(12) Patent Application Publication (10) Pub. No.: US 2016/0002733 A1 Chu (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2016/0002733 A1 Chu (43) Pub US 2016.0002733A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0002733 A1 Chu (43) Pub. Date: Jan. 7, 2016 (54) ASSESSING RISK FORENCEPHALOPATHY Related U.S. Application Data INDUCED BYS-FLUOROURACL, OR (60) Provisional application No. 61/772,949, filed on Mar. CAPECTABINE 5, 2013. Publication Classification (71) Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNOR (51) Int. C. UNIVERSITY, Palo Alto, CA (US) CI2O I/68 (2006.01) (52) U.S. C. (72) Inventor: Gilbert Chu, Stanford, CA (US) CPC ........ CI2O I/6886 (2013.01); C12O 2600/156 (2013.01); C12O 2600/106 (2013.01); C12O (21) Appl. No.: 14/769,961 2600/142 (2013.01) (22) PCT Fled: Feb. 26, 2014 (57) ABSTRACT Methods and systems are provided for determining Suscepti (86) PCT NO.: PCT/US14/18739 bility to 5-fluorouracil (5-FU) or capecitabine toxicity. Meth ods are provided for treating a human Subject based on a S371 (c)(1), determined susceptibility to 5-fluorouracil (5-FU) or capecit (2) Date: Aug. 24, 2015 abine toxicity. Patent Application Publication Jan. 7, 2016 Sheet 1 of 17 US 2016/0002733 A1 Figure 1A urea cycle pyrimidine synthesis -- - - - - - - - - - - - Glin / WPA H al-NAGS NH 3. NH3CPSIDcarbamoyl-P Glu->NAG->|CPS Ca rbamyl-Asp: carbamoyl-P OHO : P. Orotate ornithine citruline s --AlORNT - Y - - - OMPwY Ornithine citruline UDP am UMP as UTP RR urea { UDP in OSuccinat A. 5-FUTP arginine 8 gypsuccina e CUMP i. cycleRECTS-5-FdUMP4-5-FU dTMP Figure IB /a-ketoglutarate pyruvate Asp PD PC 4-acetyl-CoA Glu oxaloacetate malate isocitrate Krebs cycle NH3 fumarate a-ketoglutarate Glu succinate succinyl-CoA methylmalonyl-CoA r a fatty acid proponyi-UOE. X--fattyfatty acid acyl-CoA oxidation ---fatty acyl-CoA4ACAS acetyl-CoAACAD caritine - - - - - - - - - - - - - - - - - - - - - - - - - - - - - site Patent Application Publication Jan. 7, 2016 Sheet 2 of 17 US 2016/0002733 A1 Figure 2A Seen at local ER with delirium Admitted with Confusion, ataxia Capecitabine lactulose - S 160 O E S. N 120 O E 80 E s normal level fl O Days Figure 2B 2 O 1 5 10 5 O O 6 12 18 24 Time (hrs) Patent Application Publication Jan. 7, 2016 Sheet 3 of 17 US 2016/0002733 A1 Figure2C 70 Baseline Midcycle O O O 1 2 3 4 5 -6 8 9 O 11 12 13 14 5 16 17 18 1920 2: 22 23 24 25 26 27 28 29 Patients Patent Application Publication Jan. 7, 2016 Sheet 4 of 17 US 2016/0002733 A1 FIGURE 3 &gge S 744 1083. 