Transfer of Radiation Through Cyclopropenylidene and Ethylene Oxide

Total Page:16

File Type:pdf, Size:1020Kb

Transfer of Radiation Through Cyclopropenylidene and Ethylene Oxide A&A 402, 1–3 (2003) Astronomy DOI: 10.1051/0004-6361:20030229 & c ESO 2003 Astrophysics Transfer of radiation through cyclopropenylidene and ethylene oxide S. Chandra School of Physical Sciences, SRTM University, Nanded 431 606, India Received 29 June 1999 / Accepted 17 October 2002 Abstract. Cyclopropenylidene and ethylene oxide molecules are of astronomical importance as their observed lines, distributed throughout the observable microwave region, have a number of pairs having nearly equal frequencies, but different excitation energies and/or belonging to two different species of the molecule. Hence, these molecules may play important role in detecting physical conditions in cosmic objects. Therefore, in order to calculate intensities of the lines, we have investigated transfer of radiation through a cosmic object containing the molecule at a kinetic temperature of 10 K. Our results show that some lines of the molecule may be found in absorption against the cosmic 2.7 K background. Key words. ISM: molecules – molecular data – radiative transfer 1. Introduction The molecular data required as input for the present inves- tigation are: (i) Einstein A-coefficients for radiative transitions Cyclopropenylidene (C3H2), in astronomical objects, was iden- between the rotational energy levels accounted for, and (ii) rate tified by Thaddeus et al. (1985); they reported twelve emission coefficients for collisional transitions between the energy levels lines of the molecule, distributed throughout the observable mi- due to collisions with H2 molecules. crowave region. Ethylene oxide (C H O) has been observed by 2 4 Both cyclopropenylidene and ethylene oxide are b-type Dickens et al. (1997) in Sgr B2N; twelve emission lines of the asymmetric top molecules having a large electric dipole mo- molecule, distributed throughout the observable microwave re- ment of 3.325 D and 1.88 D, respectively, along their b-axis gion, have been reported by them. These observable lines of the of inertia. Details for calculation of Einstein A-coefficients molecules have line-pairs which may play an important role for for b-type rotational transitions in an asymmetric top molecule finding out physical conditions in astronomical objects. have been discussed by Chandra et al. (1984). Therefore, in order to calculate intensities of lines, we have Very accurate values for the molecular and distortional con- investigated transfer of radiation through an astronomical ob- stants for cyclopropenylidene have been reported by Bogey ject containing the molecule at a kinetic temperature of 10 K. et al. (1987), and for ethylene oxide have been reported by Pan et al. (1998). These constants are used here for calcula- tion of a consistent set of Einstein A-coefficients for rotational 2. Basic formulation and molecular data transitions between the levels accounted for. The Einstein NLTE occupation numbers of energy levels of the molecule A-coefficients, used here, are reported in Tables 1A, and 1B, re- under investigation are calculated in an on-the-spot approx- spectively, for ortho- and para-C3H2, and in Tables 1C, and 1D, imation by using the escape probability method (see, e.g., respectively, for ortho- and para-C 2H4O. These tables are avail- Rausch et al. 1996), where the external radiation field, imping- able in electronic form at the CDS. ing on a volume element, and emitting the lines, is the cos- Collisional rate coefficients for downward transitions be- mic 2.7 K background only. In the present investigation, we tween the lowest 16 levels of ortho- and between the lowest accounted for 47 and 48 rotational energy levels for ortho- 17 levels of para-C3H2 for a kinetic temperature T = 10 K and para-C3H2, respectively, and 52 rotational energy level for are taken from Avery & Green (1989). For other transitions, → ortho- and para-C2H4O. J kakc Jkakc at a kinetic temperature T, collisional rate co- efficients are given by Sharma & Chandra (2001) Tables 1A, 1B, 1C, and 1D are only available in electronic form → = × −11 + at the CDS via anonymous ftp to C J kakc Jkakc 1 10 T/30/ 2J 1 . (1) cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg/cgi-bin/qcat?J/A+A/402/1 No data are, however, available in the literature for the colli- e-mail: [email protected] sional rate coefficients for ethylene oxide. In the absence of any Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20030229 2 S. Chandra: Transfer of radiation through cyclopropenylidene and ethylene oxide Table 2A. Lines of cyclopropenylidene observed in cosmic objects. 