Measuring of the Fovea and Foveola Using Line Scans and 3D Macular Scans Obtained with Spectral Domain Optical Coherent Tomography

Total Page:16

File Type:pdf, Size:1020Kb

Measuring of the Fovea and Foveola Using Line Scans and 3D Macular Scans Obtained with Spectral Domain Optical Coherent Tomography Measuring of the fovea and foveola using line scans and 3D Macular scans obtained with spectral domain optical coherent tomography. Vakhrameeva O.A.1, Moiseenko G.A.1, Maltsev D.S.2, Sukhinin M.V. 2, Koskin S.A. 2, Shelepin Y.E. 1Pavlov Institute of Physiology, Russian Academy of Sciences. 2 Department of ophthalmology; S. M. Kirov Military Medical Academy, St. Petersburg, Russia Central retina structures Layers of the human retina Spectral domain optical coherence tomography (Spectralis, Heidelberg) image of a normal individual. The multilayered retinal architecture can be observed and each retinal layer can be identified. NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; OPL, outer plexiform layer; ONL, outer nuclear layer; ELM, external limiting membrane; IS/OS, junction of the inner and outer segments of the photoreceptors; RPE, retinal pigment epithelium. (RETINA, 2013) Different animals have different retina structure in the central visual field. Macaque monkeys have very similar to human foveal depression. Some of the animals don’t have fovea, some of them have tiny foveal depression, but it differs from human (cat). Some monkeys (f.e. macaque) has very similar to human fovea structure. Comparing the geometrical characteristics of the fovea with morphological structures of the retina (FAZ). Variations of anatomical structures dimensions (FAZ) across different studies Reference Method n Area (mm2) Mean Diameter (mm) (SD) Bresnick et FFA 20 0.35* 0.334 al.[1] Wolf et al.[2] FFA 21 0.231 (0.06) 0.271 Mansour et FFA 27 0.405 (0.559) 0.359 al.[3] Arend et al.[4] FFA 52 0.205 (0.062) 0.255 Line scan of the retina, obtained by time domain OCT (TD-OCT) Fovea – distance between nerve fiber layer ends. Foveola – distance between inner nuclear layer ends Vakhrameeva O.A., Sukhinin M.V., Moiseenko G.A., Muraviova S.V., Pronin S.V., Pronin S.V. Volkov V.V., Shelepin Yu.E. Investigatin of the perception depending on the geometry of the fovea // Sencory Systems, 2013, V. 27, № 2, pp.122-129 Modified Landolt C optotype, without noise and with different percent of noise. Vakhrameeva O.A., Sukhinin M.V., Moiseenko G.A., Muraviova S.V., Pronin S.V., Pronin S.V. Volkov V.V., Shelepin Yu.E. Investigatin of the perception depending on the geometry of the fovea // Sencory Systems, 2013, V. 27, № 2, pp.122-129 Correct answer dependence on the size of the Landolt C optotype Different curves for different noise levels (from 0 to 50, see plot) Number of the correct answers correct of the Number Size of the object (deg) Vakhrameeva O.A., Sukhinin M.V., Moiseenko G.A., Muraviova S.V., Pronin S.V., Pronin S.V. Volkov V.V., Shelepin Yu.E. Investigatin of the perception depending on the geometry of the fovea // Sencory Systems, 2013, V. 27, № 2, pp.122-129 Correct answer dependence on the diameter of the foveola Different markers are for different object Noise 10 % Noise 40 % size. Each dot – particular subjects eye Probability of the correct answer correct of the Probability Foveola diameter (μm) Vakhrameeva O.A., Sukhinin M.V., Moiseenko G.A., Muraviova S.V., Pronin S.V., Pronin S.V. Volkov V.V., Shelepin Yu.E. Investigatin of the perception depending on the geometry of the fovea // Sencory Systems, 2013, V. 27, № 2, pp.122-129 Correct answer dependence on the diameter of the fovea Noise 30 % Different markers are for different object size. Each dot – particular subjects eye Probability of the correct answer correct of the Probability Fovea diameter (μm) Vakhrameeva O.A., Sukhinin M.V., Moiseenko G.A., Muraviova S.V., Pronin S.V., Pronin S.V. Volkov V.V., Shelepin Yu.E. Investigatin of the perception depending on the geometry of the fovea // Sencory Systems, 2013, V. 27, № 2, pp.122-129 Line scan and 3D macular images of the retina, obtained by spectral domain OCT (SD-OCT) SD-OCT is faster than TD-OCT, which allows to obtain more B-scans per 1 second. Using this method researcher can obtain one averaged across hundreds line