1245 500 1OOO 15OO 2000 SNP position Patent Application Publication Jan. 7, 2016 Sheet 5 of 17 US 2016/0002733 A1 FIGURE 4 y - 0.254.6x - 0.2526 R at O.3943 'O. O 2 3O 40 5 SO Mean baseline ammonia (mol/L) Patent Application Publication Jan. 7, 2016 Sheet 7 of 17 US 2016/0002733 A1 Figure 6 Plasma amino acids Plasma armonia was 81 pirging on day of test FaSia Jewef Ref. range Artific acid frong alarine 77-583 B-alanine 0-2 g-amingadipig acid O-S g-amingbutyric acid S-41 3-aringisobutyric acid arginine 15-128 asparagine 35-4 aspartic acid C-53 citruline 12-55 gyStathignine -3 Systine 5-82 ethalarie -153 glutamic acid 1-13 glutamine 25-5S glycine 151-49 giggySSS. hydroxyproline 1-25 isoleucine 30-18 leucine 72-21 lysine 11S-23S histidine F2-124 ethicine 1-42 Ornithine 48-195 phenylalanine 35-85 proline 97-32S Saggsins Serine 58-18 taurine 54-21 threnie S0-225 tryptophan 1-14 tyrosine 34-12 Waline 19-3S Patent Application Publication Jan. 7, 2016 Sheet 8 of 17 US 2016/0002733 A1 Figure 7 Plasma urine organic acids in Patient 1 Urine organic acids Plasma ammonia was 83 microngll on day of test Purine/pyrimidine rifle eye Ref. range creatinine) creatinine) hypoxanthine 5. Crotic acid thymine normal uracil 4 uric acid not measured Xanthine S Patent Application Publication Jan. 7, 2016 Sheet 9 of 17 US 2016/0002733 A1 {}}}| \ffff s ) to e a Patent Application Publication Jan. 7, 2016 Sheet 10 of 17 US 2016/0002733 A1 Figure 9A Lifar phosphodiestsease PDE4DIP p.R785* 4D interacting ap's cAMPPDE4D to protein CN2 p.Q5G9" 12 {6i E. peptidase N CartOxypeptidase Na-dependent eitfala.a. Ygg" solute carrier family transpaste, ..Y: 6 mites 8 fole is irrinoglycinuria & Yewcilitia -. zinc firger protein possible transcriptional FSCN3 R423 fascis-3 p.S474 lipoprotei Eipase triglyceridig hydrolysis LESSR Wact a sitein WSSB. sortifg-assoc vesicle-fi ediated trains. Of Toti i38 interfeof psilon NE CSS interie? of C-termina-binding crepresses taigeting CBP2 p.Q445 Grotis 2 t3nSctitional registOS R p R192" | 20 (145) to recept. ofactory receptor ROX 47 i8 story recept of ofactory receptor factory recept ORSO s i actory Receptor story recept of factory receptor a. OR.EXE p.Y273" | 108 (71) x aiiatory seceptor (C3 toyeep offactory receptor 45 ifactory recepto: ofactory feceptor 2. 5. factory recepto: ORECS CES actory seceptor olfactory recepto: REAR SR isitory Captor story receptor aifactory feceptor S C2AO 22solute gig carrier fi family organic aris transporter Patent Application Publication Jan. 7, 2016 Sheet 11 of 17 US 2016/0002733 A1 Figure 9B Sara if digits Frg FFFF NKG2-type 1 R p. W74 integral riter fare receptos on MK cells fotai hase-binding for S fre H pG 4.7" roteis }of Wiscers acyl-CoA synthetase ACSR2A p. Rii.5" redi Ein chain family medium chain fatty fiber 2A acid:OA ligase tra Smalbraie 4. tetrasparini protein, call TSFS i.S.S." 5 family embles Rosiferatio dual specificity MAP corponent of the MAP kinase kinase 3 kinase CaScade tuitingti-aSSOC proteis isoform 3 asSociates with untingtin cell division cycle anaphase profiloting protein 27 Oriolog Carex corporteri Serpin peptidase SERENE ifti, clade E is St. inhibits lysine-specific f teases