and the remaining 279 DEGs were underexpressed. Gene ontology (GO) and pathway enrichment analysis of target genes were performed. We furthermore identified some relevant core genes using gene–gene interaction network analysis such as GNG13, GCG, NOTCH1, BCL2, NMUR2, PMCH, FFAR1, AVPR2, GNA14, and KALRN, that may contribute to the understanding of the molecular mechanisms of secondary injuries in RCT. We also discovered that GNG13/calcium signaling pathway is highly correlated with the denervation atrophy pathological process of RCT. Conclusion: These genes and pathways provide a new perspective for revealing the underlying pathological mechanisms and therapy strategy of RCT.
    [Show full text]
  • Claire Hastie Thesis
    Hastie, Claire E. (2011) Discovering common genetic variants for hypertension using an extreme case-control strategy. PhD thesis. http://theses.gla.ac.uk/2423/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Discovering Common Genetic Variants for Hypertension Using an Extreme Case-control Strategy Claire E. Hastie, M.Sc. This being a thesis submitted for the degree of Doctor of Philosophy (Ph.D.) in the Faculty of Medicine, University of Glasgow October 2010 BHF Glasgow Cardiovascular Research Centre Institute of Cardiovascular and Medical Sciences College of Medical, Veterinary, and Life Sciences University of Glasgow © C.E. Hastie 2010 Declaration I declare that this thesis has been written entirely by myself and is a record of research performed by myself with the exception of discovery cohort genotyping (Dr Wai K. Lee, Dr Anna Maria Di Blasio, Stewart Laing, and Dr Davide Gentilini), genotyping and association analysis of replication cohorts (undertaken by investigators from each cohort, respectively), and analysis of data from the BRIGHT (Dr Sandosh Padmanabhan), GRECO and HERCULES clinical functional cohorts (undertaken by investigators from each cohort, respectively).
    [Show full text]
  • Widespread Signals of Convergent Adaptation to High Altitude in Asia and America
    bioRxiv preprint doi: https://doi.org/10.1101/002816; this version posted September 26, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Widespread signals of convergent adaptation to high altitude in Asia and America Matthieu Foll 1,2,3,*, Oscar E. Gaggiotti 4,5, Josephine T. Daub 1,2, Alexandra Vatsiou 5 and Laurent Excoffier 1,2 1 CMPG, Institute oF Ecology and Evolution, University oF Berne, Berne, 3012, Switzerland 2 Swiss Institute oF BioinFormatics, Lausanne, 1015, Switzerland 3 Present address: School oF LiFe Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland 4 School oF Biology, Scottish Oceans Institute, University oF St Andrews, St Andrews, FiFe, KY16 8LB, UK 5 Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS-Université de Grenoble, Grenoble, France * Corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/002816; this version posted September 26, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Living at high-altitude is one oF the most diFFicult challenges that humans had to cope with during their evolution. Whereas several genomic studies have revealed some oF the genetic bases oF adaptations in Tibetan, Andean and Ethiopian populations, relatively little evidence oF convergent evolution to altitude in diFFerent continents has accumulated.
    [Show full text]
  • Efficient Detection of Genomic Drivers in Melanoma
    OPEN Cancer systems biology of TCGA SKCM: SUBJECT AREAS: Efficient detection of genomic drivers in SYSTEMS BIOLOGY melanoma CANCER MELANOMA Jian Guan, Rohit Gupta & Fabian V. Filipp CANCER GENOMICS Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, Merced, CA 95343, USA. Received 16 July 2014 Accepted We characterized the mutational landscape of human skin cutaneous melanoma (SKCM) using data obtained from The Cancer Genome Atlas (TCGA) project. We analyzed next-generation sequencing 18 December 2014 data of somatic copy number alterations and somatic mutations in 303 metastatic melanomas. We were Published able to confirm preeminent drivers of melanoma as well as identify new melanoma genes. The TCGA 20 January 2015 SKCM study confirmed a dominance of somatic BRAF mutations in 50% of patients. The mutational burden of melanoma patients is an order of magnitude higher than of other TCGA cohorts. A multi-step filter enriched somatic mutations while accounting for recurrence, conservation, and basal rate. Thus, this filter can serve as a paradigm for analysis of genome-wide next-generation sequencing Correspondence and data of large cohorts with a high mutational burden. Analysis of TCGA melanoma data using such a requests for materials multi-step filter discovered novel and statistically significant potential melanoma driver genes. In the context of the Pan-Cancer study we report a detailed analysis of the mutational landscape of BRAF and should be addressed to other drivers across cancer tissues. Integrated analysis of somatic mutations, somatic copy number F.V.F. alterations, low pass copy numbers, and gene expression of the melanogenesis pathway shows ([email protected]) coordination of proliferative events by Gs-protein and cyclin signaling at a systems level.
