Exhaustive Product Analysis of Three Benzene Discharges by Microwave Spectroscopy Michael C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interstellar Ices and Radiation-Induced Oxidations of Alcohols
The Astrophysical Journal, 857:89 (8pp), 2018 April 20 https://doi.org/10.3847/1538-4357/aab708 © 2018. The American Astronomical Society. All rights reserved. Interstellar Ices and Radiation-induced Oxidations of Alcohols R. L. Hudson and M. H. Moore Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771, USA; [email protected] Received 2017 May 2; revised 2018 March 8; accepted 2018 March 9; published 2018 April 18 Abstract Infrared spectra of ices containing alcohols that are known or potential interstellar molecules are examined before and after irradiation with 1 MeV protons at ∼20 K. The low-temperature oxidation (hydrogen loss) of six alcohols is followed, and conclusions are drawn based on the results. The formation of reaction products is discussed in terms of the literature on the radiation chemistry of alcohols and a systematic variation in their structures. The results from these new laboratory measurements are then applied to a recent study of propargyl alcohol. Connections are drawn between known interstellar molecules, and several new reaction products in interstellar ices are predicted. Key words: astrochemistry – infrared: ISM – ISM: molecules – molecular data – molecular processes 1. Introduction 668 cm−1 was produced in solid propargyl alcohol’sIR spectrum after the compound was irradiated with 2 keV Interstellar ices are now recognized as an important comp- electrons (Sivaraman et al. 2015, hereafter SMSB from the onent of the interstellar medium (ISM). The results of multiple coauthors final initials). That IR peak was assigned to benzene infrared (IR) surveys have led to over a dozen assignments of (C H ), which was said “to be the major product from spectral features to molecular ices, with the more abundant 6 6 propargyl alcohol irradiation.” However, a full mid-IR interstellar ices being H O, CO, and CO (Boogert et al. -
The Observed Chemical Structure of L1544? ?? S
Astronomy & Astrophysics manuscript no. Maps_L1544 c ESO 2017 July 20, 2017 The observed chemical structure of L1544? ?? S. Spezzano, P. Caselli, L. Bizzocchi, B. M. Giuliano, and V. Lattanzi Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748 Garching, Germany July 20, 2017 ABSTRACT Context. Prior to star formation, pre-stellar cores accumulate matter towards the centre. As a consequence, their central density increases while the temperature decreases. Understanding the evolution of the chemistry and physics in this early phase is crucial to study the processes governing the formation of a star. Aims. We aim at studying the chemical differentiation of a prototypical pre-stellar core, L1544, by detailed molecular maps. In contrast with single pointing observations, we performed a deep study on the dependencies of chemistry on physical and external conditions. Methods. We present the emission maps of 39 different molecular transitions belonging to 22 different molecules in the central 6.25 arcmin2 of L1544. We classified our sample in five families, depending on the location of their emission peaks within the core. Furthermore, to systematically study the correlations among different molecules, we have performed the principal component analysis (PCA) on the integrated emission maps. The PCA allows us to reduce the amount of variables in our dataset. Finally, we compare the maps of the first three principal components with the H2 column density map, and the Tdust map of the core. Results. The results of our qualitative analysis is the classification of the molecules in our dataset in the following groups: (i) the c-C3H2 family (carbon chain molecules like C3H and CCS), (ii) the dust peak family (nitrogen-bearing species + like N2H ), (iii) the methanol peak family (oxygen-bearing molecules like methanol, SO and SO2), (iv) the HNCO peak family (HNCO, propyne and its deuterated isotopologues). -
Accurate Enthalpies of Formation of Astromolecules: Energy, Stability and Abundance
