A Study of the C3H2 Isomers and Isotopologues: first Interstellar Detection of HDCCC?

Total Page:16

File Type:pdf, Size:1020Kb

A Study of the C3H2 Isomers and Isotopologues: first Interstellar Detection of HDCCC? A&A 586, A110 (2016) Astronomy DOI: 10.1051/0004-6361/201527460 & c ESO 2016 Astrophysics A study of the C3H2 isomers and isotopologues: first interstellar detection of HDCCC? S. Spezzano1;3, H. Gupta2;??, S. Brünken3, C. A. Gottlieb4, P. Caselli1, K. M. Menten5, H. S. P. Müller3, L. Bizzocchi1, P. Schilke3, M. C. McCarthy4, and S. Schlemmer3 1 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching, Germany e-mail: [email protected] 2 California Institute of Technology, 770 S. Wilson Ave., M/C 100-22, Pasadena, CA 91125, USA 3 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany 4 Harvard-Smithsonian Center for Astrophysics, and School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA 5 Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany Received 28 September 2015 / Accepted 12 November 2015 ABSTRACT The partially deuterated linear isomer HDCCC of the ubiquitous cyclic carbene (c-C3H2) was observed in the starless cores TMC- 1C and L1544 at 96.9 GHz, and a confirming line was observed in TMC-1 at 19.38 GHz. To aid the identification in these narrow line sources, four centimetre-wave rotational transitions (two in the previously reported Ka = 0 ladder and two new ones in the Ka = 1 ladder) and 23 transitions in the millimetre band between 96 and 272 GHz were measured in high-resolution laboratory spectra. Ten spectroscopic constants in a standard asymmetric top Hamiltonian allow the main transitions of astronomical interest −1 in the Ka ≤ 3 rotational ladders to be calculated to within 0.1 km s in radial velocity up to 400 GHz. Conclusive identification of the two astronomical lines of HDCCC was provided by the VLSR, which is the same as for the normal isotopic species (H2CCC) in the three narrow line sources. In these sources, deuterium fractionation in singly substituted H2CCC (HDCCC/H2CCC ∼ 4−19%) is comparable to that in c-C3H2 (c-C3H2/c-C3HD ∼ 5−17%) and similarly in doubly deuterated c-C3H2 (c-C3D2/c-C3HD ∼ 3−17%), implying that the efficiency of the deuteration processes in the H2CCC and c-C3H2 isomers are comparable in dark clouds. Key words. astrochemistry – line: identification – ISM: molecules – ISM: clouds 1. Introduction about 14 kcal mol−1 (7045 K) higher in energy than the more stable isomer c-C3H2 (Wu et al. 2010). The study of deuterated molecules in the radio band yields con- Propadienylidene (H2CCC) was detected in space by straints on the physical and chemical properties of the interstel- Cernicharo et al.(1991) and Kawaguchi et al.(1991) shortly lar gas in the early stages of low-mass star formation (Caselli after its millimetre-wave rotational spectrum was measured in & Ceccarelli 2012). Cyclopropenylidene (c-C3H2) is one of the the laboratory (Vrtilek et al. 1990). Initially, it was observed to- molecules frequently used in studies of deuterium fractionation wards the cold dark cloud TMC-1 in the centimetre and millime- in cold dark clouds, because lines of its rare isotopic species tre bands, and the carbon-rich asymptotic giant branch (AGB) are relatively intense, the degree of fractionation is high, and star IRC+10216 in the millimetre band. Here, we report the de- c-C3H2 is believed to form solely by gas phase reactions (Gerin tection of a line of HDCCC in the prestellar cores TMC-1C and et al. 1987; Bell et al. 1988; Talbi & Herbst 2001; Turner 2001; L1544 in the millimetre band at 96.9 GHz and a confirming line Liszt et al. 2012; Spezzano et al. 2013). During recent obser- in TMC-1 in the centimetre band at 19.38 GHz. vations of the doubly deuterated species c-C D towards the 3 2 Although H2CCC was first observed nearly 25 years ago in starless cores TMC-1C and L1544, Spezzano et al.