300 50 40 Transition Frequency Excitation 150 110 101/220 211 (GHz) energy (K) 30 − 110 101 18.3431 0.9 0 202 111/312 303 220−211 21.5874 9.7 20 2 −2 46.7556 8.7 11 02 Intensity ratio -150 10 202−111 82.0936 6.4 3 −3 82.9662 13.7 12 03 -300 0 322−313 84.7277 16.1 5.0 5.5 6.0 3456 212−101 85.3389 4.1 40 120 432−423 85.6564 26.7 − 404 313 150.8207 19.3 30 414−303 150.8519 17.0 80 2 1 /3 3 212 101/322 313 606−515 217.8220 38.6 02 11 22 13 20 616−505 217.8222 36.3 441−330 265.7595 29.9 40 Intensity ratio 10 Table 2B. Lines of ethylene oxide observed in Sgr B2N. 0 0 34563456 Transition Frequency Excitation 3500 1200 (GHz) energy (K) 3000 − 900 111 000 39.5816 1.9 2500 422−413 41.5794 20.5 − 2000 441 432 47.0950 21.6 600 550−541 47.5569 33.6 1500 312−221 104.6886 9.9 1000 2 1 /4 4 2 1 /4 4 Intensity ratio 12 01 32 23 300 02 11 32 23 6 −5 219.5128 38.6 34 23 500 808−717 235.1061 52.4 − 0 0 818 707 235.1061 50.7 34563456 541−432 249.1616 31.3 550−441 249.6236 33.6 404 313/414 303 817−726 254.2318 59.3 − 606 515/616 505 827 716 254.2357 57.5 0.35 0.35 0.3 0.3 knowledge for collisional rate coefficients, we assumed that the Intensity ratio ffi → rate coe cient for a downward transition J kakc Jkakc at 0.25 0.25 the kinetic temperature T is given by Eq. (1). For upward col- 34563456 lisional rate coefficients, for C3H2 as well as C2H4O, we ac- -3 -3 log(nH /cm ) log(nH /cm ) counted for the fact that downward and upward collisional rate 2 2 coefficients are related through the detailed equilibrium. Fig. 1. Variation of the ratio of intensities of pairs of lines of C3H2, measured in the unit of Planck’s function at a kinetic temperature of 10 K. Solid line is for γ = 10−6 cm−3 (km s−1)−1 pc, and the dotted line −5 −3 −1 −1 for γ = 10 cm (km s ) pc. For the ratio 110 → 101/220 → 211, 3. Observations the graph is shown for a part of the molecular hydrogen density. For Observed lines of cyclopropenylidene and ethylene oxide are low density, which is not shown in the figure, the graph extends almost horizontally. given in Tables 2A and 2B, respectively. The spectral line 110−101 of C3H2 at 18.343 GHz was eas- ily detectable in a wide range of objects throughout the galaxy. 4. Numerical results and discussion The sources where this transition was found include cold dust clouds, circumstellar envelopes, complex molecular clouds in In order to include a large number of cosmic objects, numer- vicinity of H regions, and the spiral arm clouds towards the ical calculations are carried out for wide ranges for physical supernova remnant Cas A. The most interesting feature of the parameters. The molecular hydrogen density n H2 has been var- 3 −3 6 −3 line 220−211 of C3H2 at 21.5874 GHz has been its absorp- ied over the range from 10 cm to 10 cm , and calcu- tion even against the cosmic 2.7 K background, in all cosmic lations are performed for a kinetic temperature of 10 K. In objects investigated by Madden et al. (1989). However, Cox the calculations, free parametres are the hydrogen density n H2 , et al. (1987) found this line in emission in the planetary nebula and γ ≡ nmol/(dvr/dr), where nmol is density of the molecule, NGC 7027. and dvr/dr the velocity gradient. S. Chandra: Transfer of radiation through cyclopropenylidene and ethylene oxide 3 4.1. Absorption lines 2000 20 Besides the line 220–211 of C3H2, a number of other lines of 1500 111 000/422 413 10 C3H2, and of C2H4O are found in absorption against the cosmic 2.7 K background. We (Chandra & Kegel 2001) predicted that 1000 0 besides the line 220–211, the lines 330–321, and 331–322 of C3H2, and three lines 2 –2 ,3 –3 , and 3 –3 of C H O may be 441 432/550 441 20 11 30 21 31 22 2 4 Intensity ratio 500 -10 observed in absorption against the cosmic 2.7 K background. The present investigation is in agreement that the line 0 -20 34563456 220−211 of C3H2 appears in absorption even against the cos- mic 2.7 K background, observed by Madden et al. (1989). 0.5 0.5 The line has positive intensity at large hydrogen density, showing that density in the planetary nebula NGC 7027, where the emission feature was observed, has been more than − about 105.6 cm 3.