scan with good resolution or many slices, which allow to reconstruct the 3D structure of the macula region. Dependence of contrast sensitivity on the foveola diameter (p˂0.05) Each dot – particular subjects eye Vakhrameeva O.A., Moiseenko G.A., Maltsev D.S., Sukhinin M.V., Pronin, S.A., Koskin S.A., Shelepin Yu.E Role of the optical and morphological characteristics of the eye in detection of small objects // Boook of abstracts, VII all Russia seminar “Macula 2016”, Rostov-on-Don, May 20-22, 2016 Interaction between diameter of the foveola and latency of the evoked potentials in response to chessboard pattern. Oz ВП рисунок Moiseenko G.A., Vakhrameeva O.A., Maltsev D.S., Sukhinin M.V., Koskin S.A., Shelepin Yu.E. Investigation of correlation between electrophysiological, morphological and optical characteristics of the human eye and recognition of objects in the fovea region // Boook of abstracts, VII all Russia seminar “Macula 2016”, Rostov-on-Don, May 20-22, 2016 Correlation between foveola diameter and latency of the P100 component in response to chessboard pattern. (p<0,05) Moiseenko G.A., Vakhrameeva O.A., Maltsev D.S., Sukhinin M.V., Koskin S.A., Shelepin Yu.E. Investigation of correlation between electrophysiological, morphological and optical characteristics of the human eye and recognition of objects in the fovea region // Boook of abstracts, VII all Russia seminar “Macula 2016”, Rostov-on-Don, May 20-22, 2016 Eye movements during reading p<0,001 p<0,001 Number of letters per fixation per of letters Number Number of letters per fixation per of letters Number Reading time (sec) Number of saccades There was tendency of negative correlations between fovea diameter and fixation duration. Lamminpia A. Moiseenko G.A., Vakhrameeva O.A., Shelepin Yu.E. Influence of fovea dimension on the eye movement during reading // Boook of abstracts, VII all Russia seminar “Macula 2016”, Rostov-on-Don, May 20-22, 2016 Conclusions: • Foveola diameter affects the ability to recognize small objects (smaller than 1 deg) • This influence has been approved by the use of visual ERP • Foveola diameter affects maximum of the contrast sensitivity • Fovea diameter influence the eye movements during reading General conclusion: Anatomical characteristics of the fovea region (particularly, diameter of the foveola and fovea) measured in vivo plays an important role in visual performance. Supported by grant of Russian Science Foundation № 14-15-00918.
Recommended publications
  • Symptoms of Age Related Macular Degeneration
    WHAT IS MACULAR DEGENERATION? wavy or crooked, visual distortions, doorway and the choroid are interrupted causing waste or street signs seem bowed, or objects may deposits to form. Lacking proper nutrients, the light- Age related macular degeneration (AMD) is appear smaller or farther away than they sensitive cells of the macula become damaged. a disease that may either suddenly or gradually should, decrease in or loss of central vision, and The damaged cells can no longer send normal destroy the macula’s ability to maintain sharp, a central blurry spot. signals from the macula through the optic nerve to central vision. Interestingly, one’s peripheral or DRY: Progression with dry AMD is typically slower your brain, and consequently your vision becomes side vision remains unaffected. AMD is the leading de-gradation of central vision: need for increasingly blurred cause of “legal blindness” in the United States for bright illumination for reading or near work, diffi culty In either form of AMD, your vision may remain fi ne persons over 65 years of age. AMD is present in adapting to low levels of illumination, worsening blur in one eye up to several years even while the other approximately 10 percent of the population over of printed words, decreased intensity or brightness of eye’s vision has degraded. Most patients don’t the age of 52 and in up to 33 percent of individuals colors, diffi culty recognizing faces, gradual increase realize that one eye’s vision has been severely older than 75. The macula allows alone gives us the in the haziness of overall vision, and a profound drop reduced because your brain compensates the bad ability to have: sharp vision, clear vision, color vision, in your central vision acuity.
