Swimming in Spacetime: Motion by Cyclic Changes in Body Shape
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Art Concepts for Kids: SHAPE & FORM!
Art Concepts for Kids: SHAPE & FORM! Our online art class explores “shape” and “form” . Shapes are spaces that are created when a line reconnects with itself. Forms are three dimensional and they have length, width and depth. This sweet intro song teaches kids all about shape! Scratch Garden Value Song (all ages) https://www.youtube.com/watch?v=coZfbTIzS5I Another great shape jam! https://www.youtube.com/watch?v=6hFTUk8XqEc Cookie Monster eats his shapes! https://www.youtube.com/watch?v=gfNalVIrdOw&list=PLWrCWNvzT_lpGOvVQCdt7CXL ggL9-xpZj&index=10&t=0s Now for the activities!! Click on the links in the descriptions below for the step by step details. Ages 2-4 Shape Match https://busytoddler.com/2017/01/giant-shape-match-activity/ Shapes are an easy art concept for the littles. Lots of their environment gives play and art opportunities to learn about shape. This Matching activity involves tracing the outside shape of blocks and having littles match the block to the outline. It can be enhanced by letting your little ones color the shapes emphasizing inside and outside the shape lines. Block Print Shapes https://thepinterestedparent.com/2017/08/paul-klee-inspired-block-printing/ Printing is a great technique for young kids to learn. The motion is like stamping so you teach little ones to press and pull rather than rub or paint. This project requires washable paint and paper and block that are not natural wood (which would stain) you want blocks that are painted or sealed. Kids can look at Paul Klee art for inspiration in stacking their shapes into buildings, or they can chose their own design Ages 4-6 Lois Ehlert Shape Animals http://www.momto2poshlildivas.com/2012/09/exploring-shapes-and-colors-with-color.html This great project allows kids to play with shapes to make animals in the style of the artist Lois Ehlert. -
Foundations of Newtonian Dynamics: an Axiomatic Approach For
Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that -
Geometric Modeling in Shape Space
Geometric Modeling in Shape Space Martin Kilian Niloy J. Mitra Helmut Pottmann Vienna University of Technology Figure 1: Geodesic interpolation and extrapolation. The blue input poses of the elephant are geodesically interpolated in an as-isometric- as-possible fashion (shown in green), and the resulting path is geodesically continued (shown in purple) to naturally extend the sequence. No semantic information, segmentation, or knowledge of articulated components is used. Abstract space, line geometry interprets straight lines as points on a quadratic surface [Berger 1987], and the various types of sphere geometries We present a novel framework to treat shapes in the setting of Rie- model spheres as points in higher dimensional space [Cecil 1992]. mannian geometry. Shapes – triangular meshes or more generally Other examples concern kinematic spaces and Lie groups which straight line graphs in Euclidean space – are treated as points in are convenient for handling congruent shapes and motion design. a shape space. We introduce useful Riemannian metrics in this These examples show that it is often beneficial and insightful to space to aid the user in design and modeling tasks, especially to endow the set of objects under consideration with additional struc- explore the space of (approximately) isometric deformations of a ture and to work in more abstract spaces. We will show that many given shape. Much of the work relies on an efficient algorithm to geometry processing tasks can be solved by endowing the set of compute geodesics in shape spaces; to this end, we present a multi- closed orientable surfaces – called shapes henceforth – with a Rie- resolution framework to solve the interpolation problem – which mannian structure. -
Phoronomy: Space, Construction, and Mathematizing Motion Marius Stan
