Symmetry Descriptors and 3D Shape Matching

Total Page:16

File Type:pdf, Size:1020Kb

Symmetry Descriptors and 3D Shape Matching Eurographics Symposium on Geometry Processing (2004) R. Scopigno, D. Zorin, (Editors) Symmetry Descriptors and 3D Shape Matching Michael Kazhdan, Thomas Funkhouser and Szymon Rusinkiewicz Department of Computer Science, Princeton University, Princeton NJ Abstract In this paper, we present the Symmetry Descriptors of a 3D model. This is a collection of spherical functions that describes the measure of a model's rotational and reflective symmetry with respect to every axis passing through the center of mass. We show that Symmetry Descriptors can be computed efficiently using fast signal processing techniques, and demonstrate the empirical value of Symmetry Descriptors by showing that they improve matching performance in a variety of shape retrieval experiments. Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech- niques 1. Introduction magnitude of the projection of the model onto the space of models having that symmetry. Symmetry has long been recognized as playing an inte- gral role in human recognition [Att55, Vet92]. It is char- Figure 1 shows a visualization of the Symmetry Descrip- acteristic of repeating patterns within a model, and can be tors of two models. The descriptors are represented by scal- used to guide reconstruction, compression, and classifica- ing points on the unit sphere in proportion to the measure tion. This awareness has motivated the development of a of symmetry, so that points corresponding to axes of near wide range of techniques for identifying the symmetries symmetry are pushed out from the origin and points corre- of a 2D image [Ata85, Wol85, Hig86, Sun95, Mar89]. How- sponding to axes of near anti-symmetry are pulled in to the ever, the increased complexity of the rotation group in three- origin. Thus, for the 2-fold (respectively k-fold) symmetry dimensions has resulted in little research on symmetry de- descriptors, peaks in the descriptors correspond to axes of tection in 3D. Methods for measuring individual symme- near perfect 2-fold (respectively k-fold) rotational symme- tries have been proposed [Zab94, Zab95], and a general ap- try. Similarly, for the reflective symmetry descriptors, peaks proach for characterizing the measure of all reflective sym- correspond to unit vectors perpendicular to planes of near metries has been described [Kaz02, Kaz04], but no analo- perfect reflective symmetry. gous method for describing all rotational symmetries exists. In this paper, we present the Symmetry Descriptors of a The contribution of our work is three-fold. First, we define model. This is a generalization of the Reflective Symme- a continuous measure for the reflective and rotational sym- try Descriptor presented in [Kaz02, Kaz04]. It represents a metry of a 3D model. Second, we provide an efficient algo- 3D model as a collection of spherical functions that give rithm for computing the measure for all symmetries about a the measure of a model's reflective and rotational symme- model's center of mass. Third, we present experimental re- try, with respect to every axis passing through the center of sults evaluating the empirical value of the symmetry descrip- mass. Thus, it can be used not only to identify axes of per- tors in shape retrieval applications. In these experiments, we fect symmetry, but also to measure the quality of symmetry find that symmetry can be used to augment existing methods with respect to any axis. Specifically, the measure of k-fold for matching 3D shapes, providing enhanced discrimination symmetry of a model around some axis is defined to be the and matching performance without sacrificing efficiency. c The Eurographics Association 2004. M. Kazhdan T. Funkhouser & S. Rusinkiewicz / Symmetry Descriptors of work needed to transform a model into a symmetric model, measured as the sum of the squares of the distances that points would need to be moved. This approach made it possible to evaluate symmetries in the presence of noise, but suffered from the fact that it depended on the establish- ment of point correspondences. While this issue could be addressed in the case of 2D curves with uniform sampling, it made it difficult to generalize the method to 3D where uniformly sampling surfaces is often impossible. The difficulty of establishing point correspondences for matching surfaces in 3D has motivated the development of A visualization of the symmetry descriptors for a stool Figure 1: shape descriptors which represent a 3D model by a func- and an iris. The visualization is obtained by scaling unit vectors on the sphere in proportion to the measure of rotational symmetry tion defined on a canonical domain, independent of the ini- about the axis through the center of mass, in the direction of the vec- tial model's shape or topology. (For a general review of such tor, and the measure of reflective symmetry about the plane through methods see [Pop94, Tan04].) For these descriptors, match- the center of mass, normal to the vector. ing two models could now be performed without