31295005227565.Pdf (11.48Mb)

Total Page:16

File Type:pdf, Size:1020Kb

31295005227565.Pdf (11.48Mb) VIBRATIONAL ANALYSIS AND AB INITIO STUDIES OF PROPIOLIC ACID by EDMUND MOSES NSO NDIP, B.S., M.S. A DISSERTATION IN CHEMISTRY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved August, 1987 ACKNOWLEDGEMENTS My educational experiences at Texas Tech University have been very rewarding and along the way, I have had the good fortune of being associated with a lot of people. Consequently, I am indebted to them and wish to express my sincere gratitude for their help. First of all, I wish to thank Professor R. L Redington, my research mentor, for his ever enduring support, guidance and patience throughout the course of my study. My special thanks also go to Professor R. E. Wilde, Jr. for his friendship throughout the years. To the members of my committee, I say thank you for your patience. My thanks also go to Dr. J. L Mills, Dr. R. D. Larsen, and Dr. Jim Liang and his associates at the University of Utah, Chemistry Department. I do recognize here the goodwill of Prof. Josef MichI of the University of Texas at Austin (formerly of the University of Utah). Financial support was received from Texas Tech University and the Robert Welch Foundation. I must thank the government and people of Cameroon for the scholarships given me throughout the many years of my education. To my kids, Edmund, Jr. and Laura, I say thanks for the smiles throughout the difficult moments that we all shared. I especially thank my wife, Grace Manyi Ndip, for the sacrifices she has made over the years and for her help in preparing parts of this dissertation. TABLE OF CONTENTS ACKNOWLEDGEMENTS ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SCHEMES I INTRODUCTION TO THE STUDY OF PROPIOLIC ACID Literature Study and Review Propiolic Acid~An Attractive Model Scope of the Present Work II EXPERIMENTAL TECHNIQUES Matrix Isolation Technique Matrix Materials and Properties Chemicals Instrumentation Sample Preparation Sample Deposition III ASSIGNMENT TECHNIQUES IV THEORETICAL BACKGROUND TO MOLECULAR MECHANICS Introduction Fundamentals of the Molecular Mechanics of Propiolic Acid V VIBRATIONAL ASSIGNMENTS: INTERPRETATIONS AND DISCUSSION Introduction Vibrational Assignments and Interpretations Conclusions VI MATRIX EFFECTS Introduction Theories of Matrix Shifts Matrix Materials Crystal Data Matrix Enviromental Effects Results and Discussion Conclusions VII THEORETICAL BACKGROUND TO AB-INITIO CALCULATIONS FOR PROPIOLIC ACID Total Energy Evaluation Basis Sets Evaluation of the Total Molecular Energy Geometry Optimization Force Constant Evaluation and Vibrational Analysis Evaluation of One - Electron Properties Unimolecular Reactivities-Calculation of the Potential Energy Surface Electron Correlation and Configuration Interaction VIII MOLECULAR ORBITAL STUDIES OF PROPIOLIC ACID Computational Details iv Results Further Discussion Overall Conclusions from MO Studies IX OVERALL CONCLUSIONS REFERENCES APPENDICES A1. CALIBRATED VIBRATIONAL FREQUENCIES OF PROPIOLIC ACID (PA) A2. CALIBRATED VIBRATIONAL FREQUENCIES OF DIDEUTERATED PROPIOLIC ACID (PA-D2) A3. CALIBRATED VIBRATIONAL FREQUENCIES OF MONODEUTERATED PROPIOLIC ACID (PA-OD) B1. OBSERVED WATER FREQUENCIES (CM-"") ABSTRACT A vibrational analysis and ab initio studies of propiolic acid have been carried out in a two part study. In the first part, infrared matrix isolation spectra of propiolic acid isolated in solid argon, carbon monoxide, nitrogen and neon at 11-35K have been recorded in the range 4000 - 400 cm"^. Spectra were also recorded for the isotopically labeled O and H isotopomers isolated in argon and nitrogen matrices. Spectra have been interpreted using isotopic splitting patterns, correlations with spectra of related molecules, and MO normal coordinate analysis at the ab initio (6-31G* basis set) level and semi-emperical MINDO / 3 level using standard basis set. Computational studies using MINDO / 3 and GAUSSIAN 82 have been carried out to determine geometries, energies, dipole moments, rotational constants, vibrational frequencies, force constants, and one- electron properties. Comparisons have been made with experimental data to check the accuracy of computed molecular parameters. Various unimolecular decomposition channels have been investigated and possible bimolecular decomposition channels postulated. The computed structures and energies of various intermediates have been determined. The internal rotation (torsional) barrier for hydroxyl group relative to the C-0 bond has been determined at various levels and the conversion from the cis to trans conformer has been identified as a prerequisite for some decomposition channels. VI LIST OF TABLES 1.1 Rotational Constants and Centrifugal Distortion Constants (MHz) 1.2 Moments of Inertia and Hydrogen Atom Coordinates 1.3 Stark Effect Measurements 1.4 Spectroscopic Constants of Propiolic Acid 1.5 lETS Vibrational Data for Chemisorbed Propiolic Acid 1.6 Theoretical Total Energies 2.1 Selected Matrix Properties 2.2 Electrical Properties of Matrix Materials 2.3 Thermal Properties of Matrix Materials 2.4 Site Diameters of Matrix Materials 4.1 Cartesian Coordinates (3N) of Propiolic Acid 4.2 Internal Coordinates (R) 4.3 Internal Symmetry Coordinates for Propiolic Acid 5.1 Fundamentals of Normal Propiolic Acid Compared 5.2 Fundamental Frequencies of Deuteriopropiolic Acid (PA-D2) 5.3 The Fundamental Vibrational Modes of Propiolic Acid 5.4 S/^(HC=C) ^°'' Pi'op'Of^y' Chloride and Propionyl Fluoride 5-5 ^(P-C=C) ^ ^(H-C=C) Ratios for the H-C^C Deformation 5.6 Summary of Assignments for PA-D2 in the 680 - 400 cm-1 Region 5.7 Fundamental Frequencies of Matrix isolated Propiolic Acid Monomers in Argon vii 5.8 Fundamental Frequencies of Monomer Propiolic Acid Isolated in Nitrogen 129 5.9 Fundamentals of Monomer Propiolic Acids Isolated in Carbon Monoxide 130 5.10 Comparison of Observed and MINDO / 3 Calculated Frequencies 131 5.11 Comparison of Calculated versus Observed Frequencies for Ne / PA 132 6.1 Site Diameters 163 6.2 Oxygen-18 Congeners of HCCCOOH 6.3 "• ^O Congeners for Fundamentals of DCCCOOH 6.4 Frequencies for DCCCOOD Oxygen-18 Congeners 6.5 HCCCOOD Oxygen-18 Congeners 6.6 Matrix Shifts for the HCCCOOH Fundamentals in Various Matrices 6.7 Comparison of Matrix Isotope Effects between HCCCOOH and DCCCOOD (VHCCCOOH ' ^DCCCOOD) 6.8 Comparison of Matrix Isotope Effects between HCCCOOH and DCCCOOH (VHCCCOOH " ^DCCCOOH) 6.9 Comparison of Matrix Isotope Effects between DCCCOOH and DCCCOOD (VQCCCOOH " ^DCCCOOD) 6.10 Comparison of Matrix Isotope Effects between HCCCOOH and HCCCOOD (VHCCCOOH " ^HCCCOOD) 6.11 Comparison of Matrix Isotope Effects between HCCCOOD and DCCCOOD (VHCCCOOD " ^DCCCOOD) 7.1 One - Electron properties 8.1 Geometry of Cis Propiolic Acid, Structure (I) 8.2 Geometry ofTrans Propiolic Acid, Structure (II) 8.3 Dipole Moments of Cis Propiolic Acid, Structure (I) viii 8.4 Dipole Moments of Trans Propiolic Acid, Structure (II) 218 8.5 Rotational Parameters [(Calculated versus Experimental (GHz))] 219 8.6 Moments of Inertia 220 8.7 Cis / Trans Relative Stabilization Energies 221 8.8 Symmetry Coordinates of Propiolic Acid 226 8.9 Computed Diagonal Force Constants for Stnjcture (I) 227 8.10 Deviations in Calculated Diagonal Force Constants 228 8.11a Force Constants for Propiolic Acid (cis conformer - 8.11b 6-31G*) 229 8.11c Force Constants for Propiolic Acid (cis): 6-31G 230 8.12 Force Constants for Propiolic Acid (trans): 6-31G 231 4-31G Diagonal Force Constants for the Carboxyl 8.13 Group Modes Compared 234 Calculated Harmonic Frequencies (cm"^) for Cis Propiolic Acid, Structure (I) 235 8.14 Calculated Harmonic