Recommended publications
  • The Observed Chemical Structure of L1544? ?? S
    Astronomy & Astrophysics manuscript no. Maps_L1544 c ESO 2017 July 20, 2017 The observed chemical structure of L1544? ?? S. Spezzano, P. Caselli, L. Bizzocchi, B. M. Giuliano, and V. Lattanzi Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748 Garching, Germany July 20, 2017 ABSTRACT Context. Prior to star formation, pre-stellar cores accumulate matter towards the centre. As a consequence, their central density increases while the temperature decreases. Understanding the evolution of the chemistry and physics in this early phase is crucial to study the processes governing the formation of a star. Aims. We aim at studying the chemical differentiation of a prototypical pre-stellar core, L1544, by detailed molecular maps. In contrast with single pointing observations, we performed a deep study on the dependencies of chemistry on physical and external conditions. Methods. We present the emission maps of 39 different molecular transitions belonging to 22 different molecules in the central 6.25 arcmin2 of L1544. We classified our sample in five families, depending on the location of their emission peaks within the core. Furthermore, to systematically study the correlations among different molecules, we have performed the principal component analysis (PCA) on the integrated emission maps. The PCA allows us to reduce the amount of variables in our dataset. Finally, we compare the maps of the first three principal components with the H2 column density map, and the Tdust map of the core. Results. The results of our qualitative analysis is the classification of the molecules in our dataset in the following groups: (i) the c-C3H2 family (carbon chain molecules like C3H and CCS), (ii) the dust peak family (nitrogen-bearing species + like N2H ), (iii) the methanol peak family (oxygen-bearing molecules like methanol, SO and SO2), (iv) the HNCO peak family (HNCO, propyne and its deuterated isotopologues).
    [Show full text]
  • Exhaustive Product Analysis of Three Benzene Discharges by Microwave Spectroscopy Michael C
    pubs.acs.org/JPCA Article Exhaustive Product Analysis of Three Benzene Discharges by Microwave Spectroscopy Michael C. McCarthy,* Kin Long Kelvin Lee, P. Brandon Carroll, Jessica P. Porterfield, P. Bryan Changala, James H. Thorpe, and John F. Stanton Cite This: J. Phys. Chem. A 2020, 124, 5170−5181 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Using chirped and cavity microwave spectroscopies, automated double resonance, new high-speed fitting and deep learning algorithms, and large databases of computed structures, the discharge products of benzene alone, or in combination with molecular oxygen or nitrogen, have been exhaustively characterized between 6.5 and 26 GHz. In total, more than 3300 spectral features were observed; 89% of these, accounting for 97% of the total intensity, have now been assigned to 152 distinct chemical species and 60 of their variants (i.e., isotopic species and vibrationally excited states). Roughly 50 of the products are entirely new or poorly characterized at high resolution, including many heavier by mass than the precursor benzene. These findings provide direct evidence for a rich architecture of two- and three-dimensional carbon and indicate that benzene growth, particularly the formation of ring−chain molecules, occurs facilely under our experimental conditions. The present analysis also illustrates the utility of microwave spectroscopy as a precision tool for complex mixture analysis, irrespective of whether the rotational spectrum of a product species is known a priori or not. From this large quantity of data, for example, it is possible to determine with confidence the relative abundances of different product masses, but more importantly the relative abundances of different isomers with the same mass.
    [Show full text]
  • A Study of the C3H2 Isomers and Isotopologues: first Interstellar Detection of HDCCC?