Accurate Enthalpies of Formation of Astromolecules: Energy, Stability and Abundance Emmanuel E. Etim and Elangannan Arunan* Inorganic and Physical Chemistry Department, Indian Institute of Science Bangalore, India-560012 *email: [email protected] ABSTRACT: Accurate enthalpies of formation are reported for known and potential astromolecules using high level ab initio quantum chemical calculations. A total of 130 molecules comprising of 31 isomeric groups and 24 cyanide/isocyanide pairs with atoms ranging from 3 to 12 have been considered. The results show an interesting, surprisingly not well explored, relationship between energy, stability and abundance (ESA) existing among these molecules. Among the isomeric species, isomers with lower enthalpies of formation are more easily observed in the interstellar medium compared to their counterparts with higher enthalpies of formation. Available data in literature confirm the high abundance of the most stable isomer over other isomers in the different groups considered. Potential for interstellar hydrogen bonding accounts for the few exceptions observed. Thus, in general, it suffices to say that the interstellar abundances of related species are directly proportional to their stabilities. The immediate consequences of this relationship in addressing some of the whys and wherefores among astromolecules and in predicting some possible candidates for future astronomical observations are discussed. Our comprehensive results on 130 molecules indicate that the available experimental enthalpy -
One-Step Synthesis of Pyridines and Dihydro- Pyridines in a Continuous Flow Microwave Reactor
One-step synthesis of pyridines and dihydro- pyridines in a continuous flow microwave reactor Mark C. Bagley*1, Vincenzo Fusillo2, Robert L. Jenkins2, M. Caterina Lubinu2 and Christopher Mason3 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2013, 9, 1957–1968. 1Department of Chemistry, School of Life Sciences, University of doi:10.3762/bjoc.9.232 Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK, 2School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, Received: 05 July 2013 CF10 3AT, UK and 3CEM Microwave Technology Ltd, 2 Middle Slade, Accepted: 11 September 2013 Buckingham, MK18 1WA, UK Published: 30 September 2013 Email: This article is part of the Thematic Series "Chemistry in flow systems III". Mark C. Bagley* - [email protected] Guest Editor: A. Kirschning * Corresponding author © 2013 Bagley et al; licensee Beilstein-Institut. Keywords: License and terms: see end of document. Bohlmann–Rahtz; continuous flow processing; ethynyl ketones; flow chemistry; Hantzsch dihydropyridine synthesis; heterocycles; microwave synthesis; multicomponent reactions; pyridine synthesis Abstract The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing. -
The Interactions and Reactions of Atoms and Molecules on the Surfaces of Model Interstellar Dust Grains
The Interactions and Reactions of Atoms and Molecules on the Surfaces of Model Interstellar Dust Grains A thesis submitted for the degree of Doctor of Philosophy Helen Jessica Kimber Department of Chemistry University College London 2016 -I, Helen Jessica Kimber, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed, i Abstract The elemental composition of the known universe comprises almost exclusively light atoms (~99.9% hydrogen and helium). However, to date, close to 200 different molecules have been detected in the interstellar medium (ISM) where their distribution is far from uniform. The vast majority of these molecules are contained within vast clouds of gas and dust referred to as interstellar clouds. Within these interstellar clouds, many of the molecules present are formed via gas-phase ion-neutral reactions. However, there are several molecules for which known gas-phase kinetics cannot account for observed gas-phase abundances. As a result, reactions occurring on the surface of interstellar dust grains are invoked to account for the observed abundances of some of these molecules. This thesis presents results of experimental investigations into the interaction and reactions of atoms and molecules on the surface of model interstellar dust grains. Chapters three and four present results for the reaction of (3P)O on molecular ices. Specifically, the reaction of (3P)O and propyne or acrylonitrile. After a one hour dosing period, temperature programmed desorption (TPD), coupled with time-of-flight mass spectrometry (TOFMS), are used to identify (3P)O addition products. -
A Study of the C3H2 Isomers and Isotopologues: first Interstellar Detection of HDCCC?