organization of actii RN rhopiin-2 wioskeleto Equitin Gabxy de-biqirating CJB) JSP p.Ygi 3" | 129 terminal hydrolase Elzy Rig A fif-distridg FC8 p.R5" Gare it protein 8 protease inhibito: putative big-COrjug 9% identical to JB2M, UBENE p. 89." enzyrie E2 N-like role E. DNA repair and it lease Wii NE p.R325* like DNA glycosylass in BER 2-activaigdigail d gated on chaire Zn finger CCCH FC33 S di-Containing protein 3 fielaii Offia SAGEE2 . associated aftiger 2 fielano Ta MAGEB 6 p. R272 3.SSOciated artiger BE CStag p.R72" hypothetical protein 32 Patent Application Publication Jan. 7, 2016 Sheet 12 of 17 US 2016/0002733 A1 Figure 9C Gare ific. F. FFR as Fir Fif proteinhomolog EC-93 A isoform 2 protein CC2D2E isofori, 2 PRAME family RAE is jet 2 rips bindefki, (EKLC activat-e 2 is for Spetmatogethesis SAA8 p.R84." asSociated fiti 8 putatively-proteir Tp p. R21 phosphatase TPTE hypothetical protein C2F p.R37 Ca98.3 W. Wigan: NASB factor A dail containing serine hydroiase-Sike SERH prote 2 ferritin: heavy - Lif .E148 Oystid-like F Patent Application Publication Jan. 7, 2016 Sheet 13 of 17 US 2016/0002733 A1 Patent Application Publication Jan. 7, 2016 Sheet 14 of 17 US 2016/0002733 A1 N N Patent Application Publication Jan. 7, 2016 Sheet 15 of 17 US 2016/0002733 A1 Patent Application Publication Jan. 7, 2016 Sheet 16 of 17 US 2016/0002733 A1 Figure 13 Gere Cf. SNP Position aaf aa2 allele freg fax affeig fre ACAW SE3968 s G . OC55 A BA SW 80 5. NA A 8A: FS874,828 56 G NA ARG 6 SE 488 F9 NA CPS FS795,254 SS C S NA X CPS S525 6. N NA CPS S59398 8. G C NA C2 SEES 85 C O. O. CP2 S88 588 S. C 0.002 DEY i FSSF38F98 s O3 DPYD SSS) 733 W NA DPYD S3883 53. NA DPY) S858 53. S. N DRY SE9595 SS O. O.S EFA S S8 SS T O.O. 46 EPE 9 S35908 S. O.O3 EFE S3338. P , OF HA)-A S. C3 S W O O.O AA FSF58 5S C G NA HAHB 2 S35F3BS O N OO13 O.3 NCCC 3. FSF135OO 59 C NA CCC S35683 48 A. G O. 5 WLYC S fS35.955 43 C O. O).3 AA 4. Sail S7 i O.O.3 O)3 AAE FSSC i. S. A. M 8 S288 9 Y C O.O. OO CC X SS BOOBS 27. R OF O. PC S2229.745 873 N E NA, PC SW63.5 99 A. A. PC SFOA55 FS NP, .33 C FS355S-89 84 W .5 5 SLCA s FS 583 355 R C O.O25 O) SLCFA SR552, 38. t O.O2 SCA S5.583 SS R C CECS SLCAS 5. S388 35 R O.S O.O.5. SLC22A5 S5585. 49 Y D O.S S C22A5 fSSO3FS824 46 S. C O3 FM S8483,928 3 G S O.O.S O5 Patent Application Publication Jan. 7, 2016 Sheet 17 of 17 US 2016/0002733 A1 Figure 14 Frequency of Deleterious SNPs in the Population Max allele Sun of naX P(O) fred, X allele freq P(>1) P(>2) P(>3) O.O. O.39 O.726 0.273 O.O4 O.O4 O.005 0.344 0.79 0.29 0.047 0.05 O.CO O.369 O.69 O.309 O.O54. OOO6 O.O20 O.49 O.657 0.343 OO67 O.OO9 US 2016/0002733 A1 Jan. 7, 2016 ASSESSING RISK FORENCEPHALOPATHY provides methods for treating a human Subject based on a INDUCED BYS-FLUOROURACL, OR predicted susceptibility to 5-fluorouracil (5-FU) or capecit CAPECITABINE abine toxicity.