    [Show full text]
  • Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors
    pharmaceutics Article Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors Hyeong Min Kim 1,†, Hyounkoo Han 2,†, Hye Kyoung Hong 1, Ji Hyun Park 1, Kyu Hyung Park 1, Hyuncheol Kim 2,* and Se Joon Woo 1,* 1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; [email protected] (H.M.K.); [email protected] (H.K.H.); [email protected] (J.H.P.); [email protected] (K.H.P.) 2 Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; [email protected] * Correspondence: [email protected] (H.K.); [email protected] (S.J.W.); Tel.: +82-2-705-8922 (H.K.); +82-31-787-7377 (S.J.W.); Fax: +82-2-3273-0331 (H.K.); +82-31-787-4057 (S.J.W.) † These authors contributed equally to this work. Abstract: In this study, Retina-RPE-Choroid-Sclera (RCS) and RPE-Choroid-Sclera (CS) were prepared by scraping them off neural retina, and using the Ussing chamber we measured the average time– concentration values in the acceptor chamber across five isolated rabbit tissues for each drug molecule. We determined the outward direction permeability of the RCS and CS and calculated the neural retina permeability. The permeability coefficients of RCS and CS were as follows: ganciclovir, 13.78 ± 5.82 and 23.22 ± 9.74; brimonidine, 15.34 ± 7.64 and 31.56 ± 12.46; bevacizumab, 0.0136 ± 0.0059 and 0.0612 ± 0.0264 (×10−6 cm/s).
    [Show full text]
  • How Clean Is Your Capsule?
    Eye (1989) 3, 678-684 How Clean is Your Capsule? W. T. GREEN and D. L. BOASE Portsmouth Summary Proliferation of residual lens epithelial cells is believed to be the major cause of pos­ terior capsule opacification following extracapsular cataract extraction. During sur­ gery these cells can be visualised with appropriate illumination facilitating their mechanical removal with the McIntyre cannula. When flat preparations of the anterior capsule are examined by light microscopy, the areas 'cleaned' of cells in this way appear transparent but scanning electron microscopy reveals tufts of remaining debris which may represent points of cellular attachment to the capsule. Control of lens epithelial cell proliferation is important for the future development of cataract surgery. The undoubted advantages of extracapsular and also on human cadaver eyes. A horizontal cataract extraction are offset in many patients capsulotomy in the upper part of the lens by posterior capsule opacification requiring allowed nucleus removal. Irrigation and caps ulotomy. Not only is this disappointing aspiration of the cortical lens material was for the patient, but the procedure carries a then carried out using a McIntyre cannula risk of serious complications. with Hartman's irrigation solution. During in The major cause of posterior capsule opac­ vitro surgery this was aided by first removing ification is proliferation of residual lens epi­ the entire cornea and iris to improve visual­ thelial cells. I If these cells could be removed at isation and explore different methods of the time of surgery we believe that the inci­ illumination. dence of posterior capsule opacification and The importance of illumination was first the need for subsequent capsulotomy would suspected when it was observed, during rou­ be reduced.
    [Show full text]
  • Selective Attention Within the Foveola
    ARTICLES Selective attention within the foveola Martina Poletti1 , Michele Rucci1,2 & Marisa Carrasco3,4 Efficient control of attentional resources and high-acuity vision are both fundamental for survival. Shifts in visual attention are known to covertly enhance processing at locations away from the center of gaze, where visual resolution is low. It is unknown, however, whether selective spatial attention operates where the observer is already looking—that is, within the high-acuity foveola, the small yet disproportionally important rod-free region of the retina. Using new methods for precisely controlling retinal stimulation, here we show that covert attention flexibly improves and speeds up both detection and discrimination at loci only a fraction of a degree apart within the foveola. These findings reveal a surprisingly precise control of attention and its involvement in fine spatial vision. They show that the commonly studied covert shifts of attention away from the fovea are the expression of a global mechanism that exerts its action across the entire visual field. Covert attention is essential for visual perception. Among its many previous studies. We then investigated the consequences of attention advantages, covert allocation of attentional resources increases con- for both detection (experiment 2) and discrimination (experiments trast sensitivity and spatial resolution, speeds information accrual and 3 and 4) tasks within the foveola. reaction times1–4, and alters the signal at the target location during saccade preparation5–7. Covert attention has been studied sometimes RESULTS in the parafovea (1°–5°) and mostly in the perifovea (5°–10°) and Experiment 1 consisted of a central spatial cueing task with para- periphery (>10° of eccentricity)—that is, far outside the foveola, the foveal stimuli (Fig.