A&A 586, A110 (2016) Astronomy DOI: 10.1051/0004-6361/201527460 & c ESO 2016 Astrophysics A study of the C3H2 isomers and isotopologues: first interstellar detection of HDCCC? S. Spezzano1;3, H. Gupta2;??, S. Brünken3, C. A. Gottlieb4, P. Caselli1, K. M. Menten5, H. S. P. Müller3, L. Bizzocchi1, P. Schilke3, M. C. McCarthy4, and S. Schlemmer3 1 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching, Germany e-mail: [email protected] 2 California Institute of Technology, 770 S. Wilson Ave., M/C 100-22, Pasadena, CA 91125, USA 3 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany 4 Harvard-Smithsonian Center for Astrophysics, and School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA 5 Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany Received 28 September 2015 / Accepted 12 November 2015 ABSTRACT The partially deuterated linear isomer HDCCC of the ubiquitous cyclic carbene (c-C3H2) was observed in the starless cores TMC- 1C and L1544 at 96.9 GHz, and a confirming line was observed in TMC-1 at 19.38 GHz. To aid the identification in these narrow line sources, four centimetre-wave rotational transitions (two in the previously reported Ka = 0 ladder and two new ones in the Ka = 1 ladder) and 23 transitions in the millimetre band between 96 and 272 GHz were measured in high-resolution laboratory spectra. Ten spectroscopic constants in a standard asymmetric top Hamiltonian allow the main transitions of astronomical interest −1 in the Ka ≤ 3 rotational ladders to be calculated to within 0.1 km s in radial velocity up to 400 GHz. -
Gas Phase Synthesis of Interstellar Cumulenes. Mass Spectrometric and Theoretical Studies."
rl ì 6. .B,1l thesis titled: "Gas Phase Synthesis of Interstellar Cumulenes. Mass Spectrometric and Theoretical studies." submitted for the Degree of Doctor of Philosophy (Ph.D') by Stephen J. Blanksby B.Sc.(Hons,) from the Department of ChemistrY The University of Adelaide Cì UCE April 1999 Preface Contents Title page (i) Contents (ii) Abstract (v) Statement of OriginalitY (vi) Acknowledgments (vii) List of Figures (ix) Phase" I Chapter 1. "The Generation and Characterisation of Ions in the Gas 1.I Abstract I 1.II Generating ions 2 t0 l.ru The Mass SPectrometer t2 1.IV Characterisation of Ions 1.V Fragmentation Behaviour 22 Chapter 2 "Theoretical Methods for the Determination of Structure and 26 Energetics" 26 2,7 Abstract 27 2.IT Molecular Orbital Theory JJ 2.TII Density Functional Theory 2.rv Calculation of Molecular Properties 34 2.V Unimolecular Reactions 35 Chapter 3 "Interstellar and Circumstellar Cumulenes. Mass Spectrometric and 38 Related Studies" 3.I Abstract 38 3.II Interstellar Cumulenes 39 3.III Generation of Interstellar Cumulenes by Mass Spectrometry 46 3.IV Summary 59 Preface Chapter 4 "Generation of Two Isomers of C5H from the Corresponding Anions' 61 ATheoreticallyMotivatedMassSpectrometricStudy.'. 6l 4.r Abstract 62 4.rl Introduction 66 4.III Results and Discussion 83 4.IV Conclusions 84 4.V Experimental Section 89 4.VI Appendices 92 Chapter 5 "Gas Phase Syntheses of Three Isomeric CSHZ Radical Anions and Their Elusive Neutrals. A Joint Experimental and Theoretical Study." 92 5.I Abstract 93 5.II Introduction 95 5.ru Results and Discussion t12 5.IV Conclusions 113 5.V Experimental Section ttl 5.VI Appendices t20 Chapter 6 "Gas Phase Syntheses of Three Isomeric ClHz Radical Anions and Their Elusive Neutrals. -
On the Road to Carbene and Carbyne Complexes