    A&A 586, A110 (2016) Astronomy DOI: 10.1051/0004-6361/201527460 & c ESO 2016 Astrophysics A study of the C3H2 isomers and isotopologues: first interstellar detection of HDCCC? S. Spezzano1;3, H. Gupta2;??, S. Brünken3, C. A. Gottlieb4, P. Caselli1, K. M. Menten5, H. S. P. Müller3, L. Bizzocchi1, P. Schilke3, M. C. McCarthy4, and S. Schlemmer3 1 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching, Germany e-mail: [email protected] 2 California Institute of Technology, 770 S. Wilson Ave., M/C 100-22, Pasadena, CA 91125, USA 3 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany 4 Harvard-Smithsonian Center for Astrophysics, and School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA 5 Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany Received 28 September 2015 / Accepted 12 November 2015 ABSTRACT The partially deuterated linear isomer HDCCC of the ubiquitous cyclic carbene (c-C3H2) was observed in the starless cores TMC- 1C and L1544 at 96.9 GHz, and a confirming line was observed in TMC-1 at 19.38 GHz. To aid the identification in these narrow line sources, four centimetre-wave rotational transitions (two in the previously reported Ka = 0 ladder and two new ones in the Ka = 1 ladder) and 23 transitions in the millimetre band between 96 and 272 GHz were measured in high-resolution laboratory spectra. Ten spectroscopic constants in a standard asymmetric top Hamiltonian allow the main transitions of astronomical interest −1 in the Ka ≤ 3 rotational ladders to be calculated to within 0.1 km s in radial velocity up to 400 GHz.
    [Show full text]
  • Gas Phase Synthesis of Interstellar Cumulenes. Mass Spectrometric and Theoretical Studies."
    rl ì 6. .B,1l thesis titled: "Gas Phase Synthesis of Interstellar Cumulenes. Mass Spectrometric and Theoretical studies." submitted for the Degree of Doctor of Philosophy (Ph.D') by Stephen J. Blanksby B.Sc.(Hons,) from the Department of ChemistrY The University of Adelaide Cì UCE April 1999 Preface Contents Title page (i) Contents (ii) Abstract (v) Statement of OriginalitY (vi) Acknowledgments (vii) List of Figures (ix) Phase" I Chapter 1. "The Generation and Characterisation of Ions in the Gas 1.I Abstract I 1.II Generating ions 2 t0 l.ru The Mass SPectrometer t2 1.IV Characterisation of Ions 1.V Fragmentation Behaviour 22 Chapter 2 "Theoretical Methods for the Determination of Structure and 26 Energetics" 26 2,7 Abstract 27 2.IT Molecular Orbital Theory JJ 2.TII Density Functional Theory 2.rv Calculation of Molecular Properties 34 2.V Unimolecular Reactions 35 Chapter 3 "Interstellar and Circumstellar Cumulenes. Mass Spectrometric and 38 Related Studies" 3.I Abstract 38 3.II Interstellar Cumulenes 39 3.III Generation of Interstellar Cumulenes by Mass Spectrometry 46 3.IV Summary 59 Preface Chapter 4 "Generation of Two Isomers of C5H from the Corresponding Anions' 61 ATheoreticallyMotivatedMassSpectrometricStudy.'. 6l 4.r Abstract 62 4.rl Introduction 66 4.III Results and Discussion 83 4.IV Conclusions 84 4.V Experimental Section 89 4.VI Appendices 92 Chapter 5 "Gas Phase Syntheses of Three Isomeric CSHZ Radical Anions and Their Elusive Neutrals. A Joint Experimental and Theoretical Study." 92 5.I Abstract 93 5.II Introduction 95 5.ru Results and Discussion t12 5.IV Conclusions 113 5.V Experimental Section ttl 5.VI Appendices t20 Chapter 6 "Gas Phase Syntheses of Three Isomeric ClHz Radical Anions and Their Elusive Neutrals.
