Syntheses and Applications of Small Molecule Inhibitors of Mirnas Mir-21 and Mir-122

Total Page:16

File Type:pdf, Size:1020Kb

Syntheses and Applications of Small Molecule Inhibitors of Mirnas Mir-21 and Mir-122 Syntheses and applications of small molecule inhibitors of miRNAs miR-21 and miR-122 by Méryl Thomas Bachelor of sciences, ESCPE Lyon, 2009 Master degree, ESCPE Lyon, 2012 Submitted to the Graduate Faculty of the Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH Dietrich School of Arts and Sciences This thesis was presented by Méryl Thomas It was defended on July 24th, 2015 and approved by Dr. Andrew W. Duncan, Assistant Professor, Department of Pathology Dr. Seth Horne, Associate Professor, Department of Chemistry Dr. Kabirul Islam, Assistant Professor, Department of Chemistry Committee Chair: Dr. Alexander Deiters, Professor, Department of Chemistry ii Copyright © by Méryl Thomas 2015 iii Syntheses and applications of small molecule inhibitors of miRNA miR-21 and miR-122 Méryl Thomas, PhD University of Pittsburgh, 2015 MicroRNAs (miRNAs) are regulatory RNA molecules of 22 nucleotides that (in part) control up to 60% of all genes in humans. They act by binding to the 3' untranslated regions of target messenger RNAs, leading either to translational repression or mRNA degradation. In addition to being involved in the regulation of several fundamental cellular processes, the misregulation of miRNAs has been linked to a wide range of diseases including cancer. Particularly, miR-21 is significantly upregulated in nearly all types of human cancers, and its overexpression is often associated with poor prognosis. The downregulation of miR-122 is found in more than 70% of hepatocellular carcinoma cases and miR-122 is a required factor for the replication of the HCV virus. The modulation of miRNA function is commonly achieved using oligonucleotide agents. However, compared to oligonucleotides, small molecules have several advantages, such as fast activity, systemic delivery, and excellent cell permeability. Taking advantage of luciferase-based reporters, two separate high-throughput screens of >300,000 compounds each, were conducted to discover new small molecule inhibitors of miR-21 or miR-122. Several hit compounds were re- synthesized, their ability to inhibit miR-21 was validated, and the most promising compounds were investigated by SAR studies, which revealed two additional, structurally diverse classes of miR-21 inhibitors. Similarly, extensive SAR studies of previously discovered miR-122 inhibitors were performed in order to better understand the molecular requirements for the miR-122 inhibitory activity. The hit compounds identified in the HTS were analyzed through secondary assays that led to the identification of two new promising miR-122 inhibitors. Furthermore, the iv knowledge gained during the SAR studies was further used to synthesize several small molecule miR-21/miR-122 inhibitors as probes to explore their mechanisms of action. MicroRNAs represent promising, novel drug targets, and small molecule miRNA inhibitors provide tools to study the molecular mechanisms of miRNA biogenesis and have the potential to be new therapeutic agents for the treatment of cancers and viral infections. v TABLE OF CONTENTS PREFACE ............................................................................................................................... XXII 1.0 INTRODUCTION TO MICRORNAS ....................................................................... 1 1.1 MIRNA BIOGENESIS AND FUNCTION ........................................................ 2 1.2 MIRNAS AS POTENTIAL DRUG TARGETS................................................ 5 1.3 ENDOGENOUS REGULATION OF MIRNAS ............................................... 8 1.4 MODULATING MIRNA FUNCTION WITH OLIGONUCLEOTIDES.... 13 1.4.1 Clinical Development of miRNA Therapeutics ........................................... 20 1.5 MODULATING MIRNA FUNCTION WITH SMALL MOLECULES ..... 22 1.5.1 Small Molecule General Modulators of siRNA and miRNA Pathways ... 23 1.5.2 Regulation of miRNA Function with Approved Drugs .............................. 28 1.5.3 Specific Small Molecule Modifiers of miRNA Function ............................ 31 2.0 SYNTHESIS OF SMALL MOLECULE INHIBITORS OF MIR-21 ................... 36 2.1 INTRODUCTION TO MIR-21 ........................................................................ 36 2.2 PREVIOUS WORK: DEVELOPMENT OF A REPORTER ASSAY FOR MIR-21 FUNCTION AND ITS APPLICATION TO THE DISCOVERY OF THE FIRST SMALL MOLECULE INHIBITORS OF MIR-21 ............................................ 38 2.2.1 Structure Activity Relationship Studies of the Previously Discovered miR- 21 Inhibitor 24 ............................................................................................................ 