(2013) ob- the laboratory and the interstellar gas, the deuterated species had served an unidentified line in the millimetre band that was ten- not been observed in any astronomical source and the rotational tatively assigned to the singly deuterated form of propadienyli- spectrum of the partially deuterated species HDCCC had not 1 dene (H2CCC) , a highly polar metastable carbene (µ = 4:17 D) been measured in the millimetre band prior to this work, but the two lowest transitions in the centimetre band had been measured ? Based on observations carried out with the IRAM 30 m Telescope. earlier (Kim & Yamamoto 2005). In support of the astronomi- IRAM is supported by INSU/CNRS (France), MPG (Germany) and cal identification of HDCCC and of future studies of the C3H2 IGN (Spain). isomeric system in the interstellar gas, the principal millimetre- ?? Current address: Division of Astronomical Sciences National wave rotational transitions of astronomical interest have now Science Foundation, 4201 Wilson Boulevard, Suite 1045, Arlington, been measured in high resolution laboratory spectra. VA 22230, USA. 1 Propadienylidene (Chemical Abstracts Services CAS #: 60731-10-4) and symmetry as the well known molecules formaldehyde (H2CO) is usually designated in the spectroscopic and astronomical literature as and ketene (H2CCO). Although propadienylidene is occasionally des- H2CCC (e.g., Vrtilek et al. 1990; Cernicharo et al. 1991) to distinguish ignated as l-C3H2, here we follow the example of spectroscopists and it from its cyclic isomer c-C3H2, and because it has a same structure astronomers and refer to propadienylidene as H2CCC. Article published by EDP Sciences A110, page 1 of9 A&A 586, A110 (2016) 2. Laboratory and astronomical observations Table 1. Laboratory frequencies of HDCCC. 2.1. Laboratory 0 00 a J 0 0 – J 00 00 Frequency Unc. O−C Ka;Kc Ka ;Kc Rotational lines of HDCCC were observed with the same 3 m (MHz) (kHz) (kHz) long free-space double-pass absorption spectrometer used to 10;1 – 00;0 19 384.5098 2 0:5 measure the millimetre-wave spectrum of c-C3D2 (Spezzano 21;2 – 11;1 38 283.5891 2 −0:6 et al. 2012). Guided by frequencies calculated with an effective 20;2 – 10;1 38 768.0019 2 1:0 rotational and centrifugal distortion constant derived from the 21;1 – 11;0 39 251.4274 2 −0:1 two lowest transitions measured at centimetre wavelengths in a 50;5 – 40;4 96 902.196 20 0:6 − supersonic molecular beam (Kim & Yamamoto 2005), lines of 60;6 – 50;5 116 271.438 20 6:5 70;7 – 60;6 135 634.586 20 −8:5 HDCCC were observed in the millimetre band. Following op- 8 – 7 154 990.661 20 26:6 timization of the normal isotopic species (H CCC), the most 0;8 0;7 2 90;9 – 80;8 174 338.544 20 −13:6 intense lines of HDCCC were observed in a low pressure 100;10 – 90;9 193 677.324 20 −40:1 (∼18 mTorr) DC discharge (140 mA) through a statistical mix- 101;9 – 91;8 196 204.056 24 −15:1 ture of deuterated acetylene (50% HCCD, 25% DCCD, and 25% 121;12 – 111;11 229 614.027 23 55:9 HCCH), carbon monoxide (CO), and argon (Ar) in a molar ratio 122;11 – 112;10 232 512.813 20 −6:9 of 10:5:1, with the walls of the discharge cell cooled to 150 K. 123;10 – 113;9 232 544.540 21 57:5 The acetylene sample was produced in real time by dropping 123;9 – 113;8 232 546.625 21 −34:7 122;10 – 112;9 232 775.855 20 −6:1 an equal mixture of normal (H2O) and heavy water (D2O) on 121;11 – 111;10 235 415.394 19 22:5 calcium carbide (CaC2). Under these conditions, the signal-to- − ≥ 131;13 – 121;12 248 731.752 19 24:1 noise ratio (S/N) of lines of HDCCC near 160 GHz was 10 in 13 – 12 251 629.269 20 32:3 15 min of integration. In addition, the two lowest K = 0 lines in 0;13 0;12 a 132;12 – 122;11 251 875.722 20 −15:2 the centimetre band at 19 and 38 GHz reported earlier by Kim 133;10 – 123;9 251 927.366 33 −42:7 & Yamamoto(2005) were remeasured with the FT microwave 131;12 – 121;11 255 015.024 20 −28:7 spectrometer described in Spezzano et al.(2012), and the two 141;14 – 131;13 267 845.608 37 −56:7 Ka = 1 transitions (21;2−11;1 and 21;1−11;0) were also measured. 142;13 – 132;12 271 235.509 12 8:1 In all, 27 rotational lines between 19 and 272 GHz with 143;12 – 133;11 271 303.986 41 41:2 − J ≤ 14 and K ≤ 3 (Table 1) are reproduced to an rms uncer- 143;11 – 133;10 271 308.664 28 29:1 a 14 – 13 271 653.245 20 13:6 tainty (28 kHz) that is comparable to the measurement uncer- 2;12 2;11 tainties with ten spectroscopic constants in Watson’s S reduced Notes. (a) Calculated with the spectroscopic constants in Table2. Hamiltonian: three rotational constants, five fourth-order distor- tion constants (DK was constrained to a theoretical value owing to the high correlation with A), and two sixth-order distortion Table 2. Spectroscopic constants of HDCCC (in MHz). constants (Table2). There is no evidence of deuterium hyperfine structure (hfs) Constanta This workb Expectedc when the fundamental transition of HDCCC is observed with high S/N at a resolution of 1 kHz in our molecular beam; there- A 199 370.(233) 199 755 fore, no such structure should be present when this transition is B 9 934.225 82(81) 9 936.8 observed in space.