    [Show full text]
  • On the Road to Carbene and Carbyne Complexes
    ON THE ROAD TO CARBENE AND CARBYNE COMPLEXES Nobel Lecture, 11 December 1973 by ERNST OTTO FISCHER Inorganic Chemistry Laboratory, Technical University, Munich, Federal Republic of Germany Translation from the German text INTRODUCTION In the year 1960, I had the honour of giving a talk at this university* about sandwich complexes on which we were working at that time. I think I do not have to repeat the results of those investigations today. I would like to talk instead about a field of research in which we have been intensely interested in recent years: namely, the field of carbene complexes and, more recently, carbyne complexes. If we substitute one of the hydrogen atoms in a hydrocarbon of the alkane type - for example, ethane - by a metal atom, which can of course bind many more ligands, we arrive at an organometallic compound in which the organic radical is bound to the metal atom by a σ-bond (Fig. la). The earliest compounds of this kind were prepared more than a hundred years ago; the first was cacodyl, prepared by R. Bunsen (1), and then zinc dialkyls were prepared by E. Frankland (2). Later V. Grignard was able to synthesise alkyl magnesium halides by treating magnesium with alkyl halides (3). Grignard was awarded the Nobel Prize in 1912 for this effort. We may further recall the organo-aluminium compounds (4) of K. Ziegler which form the basis for the low pressure polymerisation, for example of ethylene. Ziegler and G. Natta were together honoured with the Nobel Prize in 1963 for their work on organometallic compounds.
    [Show full text]
  • Discovery of Benzyne, O-C6H4, in TMC-1 with the QUIJOTE Line Survey? J
    Astronomy & Astrophysics manuscript no. c6h4 ©ESO 2021 August 6, 2021 Letter to the Editor 1 Discovery of benzyne, o-C6H4, in TMC-1 with the QUIJOTE line survey? J. Cernicharo1, M. Agúndez1, R. I. Kaiser2, C. Cabezas1, B. Tercero3; 4, N. Marcelino1, J. R. Pardo1, P. de Vicente3 1 Grupo de Astrofísica Molecular, Instituto de Física Fundamental (IFF-CSIC), C/ Serrano 121, 28006 Madrid, Spain e-mail: [email protected] 2 Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA 3 Centro de Desarrollos Tecnológicos, Observatorio de Yebes (IGN), 19141 Yebes, Guadalajara, Spain 4 Observatorio Astronómico Nacional (OAN, IGN), Madrid, Spain Received; accepted ABSTRACT We report the detection, for the first time in space, of a new non-functionalised hydrocarbon cycle in the direction of TMC-1: o- 11 −2 C6H4 (ortho-benzyne). We derive a column density for this hydrocarbon cycle of (5.0±1.0)×10 cm . The abundance of this species is around 30 times lower than that of cyclopentadiene and indene. We compare the abundance of benzyne with that of other pure hydrocarbons, cycles or chains, and find that it could be formed from neutral-radical reactions such as C2H + CH2CHCCH and C + C5H5, and possibly through C4H + C2H4,C3H + CH2CCH2, and C3H2+C3H3. Hence, the rich content of hydrocarbon cycles observed in TMC-1 could arise through a bottom-up scenario involving reactions of a few radicals with the abundant hydrocarbons recently revealed by the QUIJOTE line survey. Key words. molecular data – line: identification – ISM: molecules – ISM: individual (TMC-1) – astrochemistry 1.
    [Show full text]
  • REACTIONS of HALOCYCLOPROPANES. The
    This dissertation has been microfilmed exactly as received 69-11,652 HOUSER, Charles W., 1934- REACTIONS OF HALOCYCLOPROPANES. The Ohio State University, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan REACTIONS OF HALOCYCLOPROPANES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School o f The Ohio State U niversity By Charles W. Houser, B.A. ******** The Ohio State U niversity 1968 Approved hy /Adviser Department of Chemistry Dedicated to Jane and Brian i l ACKNOWLEDGMENTS The author wishes to express sincere appreciation to Professor Harold Shechter for the inception of this problem and for his helpful discussions throughout the course of this research. His editorial guidance during preparation of this manuscript is also gratefully acknowledged. National Science Foundation and Petroleum Research Fund are thanked for their financial assistance to this research. The author owes a special debt of gratitude to his wife, Jane, for her patience and encouragement during completion of this work. i i i VITA October 20, 1934 Born - Parkersburg, West Virginia 1954-1958 U. S. Marine Corps 1962 B.A., David Lipscomb College, Nashville, Tennessee 1962-1965 Teaching Assistant, The Ohio State University, Columbus, Ohio I965-I968 Research Associate, The Ohio State University, Columbus, Ohio iv CONTENTS Page ACKNOWLEDGMENTS.......................................................................................................... i i i VITA .........................................................................
