APPENDIX C Essential Fish Habitat Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shrimp Fishing in Mexico
235 Shrimp fishing in Mexico Based on the work of D. Aguilar and J. Grande-Vidal AN OVERVIEW Mexico has coastlines of 8 475 km along the Pacific and 3 294 km along the Atlantic Oceans. Shrimp fishing in Mexico takes place in the Pacific, Gulf of Mexico and Caribbean, both by artisanal and industrial fleets. A large number of small fishing vessels use many types of gear to catch shrimp. The larger offshore shrimp vessels, numbering about 2 212, trawl using either two nets (Pacific side) or four nets (Atlantic). In 2003, shrimp production in Mexico of 123 905 tonnes came from three sources: 21.26 percent from artisanal fisheries, 28.41 percent from industrial fisheries and 50.33 percent from aquaculture activities. Shrimp is the most important fishery commodity produced in Mexico in terms of value, exports and employment. Catches of Mexican Pacific shrimp appear to have reached their maximum. There is general recognition that overcapacity is a problem in the various shrimp fleets. DEVELOPMENT AND STRUCTURE Although trawling for shrimp started in the late 1920s, shrimp has been captured in inshore areas since pre-Columbian times. Magallón-Barajas (1987) describes the lagoon shrimp fishery, developed in the pre-Hispanic era by natives of the southeastern Gulf of California, which used barriers built with mangrove sticks across the channels and mouths of estuaries and lagoons. The National Fisheries Institute (INP, 2000) and Magallón-Barajas (1987) reviewed the history of shrimp fishing on the Pacific coast of Mexico. It began in 1921 at Guaymas with two United States boats. -
Checklist of Inshore Demersal Fishes from Southern and Central California
1 T /I•• .•' -:-~~:.;ir_:...~ ·.. ?·>,/ \:' --:1:.· ;)~{ --~ ;_. ··~ . AWt1 l'll This list was prepared to compare southern California trawl-caught fishes with those caught north of Point Conception. All data are based on otter trawl or beam trawl surveys; sources are listed at the end of the list, along with information on the effort, gear, and depths sampled in each survey. The list, which simply shows the presence or absence of species, reveals that at least 225 species1 of fish have been taken by otter trawl in coastal regions of southern and central California. Of these, 185 have been caught in southern California alone; 79 species have been found in both southern and central California waters. To provide a picture of the present coastal shelf bottom fish com munities, the data from 1969-72 southern California trawling sur veys (Southern California coastal Water Research Project 1973) were analyzed to identify recurrent groups (commonly associated species) of fishes. The analysis showed that about one-fifth of the 121 nearshore demersal species found in these surveys appeared in statistically significant associations. ~Five major groups and six associate species were defined in the analysis; the groups are shown in Figure 1. With the exception of the yellowchin sculpin (Icelinus guadriser iatus), queenfish (Seriphus politus), blackbelly eelpout (Lycodop sis pacifica), and blacktip poacher (Xeneretmus latifrons}, all southern California recurrent group species were also noted in the central California surveys described here. (The latter three species are known to occur at least as far north as northern Cali fornia; the fact that they were not noted in the central California surveys may be a result of low sampling effort in their depth ranges.} 1. -
Humboldt Bay Fishes
Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar -
A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1 -
Amphipod Cell Lineages
Development 129, 5789-5801 5789 © 2002 The Company of Biologists Ltd doi:10.1242/dev.00155 Cell lineage analysis of the amphipod crustacean Parhyale hawaiensis reveals an early restriction of cell fates Matthias Gerberding1,3, William E. Browne2 and Nipam H. Patel1,3,* 1Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA 2Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA 3Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA *Author for correspondence (e-mail: [email protected]) Accepted 11 September 2002 SUMMARY In the amphipod crustacean, Parhyale hawaiensis, the endoderm and the fourth micromere generates the first few embryonic cleavages are total and generate a germline. These findings demonstrate for the first time a stereotypical arrangement of cells. In particular, at the total cleavage pattern in an arthropod which results in an eight-cell stage there are four macromeres and four invariant cell fate of the blastomeres, but notably, the cell micromeres, and each of these cells is uniquely identifiable. lineage pattern of Parhyale reported shows no clear We describe our studies of the cell fate pattern of these resemblance to those found in spiralians, nematodes or eight blastomeres, and find that the eight clones resulting deuterostomes. Finally, the techniques we have developed from these cells set up distinct cell lineages that differ in for the analysis of Parhyale development suggest that this terms of proliferation, migration and cell fate. Remarkably, arthropod may be particularly useful for future functional the cell fate of each blastomere is restricted to a single analyses of crustacean development. -