40 vi 2.3 DISCOVERY OF SMALL MOLECULE MIR-21 INHIBITORS THROUGH HIGH-THROUGHPUT SCREENING ...................................................... 43 2.3.1 Validation of Potential Ether-amide miR-21 Inhibitors ............................ 45 2.3.2 Validation of Potential N-Acylhydrazone miR-21 Inhibitors .................... 49 2.3.3 Validation of Potential Ether-amide miR-21 Inhibitors ............................ 55 2.3.4 Validation of Potential Aryl-amide miR-21 Inhibitors (53 & 54) ............. 65 2.3.5 Validation of the Potential Aryl-amide miR-21 Inhibitor 55 .................... 67 2.4 INVESTIGATION INTO THE MODE OF ACTION OF MIRNA INHIBITOR 51 ................................................................................................................... 72 2.4.1 Recovery of Inhibition by Transfection of Precursor miR-21 ................... 72 2.4.2 Target Identification Experiments for the Oxadiazole Inhibitor 51 ......... 74 2.5 THERAPEUTIC EVALUATION OF THE SMALL MOLECULE MIR-21 INHIBITORS IN LIVER CANCER CELLS................................................................... 84 2.6 SUMMARY AND OUTLOOK ......................................................................... 87 2.7 EXPERIMENTALS .......................................................................................... 89 3.0 DEVELOPMENT OF SMALL MOLECULE INHIBITORS OF MIR-122 ...... 136 3.1 INTRODUCTION TO MIRNA-122 .............................................................. 136 3.1.1 Implication of miR-122 in HCC ................................................................. 139 3.1.2 Role of miR-122 in HCV ............................................................................. 141 3.2 PREVIOUS WORK......................................................................................... 146 3.3 SYNTHESIS OF SMALL MOLECULE MIR-122 INHIBITORS ............. 153 3.3.1 SAR Studies of Inhibitor 30 through Modifications of the trans- decahydroquinoline .................................................................................................. 153 vii 3.3.2 SAR Studies of Inhibitor 30 through Modifications of the Sulfonamide Linkage ...................................................................................................................... 160 3.3.3 SAR Studies of Inhibitor 30 through Modifications of the Tetrahydroquinoline ................................................................................................ 161 3.4 HIGH-THROUGHPUT SCREENING FOR SMALL MOLECULE MIR- 122 INHIBITORS ............................................................................................................. 168 3.4.1 Investigation of Hit Compounds Identified in the Primary Screen ........ 171 3.4.2 Preliminary SAR studies of the Hit Compounds 278-279 Identified in the HTS ................................................................................................................ 176 3.4.3 Validation of the Hit Compound 278 Identified in the HTS ................... 180 3.4.4 Validation of the Hit Compound 279 Identified in the HTS ................... 183 3.4.5 Re-examination of the 34 Hit Compounds Identified in the HTS ........... 188 3.5 SUMMARY AND OUTLOOK ....................................................................... 193 3.6 EXPERIMENTALS ........................................................................................ 196 4.0 MODE OF ACTION STUDIES OF THE MIR-122 INHIBITORS .................... 237 4.1 PREVIOUS WORK: RECOVERY OF INHIBITION BY TRANSFECTION OF PRECURSOR PRE-MIR-122 ................................................................................... 237 4.2 INVESTIGATION INTO THE PROTEIN TARGETED BY THE SMALL MOLECULE MIR-122 INHIBITOR ............................................................................. 240 4.2.1 Synthesis of Small Molecule Probes ........................................................... 240 4.2.2 Target Identification Experiments with the Inhibitor 30 ........................ 249 4.3 INVESTIGATION INTO MIR-122 EPIGENETIC REGULATION ........ 271 viii 4.4 ANALYSIS OF THE SMALL MOLECULE INTERACTION WITH THE MIR- 122 PROMOTER ............................................................................................................... 274 4.4.1 Development of a Reporter Construct to Study miR-122 Promoter Activity ...................................................................................................................... 274 4.4.2 Analysis of Potential Interaction between the Inhibitor 30 and known miR-122 Transcription Factors ........................................................................... 277 4.5 SUMMARY AND OUTLOOK ............................................................................ 282 4.6 EXPERIMENTALS .......................................................................................