Recommended publications
  • The Observed Chemical Structure of L1544? ?? S
    Astronomy & Astrophysics manuscript no. Maps_L1544 c ESO 2017 July 20, 2017 The observed chemical structure of L1544? ?? S. Spezzano, P. Caselli, L. Bizzocchi, B. M. Giuliano, and V. Lattanzi Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748 Garching, Germany July 20, 2017 ABSTRACT Context. Prior to star formation, pre-stellar cores accumulate matter towards the centre. As a consequence, their central density increases while the temperature decreases. Understanding the evolution of the chemistry and physics in this early phase is crucial to study the processes governing the formation of a star. Aims. We aim at studying the chemical differentiation of a prototypical pre-stellar core, L1544, by detailed molecular maps. In contrast with single pointing observations, we performed a deep study on the dependencies of chemistry on physical and external conditions. Methods. We present the emission maps of 39 different molecular transitions belonging to 22 different molecules in the central 6.25 arcmin2 of L1544. We classified our sample in five families, depending on the location of their emission peaks within the core. Furthermore, to systematically study the correlations among different molecules, we have performed the principal component analysis (PCA) on the integrated emission maps. The PCA allows us to reduce the amount of variables in our dataset. Finally, we compare the maps of the first three principal components with the H2 column density map, and the Tdust map of the core. Results. The results of our qualitative analysis is the classification of the molecules in our dataset in the following groups: (i) the c-C3H2 family (carbon chain molecules like C3H and CCS), (ii) the dust peak family (nitrogen-bearing species + like N2H ), (iii) the methanol peak family (oxygen-bearing molecules like methanol, SO and SO2), (iv) the HNCO peak family (HNCO, propyne and its deuterated isotopologues).
    [Show full text]
  • Exhaustive Product Analysis of Three Benzene Discharges by Microwave Spectroscopy Michael C
    pubs.acs.org/JPCA Article Exhaustive Product Analysis of Three Benzene Discharges by Microwave Spectroscopy Michael C. McCarthy,* Kin Long Kelvin Lee, P. Brandon Carroll, Jessica P. Porterfield, P. Bryan Changala, James H. Thorpe, and John F. Stanton Cite This: J. Phys. Chem. A 2020, 124, 5170−5181 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Using chirped and cavity microwave spectroscopies, automated double resonance, new high-speed fitting and deep learning algorithms, and large databases of computed structures, the discharge products of benzene alone, or in combination with molecular oxygen or nitrogen, have been exhaustively characterized between 6.5 and 26 GHz. In total, more than 3300 spectral features were observed; 89% of these, accounting for 97% of the total intensity, have now been assigned to 152 distinct chemical species and 60 of their variants (i.e., isotopic species and vibrationally excited states). Roughly 50 of the products are entirely new or poorly characterized at high resolution, including many heavier by mass than the precursor benzene. These findings provide direct evidence for a rich architecture of two- and three-dimensional carbon and indicate that benzene growth, particularly the formation of ring−chain molecules, occurs facilely under our experimental conditions. The present analysis also illustrates the utility of microwave spectroscopy as a precision tool for complex mixture analysis, irrespective of whether the rotational spectrum of a product species is known a priori or not. From this large quantity of data, for example, it is possible to determine with confidence the relative abundances of different product masses, but more importantly the relative abundances of different isomers with the same mass.