Fishery Bulletin/U S Dept of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service V.85
LIFE HISIDRY AND FISHERY OF THE CALIFORNIA SCORPIONFISH, SCORPAENA GUTTATA, WITHIN THE SOUTHERN CALIFORNIA BIGHT MILTON S. LOVE,l BRITA AXELL,l PAMELA MORRIS,1 ROBSON COLLINS,s AND ANDREW BROOKS~- ABSTRACT We examined the life history of the California scorpionfish in the Southern California Bight. Based on sportfish creel census data, the species was most abundant in the southern part of the Bight. particular ly around Catalina, San Clemente, and the Coronado Islands. Trawl studies from 1974 to 1984 indicated that California scorpionfish populations varied considerably in abundance, with numbers peaking in 1982. Though the species usually associates with hard substrata, it was abundant over mud about the Palos Verdes Peninsula, site of a major sewage outfall. We think that this anomalous abundance was due to the presence of large numbers of a prey species, the ridgeback prawn, Sicyonia ingentis, which was attracted to the nutrient-rich substrata. Female California scorpionfish lived to 21 years. males to 15. Females grew faster than males. Von Bertalanffy age-length parameters for females were L - 44.3, k = 0.13, to = -1.9, and for males L = 36.3, k = 0.12, to = -3.86. Over 50% ofboth females and males were mature at 2 years of age. Males tended to mature at a slightly smaller size. Spawning occurred from May through August, peaking in July. California scorpionfish formed large offshore spawning aggregations in waters deeper than their off-season habitat. 'ragging results indicated that fish return to the same spawning area annually. Crabs, primarily juvenile Cancer antlwnyi, were the most important food item of fishes inhabiting soft substrata in shallow water. -
The Rock Shrimp Genus Sicyonia (Crustacea: Decapoda: Penaeoidea) in the Eastern Pacific
mr ^Sa^ TO w THE ROCK SHRIMP GENUS SICYONIA (CRUSTACEA: DECAPODA: PENAEOIDEA) IN THE EASTERN PACIFIC ISABEL PEREZ FARFANTE1 ABSTRACT The genus Sicyonia is redefined and the 12 species occurring between Monterey Bay, California, and off Pisco, Peru, are treated in detail. A key to species is followed by illustrated species accounts including descriptions, ranges of intraspecific variation with analyses of morphometric data (rostrum to carapace ratio graphically represented for 10 species), and color notes. The size ranges at which males and the minimum sizes at which females attain adulthood are summarized, and ecological notes together with maps illustrating the ranges of the species (six of which have been extended beyond limits previously reported) are included. Sicyonia disparri seems to be restricted to the south and gulf coasts of Baja California and waters offNayarit, Mexico; S. affinis to waters off Costa Rica, Panama, and Colombia; and S. penicillata occurs on the ocean side of Baja California Sur, Mexico, and from the Gulf of California to Costa Rica. Sicyonia ingentis ranges from Monterey Bay to Nayarit, including the Gulf of California. Sicyonia disedwardsi and S. martini occur along the ocean side of Baja California Sur, in the Gulf of California, and southward to Panama, and four others, S. aliaffinis,S. disdorsalis,S. mixta, and S. picta, frequent the same waters, but also reach as far south as Peru. Sicyonia laevigata and S. brevirostris are found on both sides of the Continent, the former at the southern end of the Gulf of California and from off Costa Rica to the Golfo de Panama in the Pacific, and from North Carolina to Santa Catarina, Brazil, in the Atlantic. -
Intrinsic Vulnerability in the Global Fish Catch
The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae -
Flounders, Halibuts, Soles Capture Production by Species, Fishing Areas