To appear in Bennett McNulty (ed.), Kant’s Metaphysical Foundations of Natural Science: A Critical Guide. Cambridge University Press. Phoronomy: space, construction, and mathematizing motion Marius Stan With his chapter, Phoronomy, Kant defies even the seasoned interpreter of his philosophy of physics.1 Exegetes have given it little attention, and un- derstandably so: his aims are opaque, his turns in argument little motivated, and his context mysterious, which makes his project there look alienating. I seek to illuminate here some of the darker corners in that chapter. Specifi- cally, I aim to clarify three notions in it: his concepts of velocity, of compo- site motion, and of the construction required to compose motions. I defend three theses about Kant. 1) his choice of velocity concept is ul- timately insufficient. 2) he sided with the rationalist faction in the early- modern debate on directed quantities. 3) it remains an open question if his algebra of motion is a priori, though he believed it was. I begin in § 1 by explaining Kant’s notion of phoronomy and its argu- ment structure in his chapter. In § 2, I present four pictures of velocity cur- rent in Kant’s century, and I assess the one he chose. My § 3 is in three parts: a historical account of why algebra of motion became a topic of early modern debate; a synopsis of the two sides that emerged then; and a brief account of his contribution to the debate. Finally, § 4 assesses how general his account of composite motion is, and if it counts as a priori knowledge. -
Shape Synthesis Notes
SHAPE SYNTHESIS OF HIGH-PERFORMANCE MACHINE PARTS AND JOINTS By John M. Starkey Based on notes from Walter L. Starkey Written 1997 Updated Summer 2010 2 SHAPE SYNTHESIS OF HIGH-PERFORMANCE MACHINE PARTS AND JOINTS Much of the activity that takes place during the design process focuses on analysis of existing parts and existing machinery. There is very little attention focused on the synthesis of parts and joints and certainly there is very little information available in the literature addressing the shape synthesis of parts and joints. The purpose of this document is to provide guidelines for the shape synthesis of high-performance machine parts and of joints. Although these rules represent good design practice for all machinery, they especially apply to high performance machines, which require high strength-to-weight ratios, and machines for which manufacturing cost is not an overriding consideration. Examples will be given throughout this document to illustrate this. Two terms which will be used are part and joint. Part refers to individual components manufactured from a single block of raw material or a single molding. The main body of the part transfers loads between two or more joint areas on the part. A joint is a location on a machine at which two or more parts are fastened together. 1.0 General Synthesis Goals Two primary principles which govern the shape synthesis of a part assert that (1) the size and shape should be chosen to induce a uniform stress or load distribution pattern over as much of the body as possible, and (2) the weight or volume of material used should be a minimum, consistent with cost, manufacturing processes, and other constraints. -
Geometry and Art LACMA | | April 5, 2011 Evenings for Educators
Geometry and Art LACMA | Evenings for Educators | April 5, 2011 ALEXANDER CALDER (United States, 1898–1976) Hello Girls, 1964 Painted metal, mobile, overall: 275 x 288 in., Art Museum Council Fund (M.65.10) © Alexander Calder Estate/Artists Rights Society (ARS), New York/ADAGP, Paris EOMETRY IS EVERYWHERE. WE CAN TRAIN OURSELVES TO FIND THE GEOMETRY in everyday objects and in works of art. Look carefully at the image above and identify the different, lines, shapes, and forms of both GAlexander Calder’s sculpture and the architecture of LACMA’s built environ- ment. What is the proportion of the artwork to the buildings? What types of balance do you see? Following are images of artworks from LACMA’s collection. As you explore these works, look for the lines, seek the shapes, find the patterns, and exercise your problem-solving skills. Use or adapt the discussion questions to your students’ learning styles and abilities. 1 Language of the Visual Arts and Geometry __________________________________________________________________________________________________ LINE, SHAPE, FORM, PATTERN, SYMMETRY, SCALE, AND PROPORTION ARE THE BUILDING blocks of both art and math. Geometry offers the most obvious connection between the two disciplines. Both art and math involve drawing and the use of shapes and forms, as well as an understanding of spatial concepts, two and three dimensions, measurement, estimation, and pattern. Many of these concepts are evident in an artwork’s composition, how the artist uses the elements of art and applies the principles of design. Problem-solving skills such as visualization and spatial reasoning are also important for artists and professionals in math, science, and technology. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