    [Show full text]
  • Interferometric Observations of Large Biologically Interesting Interstellar and Cometary Molecules
    SPECIAL FEATURE: PERSPECTIVE Interferometric observations of large biologically interesting interstellar and cometary molecules Lewis E. Snyder* Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 Edited by William Klemperer, Harvard University, Cambridge, MA, and approved May 26, 2006 (received for review March 3, 2006) Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have sub- stantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled ‘‘biomolecules.’’ Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated inter- stellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to under- standing hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from obser- vations with the next generation of sensitive, high-resolution arrays.
    [Show full text]
  • Abstract Book
    Our Astro-Chemical History Past, Present, and Future Sept. 10-14 2018 Assen, The Netherlands Abstract Book Program Monday 12:30-14:00 Lunch 14:00-15:25 14:00 Welcome and logistics 14:10 Summary of activities/results from the Action (Laurent Wiesenfeld) 14:40 The Future of Astrochemistry - Farid Salama (NASA) 15:25-16:00 Coffee break 16:00-17:30 Formation of COMs: surface routes vs new gas-phase routes 16:00 Audrey Coutens (Bordeaux, FR) 16:30 Dimitrios Skouteris (Pisa, IT) 17:00 Alexey Potapov (University ofJena, DE) 17:30-18:30 Welcome reception/posters 19:00-20:00 Dinner Tuesday 9:00-10:30 Low temperature chemistry and kinetics and processes (gas & solid) 9:00 Sergiy Krasnokutskiy (Jena, DE) 9:30 Johannes Kästner (Stuttgart, DE) 10:00 Stanka Jerosimić (Belgrade, RS) 10:30-11:00 Coffee break 11:00-12:30 Isotopic fractionation pathways in space 11:00 Kenji Furuya (Tsukuba, JP) 11:30 Eva Wirström (Chalmers, SE) 12:00 Olli Sipilä (Helsinki, FI; MPE, DE) 12:30-14:00 Lunch 14:00-15:30 Nanoparticles: Condensation, reactivity and diffusion 14:00 Herma Cuppen (Nijmegen, NL) 14:30 David Gobrecht (Leuven, BE) 15:00 Antoni Macià Escatllar (Barcelona, ES) 15:30-16:30 Coffee break/poster session 16:30-18:00 16:30 Chemistry of Planetary Atmospheres - Christiane Helling (St Andrews, UK) 17:15 Comet chemistry - Kathrin Altwegg (Bern, CH) 19:00-20:00 Dinner Wednesday 9:00-11:00 Hydrocarbon chains and rings in space 9:00 Ricardo Urso (INAF, IT) 9:30 Maria Luisa Senent (CSIC, ES) 10:00 Thomas Pino (ISMO Paris, FR) 10:30 Sandra Wiersma (Amsterdam, NL) 11:00-11:30
    [Show full text]
  • Arxiv:1802.10216V1 [Physics.Chem-Ph] 28 Feb 2018 They Play an Important Role in Their Spectroscopic Characteriza- Not Been Systematically Investigated
    Bound and continuum-embedded states of cyanopolyyne anions† Wojciech Skomorowski, Sahil Gulania, and Anna I. Krylova Cyanopolyyne anions were among the first anions discovered in the interstellar medium. The discovery have raised questions about routes of formation of these anions in space. Some of the proposed mechanisms assumed that anionic excited electronic states, either metastable or weakly bound, play a key role in the formation process. Verification of this hypothesis requires detailed knowledge of the electronic states of the anions. Here we investigate bound and continuum states of four cyanopolyyne anions, CN−,C3N−,C5N−, and C7N−, by means of ab initio calculations. We employ the equation-of-motion coupled-cluster method augmented with complex absorbing potential. We predict that already in CN−, the smallest anion in the family, there are several low-lying metastable states of both singlet and triplet spin symmetry. These states, identified as shape resonances, are located between 6.3–8.5 eV above the ground state of the anion (or 2.3–4.5 eV above the ground state of the parent radical) and have widths of a few tenths of eV up to 1 eV. We analyze the identified resonances in terms of leading molecular orbital contributions and Dyson orbitals. As the carbon chain length increases in the C2n+1N− series, these resonances gradually become stabilized and eventually turn into stable valence bound states. The trends in energies of the transitions leading to both resonance and bound excited states can be rationalized by means of the Hückel model. Apart from valence excited states, some of the cyanopolyynes can also support dipole bound states and dipole stabilized resonances, owing to a large dipole moment of the parent radicals in the lowest 2S+ state.