Recommended publications
  • Amide Bond Formation and Peptide Coupling
    Tetrahedron 61 (2005) 10827–10852 Tetrahedron report number 740 Amide bond formation and peptide coupling Christian A. G. N. Montalbetti* and Virginie Falque Evotec, 112 Milton Park, Abingdon OX14 4SD, UK Received 2 August 2005 Available online 19 September 2005 Contents 1. Introduction ................................................................. 10828 2. Amide bond formation: methods and strategies ....................................... 10828 2.1. Acyl halides . .......................................................... 10829 2.1.1. Acyl chlorides .................................................... 10829 2.1.1.1. Acyl chloride formation ...................................... 10829 2.1.1.2. Coupling reactions with acyl chlorides ........................... 10831 2.1.1.3. Limitations of acyl chlorides .................................. 10831 2.1.2. Acyl fluorides .................................................... 10831 2.1.3. Acyl bromides .................................................... 10832 2.2. Acyl azides . .......................................................... 10832 2.3. Acylimidazoles using CDI ................................................. 10833 2.4. Anhydrides . .......................................................... 10834 2.4.1. Symmetric anhydrides .............................................. 10834 2.4.2. Mixed anhydrides .................................................. 10834 2.4.2.1. Mixed carboxylic anhydrides .................................. 10834 2.4.2.2. Mixed carbonic anhydrides ...................................
    [Show full text]
  • Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis
    molecules Article Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis Roberto Sole 1 , Vanessa Gatto 2 , Silvia Conca 1 , Noemi Bardella 1, Andrea Morandini 1 and Valentina Beghetto 1,2,* 1 Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; [email protected] (R.S.); [email protected] (S.C.); [email protected] (N.B.); [email protected] (A.M.) 2 Crossing srl, Viale della Repubblica 193/b, 31100 Treviso, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-041-2348928 Abstract: Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: − − Cl or ClO4 ). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption.
    [Show full text]
  • Aldrich Vapor