Frequencies (cm-1) for Trans Propiolic Acid, Stmcture (II) 236 8.15 Thermochemistry from Frequency Calculations for Cis Propiolic Acid, Structure (I) 239 8.16 Thermochemistry from Frequency Calculation for Trans Propiolic Acid, Structure (II) 240 8.17 Stabilization Energies and the Effects of Electron Correlation (kcal / mol.) 242 8.18 Total Atomic Charges for Propiolic Acid cis Propiolic Acid 243 8.19 ST0-3G Optimized Parameters for Cis PA Inversion to Trans PA 245 8.20 3-21G Optimized Parameters for Propiolic Acid Inversion Barrier 246 ix 8.21 6-31G* Optimized Parameters for Propiolic Acid Inversion Barrier 247 8.22 Molecular Parameters for Description of Intrinsic Reaction Coordinate 259 8.23 Molecular Parameters for Local Minima^nd Maxima on Reaction Coordinate (RC = Co - Hy) at the 6-31GSCF level 263 8.24a Calculated Harmonic Frequencies of (V) 267 8.24b Geometry, Energy, Dipole Moment of (V) at 6-31G level 268 8.25 Optimized Geometries and Corresponding Energies for HCCHCOO (T^) at 6-31G SCF level 275 8.26 Decomposition of trans - HCCHCOO (T-|) Complex, 4^2 277 8.27 Decomposition of cis - HCCHCOO (T-|) 284 8.28 Optimized Geometries and Energies for Decarbonylation Reaction Intermediate(VII) 290 8.29 Molecular Parameters for Stationary Points on Reaction Coordinate at the 6-31G SCF level 291 8.30 Harmonic Frequencies (cm"^) and Thermochemistry of the Metastable Reaction Intermediate (VII) 294 8.31 Comparison of Atomic Charges for Decarbonylation Intermediates at the 6-31G SCF level 295 LIST OF FIGURES 1.1 Microwave Model Structure of Propiolic Acid 7 2.1 Schematic Diagram of a Matrix Isolation Experiment 23 2.2 Sample Preparation Setup 30 2.3 ^®0-lsotope Exchange Reaction Vessel 32 2.4 Sample Deposition Setup 34 3.1 Effects of 50% '^ ^O-Enrichment in Oxygen Containing Molecule with Equivalent Oxygen Atoms 39 5.1 The Two Possible Structures of Propiolic
Recommended publications
  • Interstellar Ices and Radiation-Induced Oxidations of Alcohols
    The Astrophysical Journal, 857:89 (8pp), 2018 April 20 https://doi.org/10.3847/1538-4357/aab708 © 2018. The American Astronomical Society. All rights reserved. Interstellar Ices and Radiation-induced Oxidations of Alcohols R. L. Hudson and M. H. Moore Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771, USA; [email protected] Received 2017 May 2; revised 2018 March 8; accepted 2018 March 9; published 2018 April 18 Abstract Infrared spectra of ices containing alcohols that are known or potential interstellar molecules are examined before and after irradiation with 1 MeV protons at ∼20 K. The low-temperature oxidation (hydrogen loss) of six alcohols is followed, and conclusions are drawn based on the results. The formation of reaction products is discussed in terms of the literature on the radiation chemistry of alcohols and a systematic variation in their structures. The results from these new laboratory measurements are then applied to a recent study of propargyl alcohol. Connections are drawn between known interstellar molecules, and several new reaction products in interstellar ices are predicted. Key words: astrochemistry – infrared: ISM – ISM: molecules – molecular data – molecular processes 1. Introduction 668 cm−1 was produced in solid propargyl alcohol’sIR spectrum after the compound was irradiated with 2 keV Interstellar ices are now recognized as an important comp- electrons (Sivaraman et al. 2015, hereafter SMSB from the onent of the interstellar medium (ISM). The results of multiple coauthors final initials). That IR peak was assigned to benzene infrared (IR) surveys have led to over a dozen assignments of (C H ), which was said “to be the major product from spectral features to molecular ices, with the more abundant 6 6 propargyl alcohol irradiation.” However, a full mid-IR interstellar ices being H O, CO, and CO (Boogert et al.