ON THE ROAD TO CARBENE AND CARBYNE COMPLEXES Nobel Lecture, 11 December 1973 by ERNST OTTO FISCHER Inorganic Chemistry Laboratory, Technical University, Munich, Federal Republic of Germany Translation from the German text INTRODUCTION In the year 1960, I had the honour of giving a talk at this university* about sandwich complexes on which we were working at that time. I think I do not have to repeat the results of those investigations today. I would like to talk instead about a field of research in which we have been intensely interested in recent years: namely, the field of carbene complexes and, more recently, carbyne complexes. If we substitute one of the hydrogen atoms in a hydrocarbon of the alkane type - for example, ethane - by a metal atom, which can of course bind many more ligands, we arrive at an organometallic compound in which the organic radical is bound to the metal atom by a σ-bond (Fig. la). The earliest compounds of this kind were prepared more than a hundred years ago; the first was cacodyl, prepared by R. Bunsen (1), and then zinc dialkyls were prepared by E. Frankland (2). Later V. Grignard was able to synthesise alkyl magnesium halides by treating magnesium with alkyl halides (3). Grignard was awarded the Nobel Prize in 1912 for this effort. We may further recall the organo-aluminium compounds (4) of K. Ziegler which form the basis for the low pressure polymerisation, for example of ethylene. Ziegler and G. Natta were together honoured with the Nobel Prize in 1963 for their work on organometallic compounds. -
Transfer of Radiation Through Cyclopropenylidene and Ethylene Oxide
A&A 402, 1–3 (2003) Astronomy DOI: 10.1051/0004-6361:20030229 & c ESO 2003 Astrophysics Transfer of radiation through cyclopropenylidene and ethylene oxide S. Chandra School of Physical Sciences, SRTM University, Nanded 431 606, India Received 29 June 1999 / Accepted 17 October 2002 Abstract. Cyclopropenylidene and ethylene oxide molecules are of astronomical importance as their observed lines, distributed throughout the observable microwave region, have a number of pairs having nearly equal frequencies, but different excitation energies and/or belonging to two different species of the molecule. Hence, these molecules may play important role in detecting physical conditions in cosmic objects. Therefore, in order to calculate intensities of the lines, we have investigated transfer of radiation through a cosmic object containing the molecule at a kinetic temperature of 10 K. Our results show that some lines of the molecule may be found in absorption against the cosmic 2.7 K background. Key words. ISM: molecules – molecular data – radiative transfer 1. Introduction The molecular data required as input for the present inves- tigation are: (i) Einstein A-coefficients for radiative transitions Cyclopropenylidene (C3H2), in astronomical objects, was iden- between the rotational energy levels accounted for, and (ii) rate tified by Thaddeus et al. (1985); they reported twelve emission coefficients for collisional transitions between the energy levels lines of the molecule, distributed throughout the observable mi- due to collisions with H2 molecules. crowave region. Ethylene oxide (C H O) has been observed by 2 4 Both cyclopropenylidene and ethylene oxide are b-type Dickens et al. (1997) in Sgr B2N; twelve emission lines of the asymmetric top molecules having a large electric dipole mo- molecule, distributed throughout the observable microwave re- ment of 3.325 D and 1.88 D, respectively, along their b-axis gion, have been reported by them. -
Discovery of Benzyne, O-C6H4, in TMC-1 with the QUIJOTE Line Survey? J
Astronomy & Astrophysics manuscript no. c6h4 ©ESO 2021 August 6, 2021 Letter to the Editor 1 Discovery of benzyne, o-C6H4, in TMC-1 with the QUIJOTE line survey? J. Cernicharo1, M. Agúndez1, R. I. Kaiser2, C. Cabezas1, B. Tercero3; 4, N. Marcelino1, J. R. Pardo1, P. de Vicente3 1 Grupo de Astrofísica Molecular, Instituto de Física Fundamental (IFF-CSIC), C/ Serrano 121, 28006 Madrid, Spain e-mail: [email protected] 2 Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA 3 Centro de Desarrollos Tecnológicos, Observatorio de Yebes (IGN), 19141 Yebes, Guadalajara, Spain 4 Observatorio Astronómico Nacional (OAN, IGN), Madrid, Spain Received; accepted ABSTRACT We report the detection, for the first time in space, of a