July 9 –13, 2013 | Denver, Colorado

Total Page:16

File Type:pdf, Size:1020Kb

July 9 –13, 2013 | Denver, Colorado www.clinical-antomy.org July 9 – 13, 2013 | Denver, Colorado Hosted By: University of Colorado School of Medicine University of Colorado School of Medicine Center for Human Simulation 13001 East 17th Place Building 500, Room N-5201, MS F-435 Aurora, Colorado 80045-0508 Anatomists, wannabe anatomists and all those in possession of anatomy: Our hearts go out to your limbic systems to get your gluteal complexes to Denver this July. We are delighted to be hosting the 30th Annual Scientific Session of the American Association of Clinical Anato- mists, July 9-13 and would like to have you and your family here with us. We want to go the extra mile for you – as you may have to go one – to get to us. Plan to come early and stay late to enjoy the outdoor Colorado lifestyle – home of the healthiest and least obese human specimens in the US (by some account on some particular day). In the interest of maximizing profes- sional productivity and accommodating social diversity, we have pre-planned a minimal number of formal events and stand ready to facilitate spontaneous small group activities promoting muscular development, special sensory stimulation and/or gustatory satisfaction. On Saturday, July 13, 2013 plan to climb one of Colorado’s 54 “Fourteeners” OR join us in this 30th year of the ACCA to celebrate the 20th anniversary of the National Library of Medicine’s tribute to Anatomy as the Founda- tion of Medicine – The Visible Human. Plan to reach a summit of your career development by attending the Saturday workshop covering the Foundations of Modern Human Anatomy. Witness the breathtaking anatomi- cal beauty of a freshly cut cross-section of a specimen bathed in 55 gallons of absolute ethanol. Astound your peers (and yourself) with your anatomical knowledge as we march through 50μ spaced cross-sections and identify structures, boundaries, relationships and the controversy that is bound to accompany them. Leave with the opportunity to continue this process and make virtual anatomy a reality in our collective quest to communi- cate the beauty, function and structure of the human body – to the world. The quality of the meeting depends on you – your comfort and satisfaction depends on us. We personally guarantee terrific weather, national budget resolution, higher taxes and a panoramic view of the Rocky Mountains. We look forward to facilitating your visit to our State, our Cities (Denver and Aurora), our campus (Anschutz Medical), our Schools (Graduate, Medical, Dental Medical, Pharmacy, Nursing and Public Health) our Department (Cell and Developmental Biology) and the Center for Human Simulation. We need your assistance in delivering what you want – let us know through e-mail or a phone call - what you would like to do when you are here. The Rockies are NOT in town, the Aspen Music Festival is ongoing, golf abounds in the city, the foothills and the mountains. We can facilitate recreational or serious biking. Runners, joggers and walkers have opportunities galore. We can help with visiting the mountains, rafting the rapids, scaling the peaks or just gazing and grazing. We are excited to see you here this summer. Vic Spitzer Director University of Colorado Center for Human Simulation [email protected] 303-886-7239 page 1 President’s Report July 9-13, 2013 Denver Marriott City Center Hotel Denver, Colorado Welcome to the AACA’s 30th Annual Scientific Meeting in Denver. We thank Vic Spitzer and Lisa Lee and their team as well as the University of Colorado for hosting the Scientific Meeting and Postgraduate Course. The meeting would not have been possible without: • Vic Spitzer and Lisa Lee, our local hosts and their committee; • Noelle Granger, our Program Secretary, as well as the MOPP committee chaired by Noelle; • Rick Clemente, Chair of the 2013 Annual Meeting Committee, along with the committee members; • Shanan Molnar, our ASG manager, as well as Caitlin Hyatt and the ASG team; • Educational Affairs Committee and Chair, Rebecca Pratt; • Career Development Committee and Chair, Rebecca Lufler; • Anatomical Services Committee and Co-Chairs, Brandi Schmitt and Len Cleary; • Clinical Anatomical Terminology Committee Chair, Sherry Downie. The number of hours that the above individuals and Committees have contributed to the success of this meeting is awesome. The AACA extends its gratitude to all of you! We would also like to acknowledge and thank our Exhibitors. Many of them have been participating in our meetings for many years – please visit the exhibits and see what is new in all areas of Anatomical Sciences. Brian MacPherson, as Chair of the AACA Journal Committee and Heikki Whittet, as Chair of BACA Journal Committee have worked diligently together and with their respective committees to negotiate a new Journal contract with Wiley. All parties signed the Contract in December 2012. This new Contract provides security to the Journal while improving the financial returns to the Associations. Presently, the AACA and BACA Journal Committees are jointly discussing the organization of a structure for joint oversight of the Journal, as both parties are co-owners of Clinical Anatomy. Our Strategic Planning initiative is well underway. Both the Publicity and Membership ad hoc committees have made significant progress in identifying and prioritizing our needs and have started to develop new initiatives as part of an evolving Strategic Plan. The Publicity ad hoc committee, chaired by Jon Wisco, has worked hard and now in addition has three subcommittees. The first, which is led by Virginia Lyons has worked closely with the Membership ad hoc committee to develop a general membership survey. Mary Bee and Dave Morton co-chaired another sub-committee to develop a survey for individuals who have