    [Show full text]
  • In Vivo Sublayer Analysis of Human Retinal Inner Plexiform Layer Obtained by Visible- Light Optical Coherence Tomography
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.08.425925; this version posted January 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. In Vivo Sublayer Analysis Of Human Retinal Inner Plexiform Layer Obtained By Visible- Light Optical Coherence Tomography Zeinab Ghassabi*1, Roman V. Kuranov*2,3, Mengfei Wu1, Behnam Tayebi1,4, Yuanbo Wang3, Ian Rubinoff2, Xiaorong Liu5, Gadi Wollstein1,6, Joel S. Schuman1,6, Hao F. Zhang2, and Hiroshi Ishikawa1,6 1 Department of Ophthalmology, NYU Langone Health, New York, NY, United States. 2 Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States. 3 Opticent Inc., Evanston, IL, United States. 4 Neuroscience Institute, NYU Langone Health, NY, United States. 5 Department of Biology, University of Virginia, Charlottesville, VA, United States 6 Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, United States Funding: NIH: R01-EY013178, R01EY029121, R01EY026078, R44EY026466 * These authors contributed equally to this work Correspondence author: Dr. Hiroshi Ishikawa, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.01.08.425925; this version posted January 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Purpose: Growing evidence suggests, in glaucoma, the dendritic degeneration of subpopulation of the retinal ganglion cells (RGCs) may precede RGCs soma death. Since different RGCs synapse in different IPL sublayers, visualization of the lamellar structure of the IPL could enable both clinical and fundamental advances in glaucoma understanding and management.
    [Show full text]
  • The Ganglion Cell Complex and Glaucoma
    28 MARCH 2014 The ganglion cell complex and glaucoma GLAUCOMA IN ALL its manifestations (Carl Zeiss Meditec) looks for loss Graham Lakkis and clinical variants ultimately leads to of ganglion cell birefringence in the destruction of retinal ganglion cells. circumpapillary retinal nerve fibre BScOptom GradCertOcTher FACO layer. Time domain (TD) and spectral Lead Optometrist, University of Different methods are available to domain (SD) OCTs measure the Melbourne Eyecare Glaucoma Clinic detect ganglion cell damage, such as ganglion cell axons around the optic structural losses at the optic nerve nerve head to determine nerve fibre head (for example, increased C/D ratio, layer thickness and the TSNIT curve. neuroretinal rim thinning or notching) These existing clinical instruments or changes in ganglion cell function concentrate on measuring the axons of such as threshold visual field defects. the retinal ganglion cells adjacent to Existing clinical methods are limited and on the optic nerve head. in their ability to detect ganglion cell damage until there is significant loss. However, retinal ganglion cells are Approximately 40 per cent of ganglion large and complex cells extending cells need to be lost before an early from the inner retina all the way to glaucomatous threshold visual field the lateral geniculate nucleus (LGN) in defect is manifested,1 and the typically the midbrain. Ganglion cells begin at slow progression in optic nerve head the inner plexiform layer (IPL) where changes makes structural glaucoma they synapse with the bipolar and detection difficult until significant rim amacrine cells of the middle retina. tissue is lost. Their cell bodies (soma) make up the ganglion cell layer (GCL) of the inner With the advent of scanning laser retina, and the ganglion cell axons that clinical instruments, newer methods emerge are the retinal nerve fibre layer have been developed to enhance earlier (NFL).