101 Flounders, halibuts, soles Capture production by species, fishing areas and countries or areas B-31 Flets, flétans, soles Captures par espèces, zones de pêche et pays ou zones Platijas, halibuts, lenguados Capturas por especies, áreas de pesca y países o áreas Species, Fishing area Espèce, Zone de pêche 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Especie, Área de pesca t t t t t t t t t t Mediterranean scaldfish Arnoglosse de Méditerranée Serrandell Arnoglossus laterna 1,83(01)001,01 MSF 34 Italy - - - - - - - 57 223 123 34 Fishing area total - - - - - - - 57 223 123 37 Italy ... ... ... ... ... ... 447 479 169 403 37 Fishing area total ... ... ... ... ... ... 447 479 169 403 Species total ... ... ... ... ... ... 447 536 392 526 Leopard flounder Rombou léopard Lenguado leopardo Bothus pantherinus 1,83(01)018,05 OUN 51 Bahrain 2 - - 1 1 4 4 F 4 F 4 F 4 F Saudi Arabia 77 80 77 75 74 83 71 79 80 F 74 51 Fishing area total 79 80 77 76 75 87 75 F 83 F 84 F 78 F Species total 79 80 77 76 75 87 75 F 83 F 84 F 78 F Lefteye flounders nei Arnoglosses, rombous nca Rodaballos, rombos, etc. nep Bothidae 1,83(01)XXX,XX LEF 21 USA 1 087 774 566 747 992 759 545 406 633 409 21 Fishing area total 1 087 774 566 747 992 759 545 406 633 409 27 Germany - - - - - - - - 0 - Portugal 136 103 143 125 105 102 87 76 84 105 Spain 134 116 96 56 29 8 12 12 6 5 27 Fishing area total 270 219 239 181 134 110 99 88 90 110 31 USA 59 38 71 45 41 128 117 133 99 102 31 Fishing area total 59 38 71 45 41 128 117 133 99 102 34 Greece - - - - - - - 71 45 - Portugal 15 46 .. -
Fishes-Of-The-Salish-Sea-Pp18.Pdf
NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences. -
Beam-Trawl Survey O F Bay a N D Nearshore Fishes O F
ALLEN AND HERBINSON: BEAM-TRAWL FISH SURVEY, 1989 CalCOFl Rep., Vol. 32,1991 BEAM-TRAWL SURVEY OF BAY AND NEARSHORE FISHES OF THE SOFT-BOTTOM HABITAT OF SOUTHERN CALIFORNIA IN 1989 M. JAMES ALLEN KEVIN T. HERBINSON MBC Applied Environmental Sciences Southern California Edison Company 947 Newhall Street P. 0. Box 800 Costa Mesa. California 92627 Rosemead, California 91770 ABSTRACT profundidad del sur de California muestradas por las Small-meshed (2.5-mm) beam trawls have been redes de arrastre de fondo de malla fina. Siendo asi, used in several recent surveys to examine the distri- se estudiaron algunas Areas costeras de 10s condados bution of newly settled California halibut (Puvul- de Los Angeles, Orange, y San Diego, entre abril y ichthyr cul$ofortzicus). However, information on the septiembre de 1989. Se tomaron muestras en cuatro entire fish assemblage collected in these surveys has localidades costeras (Hermosa Beach, Long Beach, not previously been reported. The objective of this San Onofre, y Carlsbad) y en dos lagunas costeras study was to describe the bay and shallow coastal (Anaheim Bay y Agua Hedionda Lagoon). Se mues- ichthyofauna of southern California as sampled by trearon tres estaciones en cada localidad utilizando small-meshed beam trawls. Areas off Los Angeles, una red de arrastre de fondo de 1.0 m en las lagunas Orange, and San Diego counties were surveyed y una red de 1.6 m en las ireas costeras. Se colectaron from April to September 1989. Three stations were 288 muestras en total, a profundidades de 0-3 m en sampled at each of four coastal sites (Hermosa las lagunas y de 6-13 m a lo largo de la costa. -
The Species of Sicyonia H. Milne Edwards (Crustacea: Penaeoidea
The species of Sicyonia H. Milne Edwards (Crustacea: Penaeoidea) of the Gulf of California, Mexico, with a key for their identification and a note on their zoogeography* Michel E. Hendrickx Instituto de Ciencias del Mar y Limnología, Estación Mazatlán, UNAM, Apt. Postal 811. Mazatlán, Sinaloa, México (Reccived fOI publication June 22, 1984) Abstraet: From 1979 to 1982, a large scale survey of the marine and coastal fauna of the Gulf of California, México, was undertaken: 9 specics of rock-shrimp of the genus Sicyonia wcre collected, totaling 5,190 specimens. A key to the 11 specics oC Sicyonia reported in the Gulf of California is given and the color oC most spccies is also described, in many cases fOI the first time. Microphotographs 01 illustrationsofthe petasma are provided to permit easier identificatian oC males. The zoogcography of the genus along the Pacific coast of America is discussed ; Sicyonia has a very broad distribution, extending from the southern Oregonan Province as far south as Callao, Perú, in the Pcrú-Chilean Southern Hemisphere Province. The Gulf of California fauna is madc up of several components including a warm-temperate speeies (S. ingentis), thIee cndemic or almost endemic speeies (S. disparri, S. disedwardsi and S. penicillata) and a series of five tropical species (S. picta, S. aliaffinis, S. disdorsa/is, S. martjni and S. laevigata), the fu st three of which are widely distributed throughout the eastern Pacifie region. Since 1979, a large·scale survey of the ma· species had been reported at least once for rine coastal fauna of Southern Sinaloa was tltis area.