    [Show full text]
  • Detection of Cyclopropenylidene on Titan
    EPSC Abstracts Vol. 14, EPSC2020-380, 2020, updated on 25 Sep 2021 https://doi.org/10.5194/epsc2020-380 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Detection of Cyclopropenylidene on Titan Conor Nixon1, Alexander Thelen1,2, Martin Cordiner1,3, Zbigniew Kisiel4, Steven Charnley1, Edward Molter5, Joseph Serigano6, Patrick Irwin7, Nicholas Teanby8, and Yi-Jehng Kuan9,10 1Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, United States of America ([email protected]) 2Universities Space Research Association, Columbia, MD 21046, USA 3Department of Physics, Catholic University of America, Washington, DC 20064, USA 4Institute of Physics, Polish Academy of Sciences, Al. Lotnik_ow 32/46, 02-668 Warszawa, Poland 5Department of Astronomy, University of California, Berkeley, CA 94720, USA 6Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA 7Atmospheric, Oceanic, and Planetary Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK 8School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK 9Department of Earth Sciences, National Taiwan Normal University, Taipei 116, Taiwan, ROC 10Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan, ROC Titan, Saturn’s largest moon, has long been known to harbor a thick atmosphere [1] that evolves a complex array of organic molecules through atmospheric photochemistry [2, 3]. Especially from the 1970s onwards, successive waves of investigation with ground-based telescopes, spacecraft including Voyager 1 and Cassini-Huygens, and space telescopes have revealed the molecular inventory of its atmosphere through remote sensing at UV to radio wavelengths, and in situ mass spectroscopy [4, 5].
    [Show full text]
  • Distribution of Methanol and Cyclopropenylidene Around Starless Cores ? S
    Astronomy & Astrophysics manuscript no. methanol_distribution c ESO 2020 September 11, 2020 Distribution of methanol and cyclopropenylidene around starless cores ? S. Spezzano1, P. Caselli1, J. E. Pineda1, L. Bizzocchi1, D. Prudenzano1, and Z. Nagy1;2 1 Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748 Garching, Germany 2 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thegeút 15–17, Hungary September 11, 2020 ABSTRACT Context. The spatial distribution of molecules around starless cores is a powerful tool for studying the physics and chemistry governing the earliest stages of star formation. Aims. Our aim is to study the chemical differentiation in starless cores to determine the influence of large-scale effects on the spatial distribution of molecules within the cores. Furthermore, we want to put observational constraints on the mechanisms responsible in starless cores for the desorption of methanol from the surface of dust grains where it is efficiently produced. Methods. We mapped methanol, CH3OH, and cyclopropenylidene, c-C3H2, with the IRAM 30m telescope in the 3 mm band towards six starless cores embedded in different environments, and in different evolutionary stages. Furthermore, we searched for correlations among physical properties of the cores and the methanol distribution. Results. From our maps we can infer that the chemical segregation between CH3OH and c-C3H2 is driven by uneven illumination from the interstellar radiation field (ISRF). The side of the core that is more illuminated has more C atoms in the gas-phase and the formation of carbon-chain molecules like c-C3H2 is enhanced. Instead, on the side that is less exposed to the ISRF the C atoms are mostly locked in carbon monoxide, CO, the precursor of methanol.