    [Show full text]
  • Sclera and Retina Suturing Techniques 9 Kirk H
    Chapter 9 Sclera and Retina Suturing Techniques 9 Kirk H. Packo and Sohail J. Hasan Key Points 9. 1 Introduction Surgical Indications • Vitrectomy Discussion of ophthalmic microsurgical suturing tech- – Infusion line niques as they apply to retinal surgery warrants atten- – Sclerotomies tion to two main categories of operations: vitrectomy – Conjunctival closure and scleral buckling. Th is chapter reviews the surgical – Ancillary techniques indications, basic instrumentation, surgical tech- • Scleral buckles niques, and complications associated with suturing – Encircling bands techniques in vitrectomy and scleral buckle surgery. A – Meridional elements brief discussion of future advances in retinal surgery Instrumentation appears at the end of this chapter. • Vitrectomy – Instruments – Sutures 9.2 • Scleral buckles Surgical Indications – Instruments – Sutures Surgical Technique 9.2.1 • Vitrectomy Vitrectomy – Suturing the infusion line in place – Closing sclerotomies Typically, there are three indications for suturing dur- • Scleral buckles ing vitrectomy surgery: placement of the infusion can- – Rectus muscle fi xation sutures nula, closure of sclerotomy, and the conjunctival clo- – Suturing encircling elements to the sclera sure. A variety of ancillary suturing techniques may be – Suturing meridional elements to the sclera employed during vitrectomy, including the external – Closing sclerotomy drainage sites securing of a lens ring for contact lens visualization, • Closure of the conjunctiva placement of transconjunctival or scleral fi xation su- Complications tures to manipulate the eye, and transscleral suturing • General complications of dislocated intraocular lenses. Some suturing tech- – Break in sterile technique with suture nee- niques such as iris dilation sutures and transretinal su- dles tures in giant tear repairs have now been replaced with – Breaking sutures other non–suturing techniques, such as the use of per- – Inappropriate knot creation fl uorocarbon liquids.
    [Show full text]
  • Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma
    Investigative Ophthalmology & Visual Science, Vol. 32, No. 3, March 1991 Copyright © Association for Research in Vision and Ophthalmology Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma Yoseph Glovinsky,* Harry A. Quigley,f and Gregory R. Dunkelbergerf Thirty-two areas located in the temporal midperipheral retina were evaluated in whole-mount prepara- tions from four monkeys with monocular experimental glaucoma. Diameter frequency distributions of remaining ganglion cells in the glaucomatous eye were compared with corresponding areas in the normal fellow eye. Large cells were significantly more vulnerable at each stage of cell damage as determined by linear-regression analysis. The magnitude of size-dependent loss was moderate at an early stage (20% loss), peaked at 50% total cell loss, and decreased in advanced damage (70% loss). In glaucomatous eyes, the lower retina had significantly more large cell loss than the corresponding areas of the upper retina. In optic nerve zones that matched the retinal areas studied, large axons selectively were damaged first. Psychophysical testing aimed at functions subserved by larger ganglion cells is recommended for detection and follow-up of early glaucoma; however, assessment of functions unique to small cells is more appropriate for detecting change in advanced glaucoma. Invest Ophthalmol Vis Sci 32:484-491, 1991 Current psychophysical tests do not detect glau- tage of ideal cellular preservation. Eyes with mild, comatous damage until a substantial minority of reti- moderate, and late damage were evaluated. In addi- nal ganglion cells have died.1'2 To develop more sen- tion, we correlated the damage patterns in the retinas sitive tests, a comprehensive understanding of the and optic nerves of the glaucomatous eyes.