Recommended publications
  • Integrative Genomic and Epigenomic Analyses Identified IRAK1 As a Novel Target for Chronic Inflammation-Driven Prostate Tumorigenesis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.447920; this version posted June 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Integrative genomic and epigenomic analyses identified IRAK1 as a novel target for chronic inflammation-driven prostate tumorigenesis Saheed Oluwasina Oseni1,*, Olayinka Adebayo2, Adeyinka Adebayo3, Alexander Kwakye4, Mirjana Pavlovic5, Waseem Asghar5, James Hartmann1, Gregg B. Fields6, and James Kumi-Diaka1 Affiliations 1 Department of Biological Sciences, Florida Atlantic University, Florida, USA 2 Morehouse School of Medicine, Atlanta, Georgia, USA 3 Georgia Institute of Technology, Atlanta, Georgia, USA 4 College of Medicine, Florida Atlantic University, Florida, USA 5 Department of Computer and Electrical Engineering, Florida Atlantic University, Florida, USA 6 Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, Florida, USA Corresponding Author: [email protected] (S.O.O) Running Title: Chronic inflammation signaling in prostate tumorigenesis bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.447920; this version posted June 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The impacts of many inflammatory genes in prostate tumorigenesis remain understudied despite the increasing evidence that associates chronic inflammation with prostate cancer (PCa) initiation, progression, and therapy resistance.
    [Show full text]
  • Mouse Fscn3 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Fscn3 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Fscn3 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Fscn3 gene (NCBI Reference Sequence: NM_019569 ; Ensembl: ENSMUSG00000029707 ) is located on Mouse chromosome 6. 7 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 6 (Transcript: ENSMUST00000031719). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Fscn3 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-176I9 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 9.71% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 1817 bp, and the size of intron 2 for 3'-loxP site insertion: 839 bp. The size of effective cKO region: ~1197 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 7 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Homology arm Exon of mouse Fscn3 cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Ovarian Gene Expression in the Absence of FIGLA, an Oocyte
    BMC Developmental Biology BioMed Central Research article Open Access Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor Saurabh Joshi*1, Holly Davies1, Lauren Porter Sims2, Shawn E Levy2 and Jurrien Dean1 Address: 1Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA and 2Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA Email: Saurabh Joshi* - [email protected]; Holly Davies - [email protected]; Lauren Porter Sims - [email protected]; Shawn E Levy - [email protected]; Jurrien Dean - [email protected] * Corresponding author Published: 13 June 2007 Received: 11 December 2006 Accepted: 13 June 2007 BMC Developmental Biology 2007, 7:67 doi:10.1186/1471-213X-7-67 This article is available from: http://www.biomedcentral.com/1471-213X/7/67 © 2007 Joshi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Ovarian folliculogenesis in mammals is a complex process involving interactions between germ and somatic cells. Carefully orchestrated expression of transcription factors, cell adhesion molecules and growth factors are required for success. We have identified a germ-cell specific, basic helix-loop-helix transcription factor, FIGLA (Factor In the GermLine, Alpha) and demonstrated its involvement in two independent developmental processes: formation of the primordial follicle and coordinate expression of zona pellucida genes. Results: Taking advantage of Figla null mouse lines, we have used a combined approach of microarray and Serial Analysis of Gene Expression (SAGE) to identify potential downstream target genes.