explicitly establishing correspondences, by comparing the values of the corresponding shape descriptors at each point. The rest of this paper is structured as follows. Section 2 The advantage of the canonical parameterization of shape reviews related work in the area of symmetry detection. Sec- descriptors was leveraged in a number of symmetry detec- tion 3 provides a theoretical overview of symmetry, and de- tion algorithms [Oma96, Sun97]. These methods used the fines the Symmetry Descriptors. Section 4 describes an effi- fact that the covariance ellipsoid of a 3D model rotates with cient method for computing the Symmetry Descriptors of the model, so that a model could only have symmetries spherical and voxel representations of a 3D model, while where its covariance ellipsoid had them. Since the only axes Section 5 summarizes some properties of the descriptors. In of symmetry of an ellipsoid have to align with its princi- Section 6, we describe how symmetry information can be pal axes, this provided an efficient way to identify candi- incorporated into existing rotation invariant representations, date axes of symmetry. The actual quality of an axis as an and in Section 7, we evaluate the contribution of symmetry axis of symmetry would then be measured by comparing the augmentation in experiments comparing the retrieval perfor- shape descriptor of the model with the shape descriptors of mance of the original representation with the retrieval per- the rotations and reflections of the model about the candidate formance of the augmented representation. Finally, we con- axis. This method had the advantage of providing a contin- clude in Section 8 by summarizing our work. uous measure of symmetry for candidate axes of symme- try without necessitating the establishment of point corre- spondences. Furthermore, the method was a general one that 2. Related Work could be applied to wide class of shape descriptors. How- ever, the method's dependence on PCA for the identification Early approaches to symmetry detection focused of candidate axes could only guarantee the correct identifi- on detecting the symmetries of planar point cation of symmetry axes for models with perfect symmetry. sets [Ata85, Wol85, Hig86]. These methods reduced the symmetry detection problem to a detection of symmetry Motivated by the ease of evaluating symmetry using shape in circular strings, and used efficient substring algorithms descriptors, and the efficiency of exhaustive search provided (e.g., [Knu77]) to detect the symmetries by searching for by early substring matching approaches, efficient meth- the appearance of a string within its concatenation with ods for evaluating the symmetries of a 2D model, at ev- itself. While these methods had the theoretical advantage ery symmetry, were developed. The key idea of these ap- of efficiently evaluating all possible symmetries, they were proaches was the generalization of discrete substring match- impractical in empirical settings since they were algorithms ing to continuous correlation with the Fast Fourier Trans- that could only identify the perfect symmetries of a model. form. These methods [Sun95, Mar89] compute the symme- Thus if a symmetric model had even a small amount of tries of a model by using correlation to compare the shape noise, these methods would fail to identify its symmetries. descriptor of a 2D model with all of its rotations and reflec- tions. This approach was a general one that could be applied In order to address this issue, Zabrodsky et to any shape descriptor that represented a model with a func- al. [Zab94, Zab95] defined a continuous measure of tion defined either on a circle, or in 2D. symmetry which transformed the binary question: “Does a model have a given symmetry?” to the continuous question: The dependence of these methods on the FFT made them “How much of a given symmetry does a model have?” The hard to generalize to shape descriptors that represented a measure of symmetry was defined as the minimum amount 3D model with either a spherical function or a function in c The Eurographics Association 2004. M. Kazhdan T. Funkhouser & S. Rusinkiewicz / Symmetry Descriptors 3D. In [Kaz02, Kaz04] a method is described for computing In general, computing the projection of v onto the sub- the measure of reflective symmetries for all planes passing space of vectors invariant under the action of G is a difficult through the origin. For a spherical descriptor of size O(N2) task. However, in our case we can use the fact that the ele- (respectively 3D function of size O(N3)) the method com- ments of G are orthogonal transformations. In particular, we putes the measures of reflective symmetry in O(N3 logN) can apply a theorem from representation theory [Ser77] stat- (respectively O(N4 logN)) time. The efficiency of this ap- ing that a projection of a vector onto the subspace invariant proach relies on the use of the FFT to compute correlation under the action of an orthogonal group is the average of the with respect to a single axis efficiently and a generalization vector over the different elements in the group.