    [Show full text]
  • The Nature of Foveal Representation Projections from the Nasal Part of the Retinae to Reach the Ipsilateral Hemispheres
    PERSPECTIVES OPINION hemiretina, project to the ‘wrong’ laminae of the LGN. These results were taken to show that the crossing of the nasal retinal fibres in the optic chiasm is incomplete, allowing some The nature of foveal representation projections from the nasal part of the retinae to reach the ipsilateral hemispheres. Normally, Michal Lavidor and Vincent Walsh however, foveal stimuli received by the nasal retinae are projected to the contralateral visual Abstract | A fundamental question in visual the visual midline. This is what Descartes1 cortex. A later study10 indicated that the perception is whether the representation of suggested in his description of the visual dendritic coverage of the centre of the fovea the fovea is split at the midline between the system — he identified the pineal gland as the by RGCs provides a possible neural basis for two hemispheres, or bilaterally represented organ of integration (FIG. 1).Unfortunately, 2–3° of bilateral representation of the fovea by overlapping projections of the fovea in this intuitive, appealing explanation is in the central visual pathways. There is also each hemisphere. Here we examine not true, and we therefore have to assume evidence that the nasotemporal overlap psychophysical, anatomical, that the two cerebral hemispheres cooperate increases towards the upper and lower regions neuropsychological and brain stimulation or compete over the representation of the of the retina11. experiments that have addressed this human foveal area. Most studies that have labelled RGCs with question, and argue for a shift from the When a person is fixating centrally (looking HRP after unilateral injections into the mon- current default view of bilateral straight ahead), information that is to key optic tract have found a nasotemporal representation to that of a split the right of fixation (in the right visual field) is overlap zone along the vertical meridian12.
    [Show full text]
  • The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
    Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life.
    [Show full text]
  • Foveola Nonpeeling Internal Limiting Membrane Surgery to Prevent Inner Retinal Damages in Early Stage 2 Idiopathic Macula Hole
    Graefes Arch Clin Exp Ophthalmol DOI 10.1007/s00417-014-2613-7 RETINAL DISORDERS Foveola nonpeeling internal limiting membrane surgery to prevent inner retinal damages in early stage 2 idiopathic macula hole Tzyy-Chang Ho & Chung-May Yang & Jen-Shang Huang & Chang-Hao Yang & Muh-Shy Chen Received: 29 October 2013 /Revised: 26 February 2014 /Accepted: 5 March 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract Keywords Fovea . Foveola . Internal limiting membrane . Purpose The purpose of this study was to investigate and macular hole . Müller cell . Vitrectomy present the results of a new vitrectomy technique to preserve the foveolar internal limiting membrane (ILM) during ILM peeling in early stage 2 macular holes (MH). Introduction Methods The medical records of 28 consecutive patients (28 eyes) with early stage 2 MH were retrospectively reviewed It is generally agreed that internal limiting membrane (ILM) and randomly divided into two groups by the extent of ILM peeling is important in achieving closure of macular holes peeing. Group 1: foveolar ILM nonpeeling group (14 eyes), (MH) [1]. An autopsy study of a patient who had undergone and group 2: total peeling of foveal ILM group (14 eyes). A successful MH closure showed an area of absent ILM sur- donut-shaped ILM was peeled off, leaving a 400-μm-diameter rounding the sealed MH [2]. ILM over foveola in group 1. The present ILM peeling surgery of idiopathic MH in- Results Smooth and symmetric umbo foveolar contour was cludes total removal of foveolar ILM. However, removal of restored without inner retinal dimpling in all eyes in group 1, all the ILM over the foveola causes anatomical changes of the but not in group 2.
    [Show full text]
  • How the Eye Works
    HOW THE EYE WORKS The Eyes & Vision Our ability to "see" starts when light reflects off an object and enters the eye. As it enters the eye, the light is unfocused. The first step in seeing is to focus the light rays onto the retina, which is the light sensitive layer found inside the eye. Once the light is focused, it stimulates cells to send millions of electrochemical impulses along the optic nerve to the brain. The portion of the brain at the back of the head interprets the impulses, enabling us to see the object. The Refraction of Light by the Eye Light entering the eye is first bent, or refracted, by the cornea -- the clear window on the outer front surface of the eyeball. The cornea provides most of the eye's optical power or light- bending ability. After the light passes through the cornea, it is bent again -- to a more finely adjusted focus -- by the crystalline lens inside the eye. The lens focuses the light on the retina. This is achieved by the ciliary muscles in the eye. They change the shape of the lens, bending or flattening it to focus the light rays on the retina. This adjustment in the lens is necessary for bringing near and far objects into focus. The process of bending light to produce a focused image on the retina is called "refraction". Ideally, the light is "refracted" in such a manner that the rays are focused into a precise image on the retina. Many vision problems occur because of an error in how our eyes refract light.
    [Show full text]