    Aldrich Vapor Library Listing – 6,611 spectra This library is an ideal tool for investigator using FT-IR to analyze gas phase materials. It contains gas phase spectra collected by Aldrich using a GC-IR interface to ensure chromatographically pure samples. The Aldrich FT-IR Vapor Phase Library contains 6,611 gas phase FT-IR spectra collected by Aldrich Chemical Company using a GC interface. The library includes compound name, molecular formula, CAS (Chemical Abstract Service) registry number, Aldrich catalog number, and page number in the Aldrich Library of FT-IR Spectra, Edition 1, Volume 3, Vapor-Phase. Aldrich Vapor Index Compound Name Index Compound Name 6417 ((1- 3495 (1,2-Dibromoethyl)benzene; Styrene Ethoxycyclopropyl)oxy)trimethylsilane dibromide 2081 (+)-3-(Heptafluorobutyryl)camphor 3494 (1-Bromoethyl)benzene; 1-Phenylethyl 2080 (+)-3-(Trifluoroacetyl)camphor bromide 262 (+)-Camphene; 2,2-Dimethyl-3- 6410 (1-Hydroxyallyl)trimethylsilane methylenebicyclo[2.2.1]heptane 6605 (1-Methyl-2,4-cyclopentadien-1- 2828 (+)-Diisopropyl L-tartrate yl)manganese tricarbonyl 947 (+)-Isomenthol; [1S-(1a,2b,5b)]-2- 6250 (1-Propynyl)benzene; 1-Phenylpropyne Isopropyl-5-methylcyclohexano 2079 (1R)-(+)-3-Bromocamphor, endo- 1230 (+)-Limonene oxide, cis + trans; (+)-1,2- 2077 (1R)-(+)-Camphor; (1R)-(+)-1,7,7- Epoxy-4-isopropenyl-1- Trimethylbicyclo[2.2.1]heptan- 317 (+)-Longifolene; (1S)-8-Methylene- 976 (1R)-(+)-Fenchyl alcohol, endo- 3,3,7-trimethyltricyclo[5.4.0 2074 (1R)-(+)-Nopinone; (1R)-(+)-6,6- 949 (+)-Menthol; [1S-(1a,2b,5a)]-(+)-2- Dimethylbicyclo[3.1.1]heptan-2-
    [Show full text]
  • Speciality Chemicals
    Catalog – 2019 (Specialty Chemicals, Reagents, Catalysts) To Place an Order / to Request a Quote Please send e-mail to: [email protected] © Anvia Chemicals Anvia Chemicals Online Catalog Catalog CAS Name Purity Mol. Formula Mol Wt Package Price N-(DIMETHYLAMINOPROPYL)-N'- gm, Kg, 03-2348 25952-53-8 C H N · HCl 191.7 On Request ETHYLCARBO- DIIMIDE HCL 8 17 3 Bulk 3-AMINOQUINUCLIDINE gm, Kg, 02-2389 6530-09-2 98% C H N · 2HCl 199.12 On Request DIHYDROCHLORIDE 7 14 2 Bulk gm, Kg, 02-1286 873-51-8 DICHLOROPHENYLBORANE 97% C H BCl 158.82 On Request 6 5 2 Bulk gm, Kg, 03-1780 5346-90-7 ALPHA-D-CELLOBIOSE OCTAACETATE 98% C H O 678.59 On Request 28 38 19 Bulk gm, Kg, 02-1784 3218-02-8 CYCLOHEXANEMETHYLAMINE 98% C H CH NH 113.2 On Request 6 11 2 2 Bulk gm, Kg, 03-1617 451-46-7 ETHYL 4-FLUOROBENZOATE 99% FC H CO C H 168.16 On Request 6 4 2 2 5 Bulk gm, Kg, 03-1764 2251-50-5 PENTAFLUOROBENZOYL CHLORIDE 99% C F COCl 230.52 On Request 6 5 Bulk gm, Kg, 03-1317 771-61-9 PENTAFLUOROPHENOL 99% C F OH 184.06 On Request 6 5 Bulk gm, Kg, 02-1637 3637-61-4 CYCLOPENTANEMETHANOL 98% C H CH OH 100.16 On Request 5 9 2 Bulk gm, Kg, 03-1405 767-69-1 6-BROMOPURINE 98% C H BrN 199.01 On Request 5 3 4 Bulk gm, Kg, 03-2349 920-66-1 1,1,1,3,3,3-HEXAFLUORO-2-PROPANOL 99% (CF ) CHOH 168.04 On Request 3 2 Bulk gm, Kg, 02-2514 513-31-5 2,3-DIBROMOPROPENE, TECH.