C) Shape Formulas for Volume (V) and Surface Area (SA
Formula Reference Sheet Shape Formulas for Area (A) and Circumference (C) Triangle ϭ 1 ϭ 1 ϫ ϫ A 2 bh 2 base height Rectangle A ϭ lw ϭ length ϫ width Trapezoid ϭ 1 + ϭ 1 ϫ ϫ A 2 (b1 b2)h 2 sum of bases height Parallelogram A ϭ bh ϭ base ϫ height A ϭ πr2 ϭ π ϫ square of radius Circle C ϭ 2πr ϭ 2 ϫ π ϫ radius C ϭ πd ϭ π ϫ diameter Figure Formulas for Volume (V) and Surface Area (SA) Rectangular Prism SV ϭ lwh ϭ length ϫ width ϫ height SA ϭ 2lw ϩ 2hw ϩ 2lh ϭ 2(length ϫ width) ϩ 2(height ϫ width) 2(length ϫ height) General SV ϭ Bh ϭ area of base ϫ height Prisms SA ϭ sum of the areas of the faces Right Circular SV ϭ Bh = area of base ϫ height Cylinder SA ϭ 2B ϩ Ch ϭ (2 ϫ area of base) ϩ (circumference ϫ height) ϭ 1 ϭ 1 ϫ ϫ Square Pyramid SV 3 Bh 3 area of base height ϭ ϩ 1 l SA B 2 P ϭ ϩ 1 ϫ ϫ area of base ( 2 perimeter of base slant height) Right Circular ϭ 1 ϭ 1 ϫ ϫ SV 3 Bh 3 area of base height Cone ϭ ϩ 1 l ϭ ϩ 1 ϫ ϫ SA B 2 C area of base ( 2 circumference slant height) ϭ 4 π 3 ϭ 4 ϫ π ϫ Sphere SV 3 r 3 cube of radius SA ϭ 4πr2 ϭ 4 ϫ π ϫ square of radius 41830 a41830_RefSheet_02MHS 1 8/29/01, 7:39 AM Equations of a Line Coordinate Geometry Formulas Standard Form: Let (x1, y1) and (x2, y2) be two points in the plane. -
Line, Color, Space, Light, and Shape: What Do They Do? What Do They Evoke?
LINE, COLOR, SPACE, LIGHT, AND SHAPE: WHAT DO THEY DO? WHAT DO THEY EVOKE? Good composition is like a suspension bridge; each line adds strength and takes none away… Making lines run into each other is not composition. There must be motive for the connection. Get the art of controlling the observer—that is composition. —Robert Henri, American painter and teacher The elements and principals of art and design, and how they are used, contribute mightily to the ultimate composition of a work of art—and that can mean the difference between a masterpiece and a messterpiece. Just like a reader who studies vocabulary and sentence structure to become fluent and present within a compelling story, an art appreciator who examines line, color, space, light, and shape and their roles in a given work of art will be able to “stand with the artist” and think about how they made the artwork “work.” In this activity, students will practice looking for design elements in works of art, and learn to describe and discuss how these elements are used in artistic compositions. Grade Level Grades 4–12 Common Core Academic Standards • CCSS.ELA-Writing.CCRA.W.3 • CCSS.ELA-Speaking and Listening.CCRA.SL.1 • CCSS.ELA-Literacy.CCSL.2 • CCSS.ELA-Speaking and Listening.CCRA.SL.4 National Visual Arts Standards Still Life with a Ham and a Roemer, c. 1631–34 Willem Claesz. Heda, Dutch • Artistic Process: Responding: Understanding Oil on panel and evaluating how the arts convey meaning 23 1/4 x 32 1/2 inches (59 x 82.5 cm) John G. -
Shape, Dimension, and Geometric Relationships Calendar Pacing 3 Times Per Checkpoint
Content Area Mathematics Grade/Course Preschool School Year 2018-19 Framework Number: Name 02: Shape, Dimension, and Geometric Relationships Calendar Pacing 3 times per checkpoint ULTIMATE CURRICULUM FRAMEWORK GOALS Ultimate Performance Task The most important performance we want learners to be able to do with the acquired content knowledge and skills of this framework is: ● to use their understanding of order and position to independently describe location. ● to describe attributes of a new shape in a new orientation or new setting. ● to explain how they independently organized various groups of objects. Transfer Goal(s) Students will be able to independently use their learning to … ● describe shape attributes and positioning in order to describe and understand the environment such as in following directions, organizing and arranging their space through critical thinking and problem solving. Meaning Goals BIG IDEAS / UNDERSTANDINGS ESSENTIAL QUESTIONS Students will understand that … Students will keep considering: ● they need to be able to describe the location of objects. ● How do we describe where something is? ● they need to be able to describe the characteristics of shapes ● How are these shapes the same or different? including three-dimensional shapes. ● What ways are objects sorted? IDEAS IMPORTANTES / CONOCIMIENTOS PREGUNTAS ESENCIALES Los estudiantes comprenderán que … Los estudiantes seguirán teniendo en cuenta: ● necesitarán poder describir la ubicación de objetos. ● ¿Cómo describimos la ubicación de las cosas? ● necesitaran describir las características de formas incluyendo ● ¿Cómo son las formas iguales o diferentes? formas tridimensionales. ● ¿En qué maneras se pueden ordenar los objetos? Acquisition Goals In order to reach the ULTIMATE GOALS, students must have acquired the following knowledge, skills, and vocabulary. -