Recommended publications
  • Swimming in Spacetime: Motion by Cyclic Changes in Body Shape
    RESEARCH ARTICLE tation of the two disks can be accomplished without external torques, for example, by fixing Swimming in Spacetime: Motion the distance between the centers by a rigid circu- lar arc and then contracting a tension wire sym- by Cyclic Changes in Body Shape metrically attached to the outer edge of the two caps. Nevertheless, their contributions to the zˆ Jack Wisdom component of the angular momentum are parallel and add to give a nonzero angular momentum. Cyclic changes in the shape of a quasi-rigid body on a curved manifold can lead Other components of the angular momentum are to net translation and/or rotation of the body. The amount of translation zero. The total angular momentum of the system depends on the intrinsic curvature of the manifold. Presuming spacetime is a is zero, so the angular momentum due to twisting curved manifold as portrayed by general relativity, translation in space can be must be balanced by the angular momentum of accomplished simply by cyclic changes in the shape of a body, without any the motion of the system around the sphere. external forces. A net rotation of the system can be ac- complished by taking the internal configura- The motion of a swimmer at low Reynolds of cyclic changes in their shape. Then, presum- tion of the system through a cycle. A cycle number is determined by the geometry of the ing spacetime is a curved manifold as portrayed may be accomplished by increasing ␪ by ⌬␪ sequence of shapes that the swimmer assumes by general relativity, I show that net translations while holding ␾ fixed, then increasing ␾ by (1).
    [Show full text]
  • Art Concepts for Kids: SHAPE & FORM!
    Art Concepts for Kids: SHAPE & FORM! Our online art class explores “shape” and “form” . Shapes are spaces that are created when a line reconnects with itself. Forms are three dimensional and they have length, width and depth. This sweet intro song teaches kids all about shape! Scratch Garden Value Song (all ages) https://www.youtube.com/watch?v=coZfbTIzS5I Another great shape jam! https://www.youtube.com/watch?v=6hFTUk8XqEc Cookie Monster eats his shapes! https://www.youtube.com/watch?v=gfNalVIrdOw&list=PLWrCWNvzT_lpGOvVQCdt7CXL ggL9-xpZj&index=10&t=0s Now for the activities!! Click on the links in the descriptions below for the step by step details. Ages 2-4 Shape Match https://busytoddler.com/2017/01/giant-shape-match-activity/ Shapes are an easy art concept for the littles. Lots of their environment gives play and art opportunities to learn about shape. This Matching activity involves tracing the outside shape of blocks and having littles match the block to the outline. It can be enhanced by letting your little ones color the shapes emphasizing inside and outside the shape lines. Block Print Shapes https://thepinterestedparent.com/2017/08/paul-klee-inspired-block-printing/ Printing is a great technique for young kids to learn. The motion is like stamping so you teach little ones to press and pull rather than rub or paint. This project requires washable paint and paper and block that are not natural wood (which would stain) you want blocks that are painted or sealed. Kids can look at Paul Klee art for inspiration in stacking their shapes into buildings, or they can chose their own design Ages 4-6 Lois Ehlert Shape Animals http://www.momto2poshlildivas.com/2012/09/exploring-shapes-and-colors-with-color.html This great project allows kids to play with shapes to make animals in the style of the artist Lois Ehlert.
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry .
    [Show full text]
  • Geometric Modeling in Shape Space
    Geometric Modeling in Shape Space Martin Kilian Niloy J. Mitra Helmut Pottmann Vienna University of Technology Figure 1: Geodesic interpolation and extrapolation. The blue input poses of the elephant are geodesically interpolated in an as-isometric- as-possible fashion (shown in green), and the resulting path is geodesically continued (shown in purple) to naturally extend the sequence. No semantic information, segmentation, or knowledge of articulated components is used. Abstract space, line geometry interprets straight lines as points on a quadratic surface [Berger 1987], and the various types of sphere geometries We present a novel framework to treat shapes in the setting of Rie- model spheres as points in higher dimensional space [Cecil 1992]. mannian geometry. Shapes – triangular meshes or more generally Other examples concern kinematic spaces and Lie groups which straight line graphs in Euclidean space – are treated as points in are convenient for handling congruent shapes and motion design. a shape space. We introduce useful Riemannian metrics in this These examples show that it is often beneficial and insightful to space to aid the user in design and modeling tasks, especially to endow the set of objects under consideration with additional struc- explore the space of (approximately) isometric deformations of a ture and to work in more abstract spaces. We will show that many given shape. Much of the work relies on an efficient algorithm to geometry processing tasks can be solved by endowing the set of compute geodesics in shape spaces; to this end, we present a multi- closed orientable surfaces – called shapes henceforth – with a Rie- resolution framework to solve the interpolation problem – which mannian structure.
    [Show full text]
  • Chapter 1 – Symmetry of Molecules – P. 1
    Chapter 1 – Symmetry of Molecules – p. 1 - 1. Symmetry of Molecules 1.1 Symmetry Elements · Symmetry operation: Operation that transforms a molecule to an equivalent position and orientation, i.e. after the operation every point of the molecule is coincident with an equivalent point. · Symmetry element: Geometrical entity (line, plane or point) which respect to which one or more symmetry operations can be carried out. In molecules there are only four types of symmetry elements or operations: · Mirror planes: reflection with respect to plane; notation: s · Center of inversion: inversion of all atom positions with respect to inversion center, notation i · Proper axis: Rotation by 2p/n with respect to the axis, notation Cn · Improper axis: Rotation by 2p/n with respect to the axis, followed by reflection with respect to plane, perpendicular to axis, notation Sn Formally, this classification can be further simplified by expressing the inversion i as an improper rotation S2 and the reflection s as an improper rotation S1. Thus, the only symmetry elements in molecules are Cn and Sn. Important: Successive execution of two symmetry operation corresponds to another symmetry operation of the molecule. In order to make this statement a general rule, we require one more symmetry operation, the identity E. (1.1: Symmetry elements in CH4, successive execution of symmetry operations) 1.2. Systematic classification by symmetry groups According to their inherent symmetry elements, molecules can be classified systematically in so called symmetry groups. We use the so-called Schönfliess notation to name the groups, Chapter 1 – Symmetry of Molecules – p. 2 - which is the usual notation for molecules.
    [Show full text]
  • Shape Synthesis Notes
    SHAPE SYNTHESIS OF HIGH-PERFORMANCE MACHINE PARTS AND JOINTS By John M. Starkey Based on notes from Walter L. Starkey Written 1997 Updated Summer 2010 2 SHAPE SYNTHESIS OF HIGH-PERFORMANCE MACHINE PARTS AND JOINTS Much of the activity that takes place during the design process focuses on analysis of existing parts and existing machinery. There is very little attention focused on the synthesis of parts and joints and certainly there is very little information available in the literature addressing the shape synthesis of parts and joints. The purpose of this document is to provide guidelines for the shape synthesis of high-performance machine parts and of joints. Although these rules represent good design practice for all machinery, they especially apply to high performance machines, which require high strength-to-weight ratios, and machines for which manufacturing cost is not an overriding consideration. Examples will be given throughout this document to illustrate this. Two terms which will be used are part and joint. Part refers to individual components manufactured from a single block of raw material or a single molding. The main body of the part transfers loads between two or more joint areas on the part. A joint is a location on a machine at which two or more parts are fastened together. 1.0 General Synthesis Goals Two primary principles which govern the shape synthesis of a part assert that (1) the size and shape should be chosen to induce a uniform stress or load distribution pattern over as much of the body as possible, and (2) the weight or volume of material used should be a minimum, consistent with cost, manufacturing processes, and other constraints.