    [Show full text]
  • Gas Phase Synthesis of Interstellar Cumulenes. Mass Spectrometric and Theoretical Studies."
    rl ì 6. .B,1l thesis titled: "Gas Phase Synthesis of Interstellar Cumulenes. Mass Spectrometric and Theoretical studies." submitted for the Degree of Doctor of Philosophy (Ph.D') by Stephen J. Blanksby B.Sc.(Hons,) from the Department of ChemistrY The University of Adelaide Cì UCE April 1999 Preface Contents Title page (i) Contents (ii) Abstract (v) Statement of OriginalitY (vi) Acknowledgments (vii) List of Figures (ix) Phase" I Chapter 1. "The Generation and Characterisation of Ions in the Gas 1.I Abstract I 1.II Generating ions 2 t0 l.ru The Mass SPectrometer t2 1.IV Characterisation of Ions 1.V Fragmentation Behaviour 22 Chapter 2 "Theoretical Methods for the Determination of Structure and 26 Energetics" 26 2,7 Abstract 27 2.IT Molecular Orbital Theory JJ 2.TII Density Functional Theory 2.rv Calculation of Molecular Properties 34 2.V Unimolecular Reactions 35 Chapter 3 "Interstellar and Circumstellar Cumulenes. Mass Spectrometric and 38 Related Studies" 3.I Abstract 38 3.II Interstellar Cumulenes 39 3.III Generation of Interstellar Cumulenes by Mass Spectrometry 46 3.IV Summary 59 Preface Chapter 4 "Generation of Two Isomers of C5H from the Corresponding Anions' 61 ATheoreticallyMotivatedMassSpectrometricStudy.'. 6l 4.r Abstract 62 4.rl Introduction 66 4.III Results and Discussion 83 4.IV Conclusions 84 4.V Experimental Section 89 4.VI Appendices 92 Chapter 5 "Gas Phase Syntheses of Three Isomeric CSHZ Radical Anions and Their Elusive Neutrals. A Joint Experimental and Theoretical Study." 92 5.I Abstract 93 5.II Introduction 95 5.ru Results and Discussion t12 5.IV Conclusions 113 5.V Experimental Section ttl 5.VI Appendices t20 Chapter 6 "Gas Phase Syntheses of Three Isomeric ClHz Radical Anions and Their Elusive Neutrals.
    [Show full text]
  • On the Road to Carbene and Carbyne Complexes
    ON THE ROAD TO CARBENE AND CARBYNE COMPLEXES Nobel Lecture, 11 December 1973 by ERNST OTTO FISCHER Inorganic Chemistry Laboratory, Technical University, Munich, Federal Republic of Germany Translation from the German text INTRODUCTION In the year 1960, I had the honour of giving a talk at this university* about sandwich complexes on which we were working at that time. I think I do not have to repeat the results of those investigations today. I would like to talk instead about a field of research in which we have been intensely interested in recent years: namely, the field of carbene complexes and, more recently, carbyne complexes. If we substitute one of the hydrogen atoms in a hydrocarbon of the alkane type - for example, ethane - by a metal atom, which can of course bind many more ligands, we arrive at an organometallic compound in which the organic radical is bound to the metal atom by a σ-bond (Fig. la). The earliest compounds of this kind were prepared more than a hundred years ago; the first was cacodyl, prepared by R. Bunsen (1), and then zinc dialkyls were prepared by E. Frankland (2). Later V. Grignard was able to synthesise alkyl magnesium halides by treating magnesium with alkyl halides (3). Grignard was awarded the Nobel Prize in 1912 for this effort. We may further recall the organo-aluminium compounds (4) of K. Ziegler which form the basis for the low pressure polymerisation, for example of ethylene. Ziegler and G. Natta were together honoured with the Nobel Prize in 1963 for their work on organometallic compounds.