    [Show full text]
  • Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data
    INTEROPERABILITY IN TOXICOLOGY: CONNECTING CHEMICAL, BIOLOGICAL, AND COMPLEX DISEASE DATA Sean Mackey Watford A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Gillings School of Global Public Health (Environmental Sciences and Engineering). Chapel Hill 2019 Approved by: Rebecca Fry Matt Martin Avram Gold David Reif Ivan Rusyn © 2019 Sean Mackey Watford ALL RIGHTS RESERVED ii ABSTRACT Sean Mackey Watford: Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data (Under the direction of Rebecca Fry) The current regulatory framework in toXicology is expanding beyond traditional animal toXicity testing to include new approach methodologies (NAMs) like computational models built using rapidly generated dose-response information like US Environmental Protection Agency’s ToXicity Forecaster (ToXCast) and the interagency collaborative ToX21 initiative. These programs have provided new opportunities for research but also introduced challenges in application of this information to current regulatory needs. One such challenge is linking in vitro chemical bioactivity to adverse outcomes like cancer or other complex diseases. To utilize NAMs in prediction of compleX disease, information from traditional and new sources must be interoperable for easy integration. The work presented here describes the development of a bioinformatic tool, a database of traditional toXicity information with improved interoperability, and efforts to use these new tools together to inform prediction of cancer and complex disease. First, a bioinformatic tool was developed to provide a ranked list of Medical Subject Heading (MeSH) to gene associations based on literature support, enabling connection of compleX diseases to genes potentially involved.
    [Show full text]
  • Mammalian Male Germ Cells Are Fertile Ground for Expression Profiling Of
    REPRODUCTIONREVIEW Mammalian male germ cells are fertile ground for expression profiling of sexual reproduction Gunnar Wrobel and Michael Primig Biozentrum and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, 4056 Basel, Switzerland Correspondence should be addressed to Michael Primig; Email: [email protected] Abstract Recent large-scale transcriptional profiling experiments of mammalian spermatogenesis using rodent model systems and different types of microarrays have yielded insight into the expression program of male germ cells. These studies revealed that an astonishingly large number of loci are differentially expressed during spermatogenesis. Among them are several hundred transcripts that appear to be specific for meiotic and post-meiotic germ cells. This group includes many genes that were pre- viously implicated in spermatogenesis and/or fertility and others that are as yet poorly characterized. Profiling experiments thus reveal candidates for regulation of spermatogenesis and fertility as well as targets for innovative contraceptives that act on gene products absent in somatic tissues. In this review, consolidated high density oligonucleotide microarray data from rodent total testis and purified germ cell samples are analyzed and their impact on our understanding of the transcriptional program governing male germ cell differentiation is discussed. Reproduction (2005) 129 1–7 Introduction 2002, Sadate-Ngatchou et al. 2003) and the absence of cAMP responsive-element modulator (Crem) and deleted During mammalian male
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • TRIM67 Inhibits Tumor Proliferation and Metastasis by Mediating
    Journal of Cancer 2020, Vol. 11 6025 Ivyspring International Publisher Journal of Cancer 2020; 11(20): 6025-6037. doi: 10.7150/jca.47538 Research Paper TRIM67 inhibits tumor proliferation and metastasis by mediating MAPK11 in Colorectal Cancer Ying Liu1*, Guiqi Wang1*, Xia Jiang1*, Wei Li1, Congjie Zhai1, Fangjian Shang1, Shihao Chen1, Zengren Zhao1 and Weifang Yu2 1. Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Donggang Road No.89, Shijiazhuang, Hebei 050031, P.R. China. 