    [Show full text]
  • Functional Genomic Annotation of Genetic Risk Loci Highlights Inflammation and Epithelial Biology Networks in CKD
    BASIC RESEARCH www.jasn.org Functional Genomic Annotation of Genetic Risk Loci Highlights Inflammation and Epithelial Biology Networks in CKD Nora Ledo, Yi-An Ko, Ae-Seo Deok Park, Hyun-Mi Kang, Sang-Youb Han, Peter Choi, and Katalin Susztak Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania ABSTRACT Genome-wide association studies (GWASs) have identified multiple loci associated with the risk of CKD. Almost all risk variants are localized to the noncoding region of the genome; therefore, the role of these variants in CKD development is largely unknown. We hypothesized that polymorphisms alter transcription factor binding, thereby influencing the expression of nearby genes. Here, we examined the regulation of transcripts in the vicinity of CKD-associated polymorphisms in control and diseased human kidney samples and used systems biology approaches to identify potentially causal genes for prioritization. We interro- gated the expression and regulation of 226 transcripts in the vicinity of 44 single nucleotide polymorphisms using RNA sequencing and gene expression arrays from 95 microdissected control and diseased tubule samples and 51 glomerular samples. Gene expression analysis from 41 tubule samples served for external validation. 92 transcripts in the tubule compartment and 34 transcripts in glomeruli showed statistically significant correlation with eGFR. Many novel genes, including ACSM2A/2B, FAM47E, and PLXDC1, were identified. We observed that the expression of multiple genes in the vicinity of any single CKD risk allele correlated with renal function, potentially indicating that genetic variants influence multiple transcripts. Network analysis of GFR-correlating transcripts highlighted two major clusters; a positive correlation with epithelial and vascular functions and an inverse correlation with inflammatory gene cluster.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0002733 A1 Chu (43) Pub
    US 2016.0002733A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0002733 A1 Chu (43) Pub. Date: Jan. 7, 2016 (54) ASSESSING RISK FORENCEPHALOPATHY Related U.S. Application Data INDUCED BYS-FLUOROURACL, OR (60) Provisional application No. 61/772,949, filed on Mar. CAPECTABINE 5, 2013. Publication Classification (71) Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNOR (51) Int. C. UNIVERSITY, Palo Alto, CA (US) CI2O I/68 (2006.01) (52) U.S. C. (72) Inventor: Gilbert Chu, Stanford, CA (US) CPC ........ CI2O I/6886 (2013.01); C12O 2600/156 (2013.01); C12O 2600/106 (2013.01); C12O (21) Appl. No.: 14/769,961 2600/142 (2013.01) (22) PCT Fled: Feb. 26, 2014 (57) ABSTRACT Methods and systems are provided for determining Suscepti (86) PCT NO.: PCT/US14/18739 bility to 5-fluorouracil (5-FU) or capecitabine toxicity. Meth ods are provided for treating a human Subject based on a S371 (c)(1), determined susceptibility to 5-fluorouracil (5-FU) or capecit (2) Date: Aug. 24, 2015 abine toxicity. Patent Application Publication Jan. 7, 2016 Sheet 1 of 17 US 2016/0002733 A1 Figure 1A urea cycle pyrimidine synthesis -- - - - - - - - - - - - Glin / WPA H al-NAGS NH 3. NH3CPSIDcarbamoyl-P Glu->NAG->|CPS Ca rbamyl-Asp: carbamoyl-P OHO : P. Orotate ornithine citruline s --AlORNT - Y - - - OMPwY Ornithine citruline UDP am UMP as UTP RR urea { UDP in OSuccinat A. 5-FUTP arginine 8 gypsuccina e CUMP i. cycleRECTS-5-FdUMP4-5-FU dTMP Figure IB /a-ketoglutarate pyruvate Asp PD PC 4-acetyl-CoA Glu oxaloacetate malate isocitrate Krebs cycle NH3 fumarate a-ketoglutarate Glu succinate succinyl-CoA methylmalonyl-CoA r a fatty acid proponyi-UOE.
    [Show full text]
  • Van Der Westhuizen T 2016.Pdf (1.685Mb)
    The identification of genetic variation in the acyl-CoA synthetase genes (ACSM2A and ACSM2B) T van der Westhuizen 22053298 Dissertation submitted in partial fulfillment of the requirements for the degree Magister Scientiae in Biochemistry at the Potchefstroom Campus of the North- West University Supervisor: Ms R van der Sluis Co-supervisor: Dr E van Dyk May 2016 “Don’t say you don’t have enough time. You have exactly the same number of hours per day that were given to Helen Keller, Pasteur, Michelangelo, Mother Teresa, Leonardo da Vinci, Thomas Jefferson, and Albert Einstein.” – H. Jackson Brown Jr. i ACKNOWLEDGEMENTS I would like to express my sincere appreciation to the following persons and institutions for their contributions and support towards the completion of this study: Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Rencia Van Der Sluis and co-supervisor, Dr. Etresia Van Dyk for the continuous support of my M.Sc. study and related research, for their patience, motivation, and immense knowledge. I would like to thank Prof Albie van Dijk, for her guidance through this process. I thank my fellow labmates and friends for the stimulating discussions, for the sleepless nights we were working together before deadlines, and for all the fun we have had in the last two years. My parents, and family for all their love, moral support and motivation. National Research Foundation (NRF) for their financial support during this study (Thuthuka grant reference number: TTK20110803000023154). I am grateful to God for the good health and wellbeing that were necessary to complete this dissertation.