    [Show full text]
  • Laboratory Experiments of Titan Tholins Formed by Photochemistry of Cyanopolyynes
    BIO Web of Conferences 2, 01005 (2014) DOI: 10.1051/bioconf/20140201005 C Owned by the authors, published by EDP Sciences, 2014 Laboratory Experiments of Titan Tholins formed by Photochemistry of Cyanopolyynes I. Couturier-Tamburelli1, I. N. Piétri1 1Aix Marseille Université, Laboratoire PIIM, UMR 6633, 13397 Marseille cedex 20 France. Tholins are complex organic materials produced by irradiation of several carbon and nitrogen rich atmosphere. It has been proposed that Tholins could have played an important role in the origin of life on Earth [1]. We investigate the formation of polymer (Tholins) from the photolysis of dicyanoacetylene. As of today, nitriles molecules have been identified in Titan atmosphere. Among these nitriles, the cyanopolyynes (HCnN) are very important since they are the essential constituents in building block amino acids. It is known that a rich phochemistry takes place in the Titan aerosols, and contributes to the evolution of molecular diversity in this atmosphere. These compounds evolve through polymerization processes in aerosol particles, which grow by coagulation and rain down to the surface of Titan containing water ice. We present photochemical processes of larger cyanopolyyne formation from small precursor molecules submitted to long wavelength photons. Under UV irradiation cyanopolyynes are known to induce izomerization process (figure 1) [2] and formation of longer cyanopolyynes [3]. Figure 1: Izomerisation process of cyanopolyynes. We provide the photochemical processes of Titan Tholins formation (figure 2) from cyanopolyyne precursor molecules submitted to long wavelength photons. Such photons penetrate down into the stratosphere and troposphere (figure 3). The photoreactivity of the cyanopolyynes with other Titan molecules are also presented.
    [Show full text]
  • Transfer of Radiation Through Cyclopropenylidene and Ethylene Oxide
    A&A 402, 1–3 (2003) Astronomy DOI: 10.1051/0004-6361:20030229 & c ESO 2003 Astrophysics Transfer of radiation through cyclopropenylidene and ethylene oxide S. Chandra School of Physical Sciences, SRTM University, Nanded 431 606, India Received 29 June 1999 / Accepted 17 October 2002 Abstract. Cyclopropenylidene and ethylene oxide molecules are of astronomical importance as their observed lines, distributed throughout the observable microwave region, have a number of pairs having nearly equal frequencies, but different excitation energies and/or belonging to two different species of the molecule. Hence, these molecules may play important role in detecting physical conditions in cosmic objects. Therefore, in order to calculate intensities of the lines, we have investigated transfer of radiation through a cosmic object containing the molecule at a kinetic temperature of 10 K. Our results show that some lines of the molecule may be found in absorption against the cosmic 2.7 K background. Key words. ISM: molecules – molecular data – radiative transfer 1. Introduction The molecular data required as input for the present inves- tigation are: (i) Einstein A-coefficients for radiative transitions Cyclopropenylidene (C3H2), in astronomical objects, was iden- between the rotational energy levels accounted for, and (ii) rate tified by Thaddeus et al. (1985); they reported twelve emission coefficients for collisional transitions between the energy levels lines of the molecule, distributed throughout the observable mi- due to collisions with H2 molecules. crowave region. Ethylene oxide (C H O) has been observed by 2 4 Both cyclopropenylidene and ethylene oxide are b-type Dickens et al. (1997) in Sgr B2N; twelve emission lines of the asymmetric top molecules having a large electric dipole mo- molecule, distributed throughout the observable microwave re- ment of 3.325 D and 1.88 D, respectively, along their b-axis gion, have been reported by them.
    [Show full text]
  • Galactic and Extragalactic Astrochemistry: Heavy-Molecule Precursors to Life?