2. Department of Endoscopy Center, The First Hospital of Hebei Medical University, Donggang Road No.89, Shijiazhuang, Hebei 050031, P.R. China. *These authors contributed equally to this work. Corresponding authors: Prof. Zengren Zhao or Weifang Yu, The First Hospital of Hebei Medical University, Donggang Road No.89, Shijiazhuang, Hebei 050031, P.R. China; Tel: +86 0311 85917217; E-mail: [email protected] or [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2020.04.28; Accepted: 2020.08.04; Published: 2020.08.18 Abstract Purpose: We recently reported that tripartite motif-containing 67 (TRIM67) activates p53 to suppress colorectal cancer (CRC). However, the function and mechanism of TRIM67 in the inhibition of CRC cell proliferation and metastasis remains to be further elucidated. Methods: We detected the expression of TRIM67 in CRC tissues compared with normal tissues and confirmed its relationship with clinicopathological features.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Visnagin—A New Protectant Against Doxorubicin Cardiotoxicity? Inhibition of Mitochondrial Malate Dehydrogenase 2 (MDH2) and Beyond
    Editorial Page 1 of 5 Visnagin—a new protectant against doxorubicin cardiotoxicity? Inhibition of mitochondrial malate dehydrogenase 2 (MDH2) and beyond Lei Xi Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298-0204, USA Correspondence to: Lei Xi, MD, FAHA. Associate Professor, Division of Cardiology, Box 980204, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020C, Richmond, VA 23298-0204, USA. Email: [email protected]. Submitted Oct 08, 2015. Accepted for publication Oct 13, 2015. doi: 10.3978/j.issn.2305-5839.2015.10.43 View this article at: http://dx.doi.org/10.3978/j.issn.2305-5839.2015.10.43 Doxorubicin (DOX) is a broad-spectrum and potent with excessive ROS generation in mitochondria (12,13). anthracycline antibiotic that has been widely used since Due to the complex multi-factorial cellular and 1960s as a chemotherapeutic agent to treat a variety of molecular drivers underlying DOX cardiotoxicity, the human cancers (1). Despite its superior anti-cancer efficacy, optimal therapeutic approaches for protection against the clinical use of DOX is often limited by dose-dependent DOX cardiotoxicity have not yet been identified, despite cardiotoxicity, which may lead to irreversible dilated over 40 years of extensive research. Notably Herman et al. cardiomyopathy and congestive heart failure (2,3). Currently in 1972 first introduced bisdioxopiperazine compound as predominant theories for explaining DOX cardiotoxicity a cardioprotective agent against DOX cardiotoxicity (14). include the DOX-induced increase of oxidative stress in The subsequent research in this area led to identification cardiomyocytes (4), alteration of mitochondrial energetics of dexrazoxane, the only drug currently approved by the (5,6), and direct effect on DNA.
    [Show full text]
  • Bioinformatics Analysis of Differentially Expressed Genes in Rotator Cuff Tear
    Ren et al. Journal of Orthopaedic Surgery and Research (2018) 13:284 https://doi.org/10.1186/s13018-018-0989-5 RESEARCHARTICLE Open Access Bioinformatics analysis of differentially expressed genes in rotator cuff tear patients using microarray data Yi-Ming Ren†, Yuan-Hui Duan†, Yun-Bo Sun†, Tao Yang and Meng-Qiang Tian* Abstract Background: Rotator cuff tear (RCT) is a common shoulder disorder in the elderly. Muscle atrophy, denervation and fatty infiltration exert secondary injuries on torn rotator cuff muscles. It has been reported that satellite cells (SCs) play roles in pathogenic process and regenerative capacity of human RCT via regulating of target genes. This study aims to complement the differentially expressed genes (DEGs) of SCs that regulated between the torn supraspinatus (SSP) samples and intact subscapularis (SSC) samples, identify their functions and molecular pathways. Methods: The gene expression profile GSE93661 was downloaded and bioinformatics analysis was made. Results: Five hundred fifty one DEGs totally were identified. Among them, 272 DEGs were overexpressed, and the remaining 279 DEGs were underexpressed. Gene ontology (GO) and pathway enrichment analysis of target genes were performed. We furthermore identified some relevant core genes using gene–gene interaction network analysis such as GNG13, GCG, NOTCH1, BCL2, NMUR2, PMCH, FFAR1, AVPR2, GNA14, and KALRN, that may contribute to the understanding of the molecular mechanisms of secondary injuries in RCT. We also discovered that GNG13/calcium signaling pathway is highly correlated with the denervation atrophy pathological process of RCT. Conclusion: These genes and pathways provide a new perspective for revealing the underlying pathological mechanisms and therapy strategy of RCT.