    [Show full text]
  • Ribo-Tag Translatomic Profiling of Drosophila Oenocyte Reveals Down
    bioRxiv preprint doi: https://doi.org/10.1101/272179; this version posted February 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ribo-tag translatomic profiling of Drosophila oenocyte reveals down-regulation of 2 peroxisome and mitochondria biogenesis under aging and oxidative stress 3 Kerui Huang1*, Wenhao Chen2, Hua Bai1* 4 5 1 Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 6 50011, USA 7 2 Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, 8 USA 9 10 *Corresponding Authors: 11 12 Kerui Huang 13 Phone: 515-294-3842 14 Email: [email protected] 15 16 Hua Bai 17 Phone: 515-294-9395 18 Email: [email protected] 19 20 Running title: 21 Drosophila oenocyte Ribo-tag profiling 22 23 24 25 26 27 28 29 30 31 bioRxiv preprint doi: https://doi.org/10.1101/272179; this version posted February 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 32 Abstract 33 Background: Reactive oxygen species (ROS) has been well established as toxic, owing to its 34 direct damage on genetic materials, protein and lipids. ROS is not only tightly associated with 35 chronic inflammation and tissue aging but also regulates cell proliferation and cell signaling. Yet 36 critical questions remain in the field, such as detailed genome-environment interaction on aging 37 regulation, and how ROS and chronic inflammation alter genome that leads to aging.
    [Show full text]
  • Bioinformatic Analysis of Leishmania Donovani Long-Chain Fatty Acid-Coa Ligase As a Novel Drug Target
    SAGE-Hindawi Access to Research Molecular Biology International Volume 2011, Article ID 278051, 14 pages doi:10.4061/2011/278051 Research Article Bioinformatic Analysis of Leishmania donovani Long-Chain Fatty Acid-CoA Ligase as a Novel Drug Target Jaspreet Kaur, Rameshwar Tiwari, Arun Kumar, and Neeloo Singh Drug Target Discovery & Development Division, Central Drug Research Institute (CSIR), Chattar Manzil Palace, Lucknow 226001, India Correspondence should be addressed to Neeloo Singh, [email protected] Received 14 January 2011; Revised 29 March 2011; Accepted 13 April 2011 Academic Editor: Hemanta K. Majumder Copyright © 2011 Jaspreet Kaur et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fatty acyl-CoA synthetase (fatty acid: CoA ligase, AMP-forming; (EC 6.2.1.3)) catalyzes the formation of fatty acyl-CoA by a two-step process that proceeds through the hydrolysis of pyrophosphate. Fatty acyl-CoA represents bioactive compounds that are involved in protein transport, enzyme activation, protein acylation, cell signaling, and transcriptional control in addition to serving as substrates for beta oxidation and phospholipid biosynthesis. Fatty acyl-CoA synthetase occupies a pivotal role in cellular homeostasis, particularly in lipid metabolism. Our interest in fatty acyl-CoA synthetase stems from the identification of this enzyme, long-chain fatty acyl-CoA ligase (LCFA) by microarray analysis. We found this enzyme to be differentially expressed by Leishmania donovani amastigotes resistant to antimonial treatment. In the present study, we confirm the presence of long-chain fatty acyl-CoA ligase gene in the genome of clinical isolates of Leishmania donovani collected from the disease endemic area in India.
    [Show full text]
  • Identification of Hub Genes in Diabetic Kidney Disease Via Multiple-Microarray Analysis
    997 Original Article Page 1 of 15 Identification of hub genes in diabetic kidney disease via multiple-microarray analysis Yumin Zhang1,2, Wei Li1,2,3, Yunting Zhou1,2,4 1Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China; 2Institute of Diabetes, Medical School, Southeast University, Nanjing, China; 3Suzhou Hospital Affiliated To Anhui Medical University, Suzhou, China; 4Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China Contributions: (I) Conception and design: Y Zhang; (II) Administrative support: Y Zhang; (III) Provision of study materials or patients: Y Zhang; (IV) Collection and assembly of data: Y Zhang, W Li, Y Zhou; (V) Data analysis and interpretation: Y Zhang, W Li; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Yumin Zhang. Department of Endocrinology, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao, Nanjing, China. Email: [email protected]. Background: Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease; however, the underlying molecular mechanisms remain unclear. Recently, bioinformatics analysis has provided a comprehensive insight toward the molecular mechanisms of DKD. Here, we re-analyzed three mRNA microarray datasets including a single-cell RNA sequencing (scRNA-seq) dataset, with the aim of identifying crucial genes correlated with DKD and contribute to a better understanding of DKD pathogenesis. Methods: Three datasets including GSE131882, GSE30122, and GSE30529 were utilized to find differentially expressed genes (DEGs). The potential functions of DEGs were analyzed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. A protein-protein interaction (PPI) network was constructed, and hub genes were selected with the top three molecular complex detection (MCODE) score.
    [Show full text]