    [Show full text]
  • Aldrich Vapor
    Aldrich Vapor Library Listing – 6,611 spectra This library is an ideal tool for investigator using FT-IR to analyze gas phase materials. It contains gas phase spectra collected by Aldrich using a GC-IR interface to ensure chromatographically pure samples. The Aldrich FT-IR Vapor Phase Library contains 6,611 gas phase FT-IR spectra collected by Aldrich Chemical Company using a GC interface. The library includes compound name, molecular formula, CAS (Chemical Abstract Service) registry number, Aldrich catalog number, and page number in the Aldrich Library of FT-IR Spectra, Edition 1, Volume 3, Vapor-Phase. Aldrich Vapor Index Compound Name Index Compound Name 6417 ((1- 3495 (1,2-Dibromoethyl)benzene; Styrene Ethoxycyclopropyl)oxy)trimethylsilane dibromide 2081 (+)-3-(Heptafluorobutyryl)camphor 3494 (1-Bromoethyl)benzene; 1-Phenylethyl 2080 (+)-3-(Trifluoroacetyl)camphor bromide 262 (+)-Camphene; 2,2-Dimethyl-3- 6410 (1-Hydroxyallyl)trimethylsilane methylenebicyclo[2.2.1]heptane 6605 (1-Methyl-2,4-cyclopentadien-1- 2828 (+)-Diisopropyl L-tartrate yl)manganese tricarbonyl 947 (+)-Isomenthol; [1S-(1a,2b,5b)]-2- 6250 (1-Propynyl)benzene; 1-Phenylpropyne Isopropyl-5-methylcyclohexano 2079 (1R)-(+)-3-Bromocamphor, endo- 1230 (+)-Limonene oxide, cis + trans; (+)-1,2- 2077 (1R)-(+)-Camphor; (1R)-(+)-1,7,7- Epoxy-4-isopropenyl-1- Trimethylbicyclo[2.2.1]heptan- 317 (+)-Longifolene; (1S)-8-Methylene- 976 (1R)-(+)-Fenchyl alcohol, endo- 3,3,7-trimethyltricyclo[5.4.0 2074 (1R)-(+)-Nopinone; (1R)-(+)-6,6- 949 (+)-Menthol; [1S-(1a,2b,5a)]-(+)-2- Dimethylbicyclo[3.1.1]heptan-2-
    [Show full text]
  • Accurate Enthalpies of Formation of Astromolecules: Energy, Stability and Abundance
    Accurate Enthalpies of Formation of Astromolecules: Energy, Stability and Abundance Emmanuel E. Etim and Elangannan Arunan* Inorganic and Physical Chemistry Department, Indian Institute of Science Bangalore, India-560012 *email: [email protected] ABSTRACT: Accurate enthalpies of formation are reported for known and potential astromolecules using high level ab initio quantum chemical calculations. A total of 130 molecules comprising of 31 isomeric groups and 24 cyanide/isocyanide pairs with atoms ranging from 3 to 12 have been considered. The results show an interesting, surprisingly not well explored, relationship between energy, stability and abundance (ESA) existing among these molecules. Among the isomeric species, isomers with lower enthalpies of formation are more easily observed in the interstellar medium compared to their counterparts with higher enthalpies of formation. Available data in literature confirm the high abundance of the most stable isomer over other isomers in the different groups considered. Potential for interstellar hydrogen bonding accounts for the few exceptions observed. Thus, in general, it suffices to say that the interstellar abundances of related species are directly proportional to their stabilities. The immediate consequences of this relationship in addressing some of the whys and wherefores among astromolecules and in predicting some possible candidates for future astronomical observations are discussed. Our comprehensive results on 130 molecules indicate that the available experimental enthalpy