    [Show full text]
  • Identification of Differentially Expressed Genes in Human Bladder Cancer Through Genome-Wide Gene Expression Profiling
    521-531 24/7/06 18:28 Page 521 ONCOLOGY REPORTS 16: 521-531, 2006 521 Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling KAZUMORI KAWAKAMI1,3, HIDEKI ENOKIDA1, TOKUSHI TACHIWADA1, TAKENARI GOTANDA1, KENGO TSUNEYOSHI1, HIROYUKI KUBO1, KENRYU NISHIYAMA1, MASAKI TAKIGUCHI2, MASAYUKI NAKAGAWA1 and NAOHIKO SEKI3 1Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Departments of 2Biochemistry and Genetics, and 3Functional Genomics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received February 15, 2006; Accepted April 27, 2006 Abstract. Large-scale gene expression profiling is an effective CKS2 gene not only as a potential biomarker for diagnosing, strategy for understanding the progression of bladder cancer but also for staging human BC. This is the first report (BC). The aim of this study was to identify genes that are demonstrating that CKS2 expression is strongly correlated expressed differently in the course of BC progression and to with the progression of human BC. establish new biomarkers for BC. Specimens from 21 patients with pathologically confirmed superficial (n=10) or Introduction invasive (n=11) BC and 4 normal bladder samples were studied; samples from 14 of the 21 BC samples were subjected Bladder cancer (BC) is among the 5 most common to microarray analysis. The validity of the microarray results malignancies worldwide, and the 2nd most common tumor of was verified by real-time RT-PCR. Of the 136 up-regulated the genitourinary tract and the 2nd most common cause of genes we detected, 21 were present in all 14 BCs examined death in patients with cancer of the urinary tract (1-7).
    [Show full text]
  • Identification of Isobutyryl-Coa Dehydrogenase and Its Deficiency
    Molecular Genetics and Metabolism 77 (2002) 68–79 www.academicpress.com Identification of isobutyryl-CoA dehydrogenase and its deficiency in humans Tien V. Nguyen,a Brage S. Andresen,b,c Thomas J. Corydon,b Sandro Ghisla,d Nasser Abd-El Razik,d Al-Walid A. Mohsen,a Stephen D. Cederbaum,e Diane S. Roe,f Charles R. Roe,f Nicolas J. Lench,g and Jerry Vockleya,* a Department of Medical Genetics, Mayo Clinic, Rochester, MN 55905, USA b Institute for Human Genetics, Aarhus University, Aarhus, Denmark c Research Unit for Molecular Medicine, Skejby Sygehus and Aarhus University, Aarhus, Denmark d Faculty of Biology, University of Konstanz, Konstanz, Germany e Department of Pediatrics, UCLA Medical Center, Los Angeles, CA, USA f Institute of Metabolic Disease, Baylor University, Dallas, TX, USA g Molecular Medicine Unit, University of Leeds, St. JamesÕ University Hospital, Leeds, UK Received 19 July 2002; received in revised form 31 July 2002; accepted 1 August 2002 Abstract The acyl-CoA dehydrogenases (ACDs) are a family of related enzymes that catalyze the a,b-dehydrogenation of acyl-CoA esters. Two homologues active in branched chain amino acid metabolism have previously been identified. We have used expression in Escherichia coli to produce a previously uncharacterized ACD-like sequence (ACAD8) and define its substrate specificity. Purified À1 À1 recombinant enzyme had a kcat=Km of 0.8, 0.23, and 0.04 (lM s ) with isobutyryl-CoA, (S) 2-methylbutyryl-CoA, and n-propionyl- CoA, respectively, as substrates. Thus, this enzyme is an isobutyryl-CoA dehydrogenase. A single patient has previously been described whose fibroblasts exhibit a specific deficit in the oxidation of valine.
    [Show full text]