    Astro2020 Science White Paper Galactic and Extragalactic Astrochemistry: Heavy-Molecule Precursors to Life? Thematic Areas: Planetary Systems × Star and Planet Formation Formation and Evolution of Compact Objects Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stel lar Populations and their Environments Galaxy Evolution Multi-M essenger Astronomy and Astrophysics Principal Author: Name: Carl Heiles Institution: University of California at Berkeley Email: [email protected] Phone: 510 280 8099 Co-authors: E. D. Araya, WIU; H. Arce, Yale; I. Hoffman, Quest Univ.; Tapasi Ghosh, NRAO; P. Hofner, NMT; S. Kurtz, UNAM; M. Lebron,´ UPR-PR; Hendrik Linz, MPI Heidelberg; L. Olmi, INAF; Y. Pihlstrom,¨ UNM; Chris Salter, NRAO. Abstract: Heavy molecule spectroscopy is a developing subject, with new results from both the terrestrial laboratory and astronomical discovery in the 0.5-10 GHz range where heavy molecule spectral lines are easily distinguished. Dense clouds in space contain an astonishingly rich collection of both familiar and exotic molecules in various states of ionization and excitation. It means that there are many more ways to build large organic molecules in these environments than have been previously explored. These add to the number of paths available for making the complex organic molecules and other large molecular species that may be the precursors to life. 1 1 Heavy Molecules Most known interstellar molecules are small and have their lowest rotational transitions in the millimeter wavelength range (e.g., McGuire 2018a). Heavier molecules have their lowest rota- tional transitions in the microwave range and are especially prominent at the low temperatures that characterize many dense molecular clouds.
    [Show full text]
  • The Interstellar Chemistry of C3H and C3H2 Isomers
    The interstellar chemistry of C3H and C3H2 isomers. Jean-Christophe Loison1*, Marcelino Agúndez2, Valentine Wakelam3, Evelyne Roueff4, Pierre Gratier3, Núria Marcelino5, Dianailys Nuñez Reyes1, José Cernicharo2, Maryvonne Gerin6. *Corresponding author: [email protected] 1 Institut des Sciences Moléculaires (ISM), CNRS, Univ. Bordeaux, 351 cours de la Libération, 33400, Talence, France 2 Instituto de Ciencia de Materiales de Madrid, CSIC, C\ Sor Juana Inés de la Cruz 3, 28049 Cantoblanco, Spain 3 Laboratoire d'astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France. 4 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-92190 Meudon, France 5 INAF, Osservatorio di Radioastronomia, via P. Gobetti 101, 40129 Bologna, Italy 6 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Ecole Normale Supérieure, F-75005 Paris, France We report the detection of linear and cyclic isomers of C3H and C3H2 towards various starless cores and review the corresponding chemical pathways involving neutral (C3Hx with x=1,2) + and ionic (C3Hx with x = 1,2,3) isomers. We highlight the role of the branching ratio of + + electronic Dissociative Recombination (DR) reactions of C3H2 and C3H3 isomers showing * * that the statistical treatment of the relaxation of C3H and C3H2 produced in these DR reactions may explain the relative c,l-C3H and c,l-C3H2 abundances. We have also introduced in the model the third isomer of C3H2 (HCCCH). The observed cyclic-to-linear C3H2 ratio vary from 110 ± 30 for molecular clouds with a total density around 1×104 molecules.cm-3 to 30 ± 10 for molecular clouds with a total density around 4×105 molecules.cm-3, a trend well reproduced with our updated model.
    [Show full text]
  • Chemical Modeling of Interstellar Molecules in Dense Cores
    Chemical Modeling of Interstellar Molecules in Dense Cores Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Donghui Quan, M.S. Graduate Program in Chemical Physics The Ohio State University 2009 Dissertation Committee: Professor Eric Herbst, Advisor Professor Frank C. De Lucia Professor Anil K. Pradhan Copyright by Donghui Quan 2009 ii Abstract There are billions of stars in our galaxy, the Milky Way Galaxy. In between the stars is where the so-called “interstellar medium” locates. The majority of the mass of interstellar medium is clumped into interstellar clouds, in which cold and hot dense cores exist. Despite of the extremely low densities and low temperatures of the dense cores, over one hundred molecules have been found in these sources. This makes the field of astrochemistry vivid. Chemical modeling plays very important roles to understand the mechanism of formation and destruction of interstellar molecules. In this thesis, chemical kinetics models of different types were applied: in Chapter 4, pure gas phase models were used for seven newly detected or confirmed molecules by the Green Bank Telescope; in Chapter 5, the potential reason of non-detection of O2 was explored; in Chapter 6, the mysterious behavior of CHNO and CHNS isomers were studied by gas-grain models. In addition, effects of varying rate coefficients to the models are also discussed in Chapter 3 and 7. ii Dedication Dedicated to my parents Quan He (全和), Li Lianxiang (李廉祥) and my wife Wang Jing (王璟) iii Acknowledgements First of all, I would like to thank my advisor, Professor Eric Herbst, who has always been supportive in all means: a mentor in my graduate study, a guide in astrochemical research, and a kind “father” in the life.
    [Show full text]