    [Show full text]
  • Nicolet Vapor Phase
    Nicolet Vapor Phase Library Listing – 8,654 spectra This library is one the most comprehensive collections of vapor phase FT-IR spectra. It is an invaluable tool for scientist involved in investigations on gas phase materials. The Nicolet Vapor Phase Library contains 8654 FT-IR spectra of compounds measured in gas phase. Most spectra were acquired by the Sigma-Aldrich Co. using product samples. Additional spectra were collected by Hannover University, University of Wurzburg and Thermo Fisher Scientific applications scientists. Spectra were collected using sampling techniques including heated or room temperature gas cell or a heated light-pipe connected to the outlet of a gas chromatograph. Nicolet Vapor Phase Index Compound Name Index Compound Name 8402 ((1- 5457 (-)-8-Phenylmenthol; (-)-(1R,2S,5R)-5- Ethoxycyclopropyl)oxy)trimethylsilane Methyl-2-(2-phenyl-2-propyl)cyc 4408 (+)-1,3-Diphenylbutane 1095 (-)-Carveol, mixture of isomers; p- 4861 (+)-1-Bromo-2,4-diphenylbutane Mentha-6,8-dien-2-ol 2406 (+)-3-(Heptafluorobutyryl)camphor 3628 (-)-Diisopropyl D-tartrate 2405 (+)-3-(Trifluoroacetyl)camphor 1427 (-)-Limonene oxide, cis + trans; (-)-1,2- 281 (+)-3R-Isolimonene, trans-; (1R,4R)- Epoxy-4-isopropenyl-1-methyl (+)-p-Mentha-2,8-diene 1084 (-)-Menthol; [1R-(1a,2b,5a)]-(-)-2- 289 (+)-Camphene; 2,2-Dimethyl-3- Isopropyl-5-methylcyclohexanol methylenebicyclo[2.2.1]heptane 2750 (-)-Menthoxyacetic acid 3627 (+)-Diisopropyl L-tartrate 1096 (-)-Myrtanol, cis-; (1S,2R)-6,6- 2398 (+)-Fenchone; (+)-1,3,3- Dimethylbicyclo[3.1.1]heptane-2-metha
    [Show full text]
  • 31295005227565.Pdf (11.48Mb)
    VIBRATIONAL ANALYSIS AND AB INITIO STUDIES OF PROPIOLIC ACID by EDMUND MOSES NSO NDIP, B.S., M.S. A DISSERTATION IN CHEMISTRY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved August, 1987 ACKNOWLEDGEMENTS My educational experiences at Texas Tech University have been very rewarding and along the way, I have had the good fortune of being associated with a lot of people. Consequently, I am indebted to them and wish to express my sincere gratitude for their help. First of all, I wish to thank Professor R. L Redington, my research mentor, for his ever enduring support, guidance and patience throughout the course of my study. My special thanks also go to Professor R. E. Wilde, Jr. for his friendship throughout the years. To the members of my committee, I say thank you for your patience. My thanks also go to Dr. J. L Mills, Dr. R. D. Larsen, and Dr. Jim Liang and his associates at the University of Utah, Chemistry Department. I do recognize here the goodwill of Prof. Josef MichI of the University of Texas at Austin (formerly of the University of Utah). Financial support was received from Texas Tech University and the Robert Welch Foundation. I must thank the government and people of Cameroon for the scholarships given me throughout the many years of my education. To my kids, Edmund, Jr. and Laura, I say thanks for the smiles throughout the difficult moments that we all shared. I especially thank my wife, Grace Manyi Ndip, for the sacrifices she has made over the years and for her help in preparing parts of this dissertation.
    [Show full text]
  • Application in Solution Peptide Synthesis
    Molecules 2010, 15, 9403-9417; doi:10.3390/molecules15129403 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Synthesis of 2-(4,6-Dimethoxy-1,3,5-triazin-2-yloxyimino) Derivatives: Application in Solution Peptide Synthesis Tarfah I. Al-Warhi 1,*, Hassan M.A. AL-Hazimi 2, Ayman El-Faham 2,3 and Fernando Albericio 4,5,6 1 Women Students-Medical Studies and Sciences Sections, Chemistry Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia 2 Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia 3 Chemistry Department, Faculty of Science, Alexandria University, 426 Ibrahimia, 21321 Alexandria, Egypt 4 Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona 08028, Spain 5 CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona 08028, Spain 6 Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona 08028, Spain * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 29 November 2010; in revised form: 14 December 2010 / Accepted: 15 December 2010 / Published: 20 December 2010 Abstract: A new class of 1,3,5-triazinyloxyimino derivatives were prepared, characterized and tested for reactivity in solution peptide synthesis. The new triazinyloxyimino derivatives failed to activate the carboxyl group during formation of peptide bonds, but gave the corresponding N-triazinyl amino acid derivatives as a major product. The oxyma (ethyl 2-cyano-2-(hydroxyimino)acetate) uronium salt was superior to other uronium salts in terms of racemization, while 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT, 9) gave the best results.