    [Show full text]
  • Exhaustive Product Analysis of Three Benzene Discharges by Microwave Spectroscopy Michael C
    pubs.acs.org/JPCA Article Exhaustive Product Analysis of Three Benzene Discharges by Microwave Spectroscopy Michael C. McCarthy,* Kin Long Kelvin Lee, P. Brandon Carroll, Jessica P. Porterfield, P. Bryan Changala, James H. Thorpe, and John F. Stanton Cite This: J. Phys. Chem. A 2020, 124, 5170−5181 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Using chirped and cavity microwave spectroscopies, automated double resonance, new high-speed fitting and deep learning algorithms, and large databases of computed structures, the discharge products of benzene alone, or in combination with molecular oxygen or nitrogen, have been exhaustively characterized between 6.5 and 26 GHz. In total, more than 3300 spectral features were observed; 89% of these, accounting for 97% of the total intensity, have now been assigned to 152 distinct chemical species and 60 of their variants (i.e., isotopic species and vibrationally excited states). Roughly 50 of the products are entirely new or poorly characterized at high resolution, including many heavier by mass than the precursor benzene. These findings provide direct evidence for a rich architecture of two- and three-dimensional carbon and indicate that benzene growth, particularly the formation of ring−chain molecules, occurs facilely under our experimental conditions. The present analysis also illustrates the utility of microwave spectroscopy as a precision tool for complex mixture analysis, irrespective of whether the rotational spectrum of a product species is known a priori or not. From this large quantity of data, for example, it is possible to determine with confidence the relative abundances of different product masses, but more importantly the relative abundances of different isomers with the same mass.
    [Show full text]
  • One-Step Synthesis of Pyridines and Dihydro- Pyridines in a Continuous Flow Microwave Reactor
    One-step synthesis of pyridines and dihydro- pyridines in a continuous flow microwave reactor Mark C. Bagley*1, Vincenzo Fusillo2, Robert L. Jenkins2, M. Caterina Lubinu2 and Christopher Mason3 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2013, 9, 1957–1968. 1Department of Chemistry, School of Life Sciences, University of doi:10.3762/bjoc.9.232 Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK, 2School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, Received: 05 July 2013 CF10 3AT, UK and 3CEM Microwave Technology Ltd, 2 Middle Slade, Accepted: 11 September 2013 Buckingham, MK18 1WA, UK Published: 30 September 2013 Email: This article is part of the Thematic Series "Chemistry in flow systems III". Mark C. Bagley* - [email protected] Guest Editor: A. Kirschning * Corresponding author © 2013 Bagley et al; licensee Beilstein-Institut. Keywords: License and terms: see end of document. Bohlmann–Rahtz; continuous flow processing; ethynyl ketones; flow chemistry; Hantzsch dihydropyridine synthesis; heterocycles; microwave synthesis; multicomponent reactions; pyridine synthesis Abstract The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing.