    [Show full text]
  • Geometry and Art LACMA | | April 5, 2011 Evenings for Educators
    Geometry and Art LACMA | Evenings for Educators | April 5, 2011 ALEXANDER CALDER (United States, 1898–1976) Hello Girls, 1964 Painted metal, mobile, overall: 275 x 288 in., Art Museum Council Fund (M.65.10) © Alexander Calder Estate/Artists Rights Society (ARS), New York/ADAGP, Paris EOMETRY IS EVERYWHERE. WE CAN TRAIN OURSELVES TO FIND THE GEOMETRY in everyday objects and in works of art. Look carefully at the image above and identify the different, lines, shapes, and forms of both GAlexander Calder’s sculpture and the architecture of LACMA’s built environ- ment. What is the proportion of the artwork to the buildings? What types of balance do you see? Following are images of artworks from LACMA’s collection. As you explore these works, look for the lines, seek the shapes, find the patterns, and exercise your problem-solving skills. Use or adapt the discussion questions to your students’ learning styles and abilities. 1 Language of the Visual Arts and Geometry __________________________________________________________________________________________________ LINE, SHAPE, FORM, PATTERN, SYMMETRY, SCALE, AND PROPORTION ARE THE BUILDING blocks of both art and math. Geometry offers the most obvious connection between the two disciplines. Both art and math involve drawing and the use of shapes and forms, as well as an understanding of spatial concepts, two and three dimensions, measurement, estimation, and pattern. Many of these concepts are evident in an artwork’s composition, how the artist uses the elements of art and applies the principles of design. Problem-solving skills such as visualization and spatial reasoning are also important for artists and professionals in math, science, and technology.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Symmetry of Graphs. Circles
    Symmetry of graphs. Circles Symmetry of graphs. Circles 1 / 10 Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Reflection across y reflection across x reflection across (0; 0) Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Symmetry of graphs. Circles 2 / 10 Reflection across y reflection across x reflection across (0; 0) Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Symmetry of graphs. Circles 2 / 10 Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Reflection across y reflection across x reflection across (0; 0) Symmetry of graphs. Circles 2 / 10 Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object.
    [Show full text]
  • C) Shape Formulas for Volume (V) and Surface Area (SA
    Formula Reference Sheet Shape Formulas for Area (A) and Circumference (C) Triangle ϭ 1 ϭ 1 ϫ ϫ A 2 bh 2 base height Rectangle A ϭ lw ϭ length ϫ width Trapezoid ϭ 1 + ϭ 1 ϫ ϫ A 2 (b1 b2)h 2 sum of bases height Parallelogram A ϭ bh ϭ base ϫ height A ϭ πr2 ϭ π ϫ square of radius Circle C ϭ 2πr ϭ 2 ϫ π ϫ radius C ϭ πd ϭ π ϫ diameter Figure Formulas for Volume (V) and Surface Area (SA) Rectangular Prism SV ϭ lwh ϭ length ϫ width ϫ height SA ϭ 2lw ϩ 2hw ϩ 2lh ϭ 2(length ϫ width) ϩ 2(height ϫ width) 2(length ϫ height) General SV ϭ Bh ϭ area of base ϫ height Prisms SA ϭ sum of the areas of the faces Right Circular SV ϭ Bh = area of base ϫ height Cylinder SA ϭ 2B ϩ Ch ϭ (2 ϫ area of base) ϩ (circumference ϫ height) ϭ 1 ϭ 1 ϫ ϫ Square Pyramid SV 3 Bh 3 area of base height ϭ ϩ 1 l SA B 2 P ϭ ϩ 1 ϫ ϫ area of base ( 2 perimeter of base slant height) Right Circular ϭ 1 ϭ 1 ϫ ϫ SV 3 Bh 3 area of base height Cone ϭ ϩ 1 l ϭ ϩ 1 ϫ ϫ SA B 2 C area of base ( 2 circumference slant height) ϭ 4 π 3 ϭ 4 ϫ π ϫ Sphere SV 3 r 3 cube of radius SA ϭ 4πr2 ϭ 4 ϫ π ϫ square of radius 41830 a41830_RefSheet_02MHS 1 8/29/01, 7:39 AM Equations of a Line Coordinate Geometry Formulas Standard Form: Let (x1, y1) and (x2, y2) be two points in the plane.