    [Show full text]
  • Coupling Additives 3
    Issue in Honor of Drs. Cynthia A. and Bruce E. Maryanoff ARKIVOC 2010 (viii) 189-250 Evolution of amide bond formation Madeleine M. Joullié and Kenneth M. Lassen Department of Chemistry , University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, U. S. A. E-mail: [email protected] This paper is dedicated to Drs Bruce E. Maryanoff and Cynthia A. Maryanoff for their outstanding contribution to organic chemistry as industrial chemists Abstract The presence of carboxamide groups is found in a large array of biologically important compounds. Peptides and proteins play an important role in modern biology. A key step in peptide production is the formation of the peptide bond, which involves amide bond formation. Chemical synthesis of large peptides by intermolecular coupling of smaller peptides using conventional peptide bond-forming techniques did not realize its potential advantages until recently. Using an approach based on highly specific and efficient chemical ligation of two peptide segments, the two subunits were ligated to form a new peptide bond. Native chemical ligation extended the concept by creating a native peptide bond and providing new approaches to protein engineering. Keywords: Amide bond formation, coupling reagent, peptide, chemical ligation, native chemical ligation Table of Contents Introduction 1. Amide Bond Formation 1.1. Approaches to amide bond formation 1.2. Racemization 2. Coupling Additives 3. Common Coupling Reagents 3.1. Azides 3.2. Active esters 3.3. Acyl halides 3.4. Anhydrides ISSN 1551-7012 Page 189 ©ARKAT USA, Inc. Issue in Honor of Drs. Cynthia A. and Bruce E. Maryanoff ARKIVOC 2010 (viii) 189-250 3.5.
    [Show full text]
  • Evolution of Amide Bond Formation
    Issue in Honor of Drs. Cynthia A. and Bruce E. Maryanoff ARKIVOC 2010 (viii) 189-250 Evolution of amide bond formation Madeleine M. Joullié and Kenneth M. Lassen Department of Chemistry , University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, U. S. A. E-mail: [email protected] This paper is dedicated to Drs Bruce E. Maryanoff and Cynthia A. Maryanoff for their outstanding contribution to organic chemistry as industrial chemists DOI: http://dx.doi.org/10.3998/ark.5550190.0011.816 Abstract The presence of carboxamide groups is found in a large array of biologically important compounds. Peptides and proteins play an important role in modern biology. A key step in peptide production is the formation of the peptide bond, which involves amide bond formation. Chemical synthesis of large peptides by intermolecular coupling of smaller peptides using conventional peptide bond-forming techniques did not realize its potential advantages until recently. Using an approach based on highly specific and efficient chemical ligation of two peptide segments, the two subunits were ligated to form a new peptide bond. Native chemical ligation extended the concept by creating a native peptide bond and providing new approaches to protein engineering. Keywords: Amide bond formation, coupling reagent, peptide, chemical ligation, native chemical ligation Table of Contents Introduction 1. Amide Bond Formation 1.1. Approaches to amide bond formation 1.2. Racemization 2. Coupling Additives 3. Common Coupling Reagents 3.1. Azides 3.2. Active esters ISSN 1551-7012 Page 189 ARKAT USA, Inc. Issue in Honor of Drs. Cynthia A. and Bruce E.
    [Show full text]
  • The Effects of Nacl on the Triple Helix Structure of Collagen and the Reinforcement of Tung Oil-Based Polymers with Collagen Peptides
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Spring 2021 The Effects of NaCl on the Triple Helix Structure of Collagen and the Reinforcement of Tung oil-based Polymers with Collagen Peptides Christopher Dzorkpata Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Materials Chemistry Commons Recommended Citation Dzorkpata, Christopher, "The Effects of NaCl on the Triple Helix Structure of Collagen and the Reinforcement of Tung oil-based Polymers with Collagen Peptides" (2021). Electronic Theses and Dissertations. 2261. https://digitalcommons.georgiasouthern.edu/etd/2261 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. THE EFFECTS OF NaCl ON THE TRIPLE HELIX STRUCTURE OF COLLAGEN, AND THE REINFORCEMENT OF TUNG OIL-BASED POLYMERS WITH COLLAGEN PEPTIDES by CHRISTOPHER DZORKPATA (Under the Direction of Rafael L. Quirino) ABSTRACT In this research, a collagen-reinforced bio-composite from tung oil was prepared using free radical initiation and thermal polymerization, leading to polyolefinic tung oil-based matrix. Two peptides (long and short) were synthesized and their secondary features were analyzed using circular dichroism spectroscopy. After this analysis, the long peptide exhibited more triple helix characteristics as compared to the short peptide. The full protein will ultimately have a better interaction with the tung oil, was used in the synthesis of the collagen-reinforced bio-composite.