    [Show full text]
  • The Interactions and Reactions of Atoms and Molecules on the Surfaces of Model Interstellar Dust Grains
    The Interactions and Reactions of Atoms and Molecules on the Surfaces of Model Interstellar Dust Grains A thesis submitted for the degree of Doctor of Philosophy Helen Jessica Kimber Department of Chemistry University College London 2016 -I, Helen Jessica Kimber, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed, i Abstract The elemental composition of the known universe comprises almost exclusively light atoms (~99.9% hydrogen and helium). However, to date, close to 200 different molecules have been detected in the interstellar medium (ISM) where their distribution is far from uniform. The vast majority of these molecules are contained within vast clouds of gas and dust referred to as interstellar clouds. Within these interstellar clouds, many of the molecules present are formed via gas-phase ion-neutral reactions. However, there are several molecules for which known gas-phase kinetics cannot account for observed gas-phase abundances. As a result, reactions occurring on the surface of interstellar dust grains are invoked to account for the observed abundances of some of these molecules. This thesis presents results of experimental investigations into the interaction and reactions of atoms and molecules on the surface of model interstellar dust grains. Chapters three and four present results for the reaction of (3P)O on molecular ices. Specifically, the reaction of (3P)O and propyne or acrylonitrile. After a one hour dosing period, temperature programmed desorption (TPD), coupled with time-of-flight mass spectrometry (TOFMS), are used to identify (3P)O addition products.
    [Show full text]
  • Reduced Pressure Oxidation of Propargyl Alcohol to Aldehyde; Propynal
    Reduced pressure oxidation of propargyl alcohol to aldehyde; Propynal Nov 15, 2013 John MacMillan ([email protected]) Chemicals Used Propargyl alcohol, 99%, Aldrich, P5,080-3, redistilled Chromium (VI) oxide, 99+%, Aldrich, 20,782-9 Sodium Chloride, 99%*%, A.C.S. reagent, Aldrich, 22,351-4 Sulfuric acid, 95-98%, A.C.S. Reagent, Aldrich, 25.810-5 Procedure This material was prepared by a modification of the Organic Synthesis procedure. See lead reference. To a 2 liter three neck flask, equipped with a mechanical stirrer, and ice/salt bath was charged 120 g ((2.14 mole) redistilled propargyl alcohol and 240 ml of water. To this mixture was then added a cooled solution of 135 ml concentrated sulfuric acid in 150 ml of water. A "Y" tube was inserted in one neck of the flask and a pressure equalized dropping funnel was placed in one neck of the "Y" tube. The other neck of the "Y" tube lead to two traps, in series, which in turn were connected to a McLeod pressure gage and vacuum pump. The third neck of the flask was connected to a fine capillary which served as a nitrogen inlet. A cooled solution of 210 g chromium trioxide, 200 ml of water and 100 ml concentrated sulfuric acid was then added to the dropping funnel. One trap was cooled to ~ - 10° with an ice/salt mixture and the second trap was cooled with a dry ice/acetone bath to ~ -78°C. The exterior of the 2 liter flask was cooled to ~ - 10°C with ice/salt.
    [Show full text]
  • Supplement of Measurement Report: Important Contributions of Oxygenated Compounds to Emissions and Chemistry of Volatile Organic Compounds in Urban Air
    Supplement of Atmos. Chem. Phys., 20, 14769–14785, 2020 https://doi.org/10.5194/acp-20-14769-2020-supplement © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Measurement report: Important contributions of oxygenated compounds to emissions and chemistry of volatile organic compounds in urban air Caihong Wu et al. Correspondence to: Bin Yuan ([email protected]) and Min Shao ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. 24 1. Sensitivity of VOCs in PTR-MS 25 Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) allows 26 the detection of a large number of VOCs in air through proton-transfer reaction with 27 H3O+ reagent ions and detection by a mass spectrometer. Measurement sensitivities can 28 be experimentally determined using calibration gases, but only the sensitivity of few 29 species can be obtained. For other species, the sensitivity can be calculated using the 30 rate constant for the proton-transfer reaction. 31 In PTR-ToF-MS, VOCs that have higher proton affinity than water will be ionized + 32 via proton transfer with H3O to produce the product ions. + + 33 VOC+H3O → VOC·H +H2O 34 According to the reaction rate equation, the concentration of VOC•H can be 35 calculated as follows: + 36 VOC·H=H3O 0(1-exp(-[VOC]∆)) + + 37 Where k is the reaction rate constant, [H3O ]0 is the signal of H3O ions before 38 reaction, [VOC] is the number concentration of the VOC in the drift tube, and Δt is the + 39 reaction time for H3O traversing the drift tube.