    [Show full text]
  • Investigation of Absolute Photoionization Cross Sections of Cyclic Ketones, Low Temperature Combustion of Propargylamine by Sync
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Master's Theses Theses, Dissertations, Capstones and Projects Spring 5-19-2017 Investigation of Absolute Photoionization Cross Sections of Cyclic Ketones, Low Temperature Combustion of Propargylamine by Synchrotron Photoionization Mass Spectrometry, and Computational Study of Hypersalts Chelsea Liliana Price [email protected] Follow this and additional works at: https://repository.usfca.edu/thes Recommended Citation Price, Chelsea Liliana, "Investigation of Absolute Photoionization Cross Sections of Cyclic Ketones, Low Temperature Combustion of Propargylamine by Synchrotron Photoionization Mass Spectrometry, and Computational Study of Hypersalts" (2017). Master's Theses. 246. https://repository.usfca.edu/thes/246 This Thesis is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Theses by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. Investigation of Absolute Photoionization Cross Sections of Cyclic Ketones, Low Temperature Combustion of Propargylamine by Synchrotron Photoionization Mass Spectrometry, and Computational Study of Hypersalts Thesis written by Chelsea L. Price This thesis is written under the guidance of Faculty Advisory Committee, approved by all its members, and has been accepted in partial fulfillment of the requirements of the degree of Masters of Science in Chemistry at the University of San Francisco Thesis Committee Giovanni Meloni, PhD. Date Research Director Janet Yang, PhD. Date Assitant Professor William Melaugh, PhD. Date Professor Marcelo Camperi, PhD.
    [Show full text]
  • Gas-Phase Reactions of Cyclopropenylidene with Protonated Alkyl Amines Ziqing Lin, Lei Tan, Yang Yang, Mingji Dai, František Tureček*, Zheng Ouyang*, Yu Xia*
    Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2016 Electronic Supplementary Information Gas-Phase Reactions of Cyclopropenylidene with Protonated Alkyl Amines Ziqing Lin, Lei Tan, Yang Yang, Mingji Dai, František Tureček*, Zheng Ouyang*, Yu Xia* 1 / 21 Contents 1. Reagents.................................................................................................... 3 1.1 Chemicals ............................................................................................................................. 3 1.2 Synthesis ............................................................................................................................... 3 2. Instrumentation ........................................................................................ 4 2.1 DAPI-RIT-DAPI system ..................................................................................................... 4 2.2 Pyrolysis nozzle .................................................................................................................... 6 3. Mass spectra ............................................................................................. 7 4. Theoretical calculations ......................................................................... 155 5. References ............................................................................................... 21 2 / 21 1. Reagents 1.1 Chemicals Alkyl amines, amino acids, and peptides were purchased from Sigma Chemical Co. (Sigma-Aldrich, St. Louis,
    [Show full text]
  • Study of Beryllium, Magnesium, and Spodium Bonds to Carbenes and Carbodiphosphoranes
    molecules Article Study of Beryllium, Magnesium, and Spodium Bonds to Carbenes and Carbodiphosphoranes Mirosław Jabło ´nski † Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toru´n,Poland; [email protected]; Tel.: +48-056-611-4695 † Current address: 7-Gagarina St., 87-100 Toru´n,Poland. Abstract: The aim of this article is to present results of theoretical study on the properties of C··· M bonds, where C is either a carbene or carbodiphosphorane carbon atom and M is an acidic center of MX2 (M = Be, Mg, Zn). Due to the rarity of theoretical data regarding the C··· Zn bond (i.e., the zinc bond), the main focus is placed on comparing the characteristics of this interaction with C··· Be (beryllium bond) and C··· Mg (magnesium bond). For this purpose, theoretical studies (wB97X-D/6-311++G(2df,2p)) have been performed for a large group of dimers formed by MX2 (X = H, F, Cl, Br, Me) and either a carbene ((NH2)2C, imidazol-2-ylidene, imidazolidin-2-ylidene, tetrahydropyrymid-2-ylidene, cyclopropenylidene) or carbodiphosphorane ((PH3)2C, (NH3)2C) molecule. The investigated dimers are characterized by a very strong charge transfer effect from either the carbene or carbodiphosphorane molecule to the MX2 one. This may even be over six times as strong as in the water dimer. According to the QTAIM and NCI method, the zinc bond is not very different than the beryllium bond, with both featuring a significant covalent contribution. However, the zinc bond should be definitely stronger if delocalization index is considered. Citation: Jabło´nski,M. Study of Beryllium, Magnesium, and Keywords: beryllium bond; magnesium bond; zinc bond; spodium bond; carbene; carbodiphospho- Spodium Bonds to Carbenes and ranes; intermolecular interaction; beryllium; magnesium; zinc Carbodiphosphoranes.
    [Show full text]