    [Show full text]
  • Cross-Linking and Chromatography Derivatization Reagents Ontology
    XLMOD: Cross-linking and chromatography derivatization reagents ontology Authors: Gerhard Mayer1 1 Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, D-44801 Bochum, Germany Abbreviations: CID Collision Induced Dissociation CV Controlled Vocabulary CX-MS Cross-Linking-Mass Spectrometry Da Dalton (atomic mass unit) ESI ElectroSpray Ionization HUPO-PSI HUman Proteome Organization – Proteomics Standards Initiative IUPAC International Union of Pure and Applied Chemistry InChI International Chemical Identifier MS Mass Spectrometry NMR Nuclear Magnetic Resonance SMILES Simplified Molecular Input Line Entry Specification XRC X-Ray Crystallography Summary/Abstract: Mass spectrometry has experienced a rapid development since its first application for protein analysis in the 1980s. While the most common use of mass spectrometry for protein analysis is identification and quantification workflows on peptides (digested from their parent protein), there is also a rapidly growing use of mass spectrometry for “structural proteomics”. One example is the analysis of cross-linked proteins that can give valuable structural information, complementing the information gained by classical protein structure determination methods, useful for integrated methods of structure determination and modeling. For a broad and reproducible application of cross-linking mass spectrometry a standardized representation of cross-linking experimental results is necessary. This paper describes the developing and release of the xlmod ontology from the HUPO-PSI. xlmod contains terms for the description of reagents used in cross-linking experiments and of cross-linker related chemical modifications together with their main properties relevant for planning and performing cross-linking experiments. We also describe how xlmod is used within the new release of HUPO-PSI’s mzIdentML data standard, for reporting the used cross-linking reagents and results in a consistent manner.
    [Show full text]
  • Industrial Application of Coupling Reagents in Peptides
    Industrial application of coupling reagents in peptides OLEG MARDER 1 FERNANDO ALBERICIO 2,3 ABSTRACT In the actual pharmaceutical market, peptides Peptides play a key role in the post-genomic and are not only considered as hormones, as in the PEPTIDES proteomic era. From an industrial basis, the past, but also as active pharmaceutical formation of the amide bond is crucial for ingredients (API), in antibiotics, antiviral and in obtaining an efficient and economic process. other therapeutic areas such as cancer as Mechanisms associated with the different methods immunomodulators and anti-angiogenesis agents, are reviewed. Cl-HOBt as additive and CNS and neurogogical disorders as analgetics HCTU/TCTU are excellent alternatives to the most and anti-obesity drugs, immune disorders for the classic coupling methods. treatment of allergy, asthma and autoimmune disease (1). Furthermore, over 200 new peptide-based drugs are under different stages of development with INTRODUCTION 50% of them under clinical trials and prior to approval (2). Nowadays, peptides represent 1% of There is no doubt that the last years are recognised total API with a market of US$ 300-500 M per year as the renaissance of the peptide world. The and a growth rate of 15-25% annually (1), with the important advances in molecular biology and gene expectation of a 100% increase in the next two technology are bringing significant changes in years when generic and recently approved new biomedical sciences. The elucidation of the human chemical entities enter the market (3). This is genome, followed by advancements in functional reflected by the fact that over ten known bulk genomics and proteomics, will revolutionize our peptide producers and over twenty companies are understanding of the detailed molecular offering custom peptides synthesis and these mechanisms, underlying a broad spectrum of numbers, as well as capacity are growing (4).
    [Show full text]