new non-functionalised hydrocarbon cycle in the direction of TMC-1: o- 11 −2 C6H4 (ortho-benzyne). We derive a column density for this hydrocarbon cycle of (5.0±1.0)×10 cm . The abundance of this species is around 30 times lower than that of cyclopentadiene and indene. We compare the abundance of benzyne with that of other pure hydrocarbons, cycles or chains, and find that it could be formed from neutral-radical reactions such as C2H + CH2CHCCH and C + C5H5, and possibly through C4H + C2H4,C3H + CH2CCH2, and C3H2+C3H3. Hence, the rich content of hydrocarbon cycles observed in TMC-1 could arise through a bottom-up scenario involving reactions of a few radicals with the abundant hydrocarbons recently revealed by the QUIJOTE line survey. Key words. molecular data – line: identification – ISM: molecules – ISM: individual (TMC-1) – astrochemistry 1. -
REACTIONS of HALOCYCLOPROPANES. The
This dissertation has been microfilmed exactly as received 69-11,652 HOUSER, Charles W., 1934- REACTIONS OF HALOCYCLOPROPANES. The Ohio State University, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan REACTIONS OF HALOCYCLOPROPANES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School o f The Ohio State U niversity By Charles W. Houser, B.A. ******** The Ohio State U niversity 1968 Approved hy /Adviser Department of Chemistry Dedicated to Jane and Brian i l ACKNOWLEDGMENTS The author wishes to express sincere appreciation to Professor Harold Shechter for the inception of this problem and for his helpful discussions throughout the course of this research. His editorial guidance during preparation of this manuscript is also gratefully acknowledged. National Science Foundation and Petroleum Research Fund are thanked for their financial assistance to this research. The author owes a special debt of gratitude to his wife, Jane, for her patience and encouragement during completion of this work. i i i VITA October 20, 1934 Born - Parkersburg, West Virginia 1954-1958 U. S. Marine Corps 1962 B.A., David Lipscomb College, Nashville, Tennessee 1962-1965 Teaching Assistant, The Ohio State University, Columbus, Ohio I965-I968 Research Associate, The Ohio State University, Columbus, Ohio iv CONTENTS Page ACKNOWLEDGMENTS.......................................................................................................... i i i VITA ......................................................................... -
Reduced Pressure Oxidation of Propargyl Alcohol to Aldehyde; Propynal
Reduced pressure oxidation of propargyl alcohol to aldehyde; Propynal Nov 15, 2013 John MacMillan ([email protected]) Chemicals Used Propargyl alcohol, 99%, Aldrich, P5,080-3, redistilled Chromium (VI) oxide, 99+%, Aldrich, 20,782-9 Sodium Chloride, 99%*%, A.C.S. reagent, Aldrich, 22,351-4 Sulfuric acid, 95-98%, A.C.S. Reagent, Aldrich, 25.810-5 Procedure This material was prepared by a modification of the Organic Synthesis procedure. See lead reference. To a 2 liter three neck flask, equipped with a mechanical stirrer, and ice/salt bath was charged 120 g ((2.14 mole) redistilled propargyl alcohol and 240 ml of water. To this mixture was then added a cooled solution of 135 ml concentrated sulfuric acid in 150 ml of water. A "Y" tube was inserted in one neck of the flask and a pressure equalized dropping funnel was placed in one neck of the "Y" tube. The other neck of the "Y" tube lead to two traps, in series, which in turn were connected to a McLeod pressure gage and vacuum pump. The third neck of the flask was connected to a fine capillary which served as a nitrogen inlet. A cooled solution of 210 g chromium trioxide, 200 ml of water and 100 ml concentrated sulfuric acid was then added to the dropping funnel. One trap was cooled to ~ - 10° with an ice/salt mixture and the second trap was cooled with a dry ice/acetone bath to ~ -78°C. The exterior of the 2 liter flask was cooled to ~ - 10°C with ice/salt.