    [Show full text]
  • Line, Color, Space, Light, and Shape: What Do They Do? What Do They Evoke?
    LINE, COLOR, SPACE, LIGHT, AND SHAPE: WHAT DO THEY DO? WHAT DO THEY EVOKE? Good composition is like a suspension bridge; each line adds strength and takes none away… Making lines run into each other is not composition. There must be motive for the connection. Get the art of controlling the observer—that is composition. —Robert Henri, American painter and teacher The elements and principals of art and design, and how they are used, contribute mightily to the ultimate composition of a work of art—and that can mean the difference between a masterpiece and a messterpiece. Just like a reader who studies vocabulary and sentence structure to become fluent and present within a compelling story, an art appreciator who examines line, color, space, light, and shape and their roles in a given work of art will be able to “stand with the artist” and think about how they made the artwork “work.” In this activity, students will practice looking for design elements in works of art, and learn to describe and discuss how these elements are used in artistic compositions. Grade Level Grades 4–12 Common Core Academic Standards • CCSS.ELA-Writing.CCRA.W.3 • CCSS.ELA-Speaking and Listening.CCRA.SL.1 • CCSS.ELA-Literacy.CCSL.2 • CCSS.ELA-Speaking and Listening.CCRA.SL.4 National Visual Arts Standards Still Life with a Ham and a Roemer, c. 1631–34 Willem Claesz. Heda, Dutch • Artistic Process: Responding: Understanding Oil on panel and evaluating how the arts convey meaning 23 1/4 x 32 1/2 inches (59 x 82.5 cm) John G.
    [Show full text]
  • Shape, Dimension, and Geometric Relationships Calendar Pacing 3 Times Per Checkpoint
    Content Area Mathematics Grade/Course Preschool School Year 2018-19 Framework Number: Name 02: Shape, Dimension, and Geometric Relationships Calendar Pacing 3 times per checkpoint ULTIMATE CURRICULUM FRAMEWORK GOALS Ultimate Performance Task The most important performance we want learners to be able to do with the acquired content knowledge and skills of this framework is: ● to use their understanding of order and position to independently describe location. ● to describe attributes of a new shape in a new orientation or new setting. ● to explain how they independently organized various groups of objects. Transfer Goal(s) Students will be able to independently use their learning to … ● describe shape attributes and positioning in order to describe and understand the environment such as in following directions, organizing and arranging their space through critical thinking and problem solving. Meaning Goals BIG IDEAS / UNDERSTANDINGS ESSENTIAL QUESTIONS Students will understand that … Students will keep considering: ● they need to be able to describe the location of objects. ● How do we describe where something is? ● they need to be able to describe the characteristics of shapes ● How are these shapes the same or different? including three-dimensional shapes. ● What ways are objects sorted? IDEAS IMPORTANTES / CONOCIMIENTOS PREGUNTAS ESENCIALES Los estudiantes comprenderán que … Los estudiantes seguirán teniendo en cuenta: ● necesitarán poder describir la ubicación de objetos. ● ¿Cómo describimos la ubicación de las cosas? ● necesitaran describir las características de formas incluyendo ● ¿Cómo son las formas iguales o diferentes? formas tridimensionales. ● ¿En qué maneras se pueden ordenar los objetos? Acquisition Goals In order to reach the ULTIMATE GOALS, students must have acquired the following knowledge, skills, and vocabulary.
    [Show full text]