Central Limit Theorems for the Brownian Motion on Large Unitary Groups
CENTRAL LIMIT THEOREMS FOR THE BROWNIAN MOTION ON LARGE UNITARY GROUPS FLORENT BENAYCH-GEORGES Abstract. In this paper, we are concerned with the large n limit of the distributions of linear combinations of the entries of a Brownian motion on the group of n × n unitary matrices. We prove that the process of such a linear combination converges to a Gaussian one. Various scales of time and various initial distributions are considered, giving rise to various limit processes, related to the geometric construction of the unitary Brownian motion. As an application, we propose a very short proof of the asymptotic Gaussian feature of the entries of Haar distributed random unitary matrices, a result already proved by Diaconis et al. Abstract. Dans cet article, on consid`erela loi limite, lorsque n tend vers l’infini, de combinaisons lin´eairesdes coefficients d'un mouvement Brownien sur le groupe des matri- ces unitaires n × n. On prouve que le processus d'une telle combinaison lin´eaireconverge vers un processus gaussien. Diff´erentes ´echelles de temps et diff´erentes lois initiales sont consid´er´ees,donnant lieu `aplusieurs processus limites, li´es`ala construction g´eom´etrique du mouvement Brownien unitaire. En application, on propose une preuve tr`escourte du caract`ereasymptotiquement gaussien des coefficients d'une matrice unitaire distribu´ee selon la mesure de Haar, un r´esultatd´ej`aprouv´epar Diaconis et al. Introduction There is a natural definition of Brownian motion on any compact Lie group, whose distribution is sometimes called the heat kernel measure. Mainly due to its relations with the object from free probability theory called the free unitary Brownian motion and with the two-dimentional Yang-Mills theory, the Brownian motion on large unitary groups has appeared in several papers during the last decade. -
Rigid Motion – a Transformation That Preserves Distance and Angle Measure (The Shapes Are Congruent, Angles Are Congruent)
REVIEW OF TRANSFORMATIONS GEOMETRY Rigid motion – A transformation that preserves distance and angle measure (the shapes are congruent, angles are congruent). Isometry – A transformation that preserves distance (the shapes are congruent). Direct Isometry – A transformation that preserves orientation, the order of the lettering (ABCD) in the figure and the image are the same, either both clockwise or both counterclockwise (the shapes are congruent). Opposite Isometry – A transformation that DOES NOT preserve orientation, the order of the lettering (ABCD) is reversed, either clockwise or counterclockwise becomes clockwise (the shapes are congruent). Composition of transformations – is a combination of 2 or more transformations. In a composition, you perform each transformation on the image of the preceding transformation. Example: rRx axis O,180 , the little circle tells us that this is a composition of transformations, we also execute the transformations from right to left (backwards). If you would like a visual of this information or if you would like to quiz yourself, go to http://www.mathsisfun.com/geometry/transformations.html. Line Reflection Point Reflection Translations (Shift) Rotations (Turn) Glide Reflection Dilations (Multiply) Rigid Motion Rigid Motion Rigid Motion Rigid Motion Rigid Motion Not a rigid motion Opposite isometry Direct isometry Direct isometry Direct isometry Opposite isometry NOT an isometry Reverse orientation Same orientation Same orientation Same orientation Reverse orientation Same orientation Properties preserved: Properties preserved: Properties preserved: Properties preserved: Properties preserved: Properties preserved: 1. Distance 1. Distance 1. Distance 1. Distance 1. Distance 1. Angle measure 2. Angle measure 2. Angle measure 2. Angle measure 2. Angle measure 2. Angle measure 2.