    [Show full text]
  • Speciality Chemicals
    Catalog – 2019 (Specialty Chemicals, Reagents, Catalysts) To Place an Order / to Request a Quote Please send e-mail to: [email protected] © Anvia Chemicals Anvia Chemicals Online Catalog Catalog CAS Name Purity Mol. Formula Mol Wt Package Price N-(DIMETHYLAMINOPROPYL)-N'- gm, Kg, 03-2348 25952-53-8 C H N · HCl 191.7 On Request ETHYLCARBO- DIIMIDE HCL 8 17 3 Bulk 3-AMINOQUINUCLIDINE gm, Kg, 02-2389 6530-09-2 98% C H N · 2HCl 199.12 On Request DIHYDROCHLORIDE 7 14 2 Bulk gm, Kg, 02-1286 873-51-8 DICHLOROPHENYLBORANE 97% C H BCl 158.82 On Request 6 5 2 Bulk gm, Kg, 03-1780 5346-90-7 ALPHA-D-CELLOBIOSE OCTAACETATE 98% C H O 678.59 On Request 28 38 19 Bulk gm, Kg, 02-1784 3218-02-8 CYCLOHEXANEMETHYLAMINE 98% C H CH NH 113.2 On Request 6 11 2 2 Bulk gm, Kg, 03-1617 451-46-7 ETHYL 4-FLUOROBENZOATE 99% FC H CO C H 168.16 On Request 6 4 2 2 5 Bulk gm, Kg, 03-1764 2251-50-5 PENTAFLUOROBENZOYL CHLORIDE 99% C F COCl 230.52 On Request 6 5 Bulk gm, Kg, 03-1317 771-61-9 PENTAFLUOROPHENOL 99% C F OH 184.06 On Request 6 5 Bulk gm, Kg, 02-1637 3637-61-4 CYCLOPENTANEMETHANOL 98% C H CH OH 100.16 On Request 5 9 2 Bulk gm, Kg, 03-1405 767-69-1 6-BROMOPURINE 98% C H BrN 199.01 On Request 5 3 4 Bulk gm, Kg, 03-2349 920-66-1 1,1,1,3,3,3-HEXAFLUORO-2-PROPANOL 99% (CF ) CHOH 168.04 On Request 3 2 Bulk gm, Kg, 02-2514 513-31-5 2,3-DIBROMOPROPENE, TECH.
    [Show full text]
  • Signature Redacted Signature of the Author - Mark N
    PHOTOPHYSICS OF INFRARED MULTIPHOTON ABSORPTION BY THIOPHOSGENE by MARK NELSON SPENCER B.A., University of Pennsylvania (1978) SUBMITTED TO THE DEPARTMENT OF CHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY DECEMBER 1982 c Massachusetts Institute of Technology Signature redacted Signature of the Author - Mark N. Spencer Signature redacted Department of Chemistry Certified by Jeffrey I. Steinfeld Thesis Supervisor Signature redacted Accepted by Glenn A. Berchtold Chairman, Depa rtmental Committee ArchJWjg MASSACFWCTTS INSTITUR OF CNOLO9y MAR 3 1 1983 LIBRARIES This doctoral thesis has been examined by a Committee of the Department of Chemistry as follows: redacted Professor Robert J. Silbey ,Signature Chairman Professor Jeffrey I. Steinfeld __ ___ __ __ ___ __ __ Signature redactedF-Thesis Supervisor Signature redacted Professor Robert W. Field, 2 PHOTOPHYSICS OF INFRARED MULTIPHOTON ABSORPTION BY THIOPHOSGENE by MARK NELSON SPENCER Submitted to the Department of Chemistry on December , 1982 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Chemistry ABSTRACT Infrared-visible double resonance experiments were done on thiophosgene under collisionless conditions and in a bulb to determine the dynamics of infrared multiphoton absorption in its sparse density of states region. In the absence of collisions thiophosgene absorbs at all excitation frequencies. Measurements of the ground state depletion as a function of C0 2 laser frequency do not correlate at all with the conventional infrared absorption spectrum. At excitation frequencies coincident with the v 4 overtone, no population build-up is observed in excited states of the 2v 4 manifold.
    [Show full text]
  • Nicolet Vapor Phase
    Nicolet Vapor Phase Library Listing – 8,654 spectra This library is one the most comprehensive collections of vapor phase FT-IR spectra. It is an invaluable tool for scientist involved in investigations on gas phase materials. The Nicolet Vapor Phase Library contains 8654 FT-IR spectra of compounds measured in gas phase. Most spectra were acquired by the Sigma-Aldrich Co. using product samples. Additional spectra were collected by Hannover University, University of Wurzburg and Thermo Fisher Scientific applications scientists. Spectra were collected using sampling techniques including heated or room temperature gas cell or a heated light-pipe connected to the outlet of a gas chromatograph. Nicolet Vapor Phase Index Compound Name Index Compound Name 8402 ((1- 5457 (-)-8-Phenylmenthol; (-)-(1R,2S,5R)-5- Ethoxycyclopropyl)oxy)trimethylsilane Methyl-2-(2-phenyl-2-propyl)cyc 4408 (+)-1,3-Diphenylbutane 1095 (-)-Carveol, mixture of isomers; p- 4861 (+)-1-Bromo-2,4-diphenylbutane Mentha-6,8-dien-2-ol 2406 (+)-3-(Heptafluorobutyryl)camphor 3628 (-)-Diisopropyl D-tartrate 2405 (+)-3-(Trifluoroacetyl)camphor 1427 (-)-Limonene oxide, cis + trans; (-)-1,2- 281 (+)-3R-Isolimonene, trans-; (1R,4R)- Epoxy-4-isopropenyl-1-methyl (+)-p-Mentha-2,8-diene 1084 (-)-Menthol; [1R-(1a,2b,5a)]-(-)-2- 289 (+)-Camphene; 2,2-Dimethyl-3- Isopropyl-5-methylcyclohexanol methylenebicyclo[2.2.1]heptane 2750 (-)-Menthoxyacetic acid 3627 (+)-Diisopropyl L-tartrate 1096 (-)-Myrtanol, cis-; (1S,2R)-6,6- 2398 (+)-Fenchone; (+)-1,3,3- Dimethylbicyclo[3.1.1]heptane-2-metha
    [Show full text]
  • 27 May 2021 Given by Tercero Et Al
    Astronomy & Astrophysics manuscript no. aa41297 ©ESO 2021 May 28, 2021 Letter to the Editor The sulphur saga in TMC-1: Discovery of HCSCN and HCSCCH ? J. Cernicharo1, C. Cabezas1, Y. Endo2, M. Agúndez1, B. Tercero3; 4, J. R. Pardo1, N. Marcelino1, P. de Vicente3 1 Grupo de Astrofísica Molecular, Instituto de Física Fundamental (IFF-CSIC), C/ Serrano 121, 28006 Madrid, Spain e-mail: [email protected],[email protected] 2 Department of Applied Chemistry, Science Building II, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan 3 Centro de Desarrollos Tecnológicos, Observatorio de Yebes (IGN), 19141 Yebes, Guadalajara, Spain 4 Observatorio Astronómico Nacional (IGN), C/Alfonso XII, 3, 28014, Madrid, Spain Received; accepted ABSTRACT We report the detection, for the first time in space, of cyano thioformaldehyde (HCSCN) and propynethial (HCSCCH) towards the starless core TMC-1. Cyano thioformaldehyde presents a series of prominent a- and b-type lines, which are the strongest previously unassigned features in our Q-band line survey of TMC-1. Remarkably, HCSCN is four times more abundant than cyano formaldehyde (HCOCN). On the other hand, HCSCCH is five times less abundant than propynal (HCOCCH). Surprisingly, we find an abundance ratio HCSCCH/HCSCN of ∼ 0.25, in contrast with most other ethynyl-cyanide pairs of molecules for which the CCH-bearing species is more abundant than the CN-bearing one. We discuss the formation of these molecules in terms of neutral-neutral reactions of S atoms with CH2CCH and CH2CN radicals as well as of CCH and CN radicals with H2CS.
    [Show full text]