been members of the AACA for more than 10 years. The interesting results of both surveys are summarized in the committee report and were used to develop a list of action items that will be presented to Council. The third subcommittee is chaired by Marios Loukas and is exploring scholarly and educational collaborative efforts with other Medical Societies. The Membership ad hoc committee, chaired by Peter Ward, has also identified new initiatives to enhance our membership. Both ad hoc committees work with Larry Spraggs, our Strategic Planning Consultant. The Special Interest Group Committees have worked all year on preparing for this meeting. As well, they have also continued with their own initiatives described in their reports. In particular, the Clinical Anatomical Termi- nology Committee (CAT), chaired by Sherry Downey, is now our fourth Special Interest Group, in addition to the Educational Affairs (EAC), Career Development (CDC) and Anatomical Services (ASC) Groups. We encourage everyone to participate at the SIG Committee breakfasts and become active contributors to these very impor- tant Committees. Thanks to Ken Jones and the members of the Nominating Committee for presenting an excellent slate of candidates for our 2013 ballot. We congratulate all of the individuals who were on the ballot for their commit- ment to the AACA, and we welcome the following newly elected members of Council: Neil Norton (President- Elect), Carol Lomneth (Treasurer), Rob Spinner (Special Councilor-Clinical) and Anne Gilroy and Rebecca Pratt (Councilors-at-Large). Special thank you’s are deserved by Todd Olson (Past-President), Kimberly Topp and Tom Gest, our outgoing Councilors-at-Large, and Shane Tubbs our Special Councilor-Clinical who resigned from this post at our Interim Council meeting in October 2012 on becoming Editor-in-Chief of Clinical Anatomy. It has been a pleasure working with Shanan Molnar our Associated Services Group (ASG) manager and Caitlin Hyatt, Executive Assistant. In this transition year much has been accomplished. ASG is now managing our day page 2 to day financial activities, helping administratively with our committees, participating in all aspects of meeting planning and venue contracting and more. The membership now receives regular notices about our Annual Meeting, dues and events keeping us connected throughout the year. Thank you to Shanan and her team! We have an energetic group of hard working volunteers. This includes those serving on the Council, Executive Committee, and Editorial Board of Clinical Anatomy, as well as the many SIG and ad hoc strategic planning committees that are vital to the AACA activities. Thanks to all for your hard work and dedication, the associa- tion continues to thrive and grow because of you. As my Presidential term is ending, I have been privileged to work with a team of highly skilled individuals who truly care about the AACA and its future. It has been an honor to serve as President of the AACA and I am glad to pass on the “torch” to our next President, Brian MacPherson. Please provide the support to Brian in his term as you did so willingly to me. Anne Agur, President Table of Contents Acknowledgement and Thanks to our Sponsors and Exhibitors ................................................4 Pre-Meeting Events ...................................................................................................................6 Scientific Program .....................................................................................................................6 Presidential Speaker – Dr. David Rubinstein ...........................................................................12 Honored Member –John Hansen ............................................................................................13
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • VIEW Open Access Muscle Spindle Function in Healthy and Diseased Muscle Stephan Kröger* and Bridgette Watkins
    Kröger and Watkins Skeletal Muscle (2021) 11:3 https://doi.org/10.1186/s13395-020-00258-x REVIEW Open Access Muscle spindle function in healthy and diseased muscle Stephan Kröger* and Bridgette Watkins Abstract Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies. Keywords: Mechanotransduction, Sensory physiology, Proprioception, Neuromuscular diseases, Intrafusal fibers, Muscular dystrophy In its original sense, the term proprioception refers to development of head control and walking, an early im- sensory information arising in our own musculoskeletal pairment of fine motor skills, sensory ataxia with un- system itself [1–4]. Proprioceptive information informs steady gait, increased stride-to-stride variability in force us about the contractile state and movement of muscles, and step length, an inability to maintain balance with about muscle force, heaviness, stiffness, viscosity and ef- eyes closed (Romberg’s sign), a severely reduced ability fort and, thus, is required for any coordinated move- to identify the direction of joint movements, and an ab- ment, normal gait and for the maintenance of a stable sence of tendon reflexes [6–12].
    [Show full text]
  • Interpretation of Sensory Information from Skeletal Muscle Receptors for External Control Milan Djilas
    Interpretation of Sensory Information From Skeletal Muscle Receptors For External Control Milan Djilas To cite this version: Milan Djilas. Interpretation of Sensory Information From Skeletal Muscle Receptors For External Control. Automatic. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00333530 HAL Id: tel-00333530 https://tel.archives-ouvertes.fr/tel-00333530 Submitted on 23 Oct 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC T H E S E pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Formation doctorale: SYSTEMES AUTOMATIQUES ET MICROELECTRONIQUES Ecole Doctorale: INFORMATION, STRUCTURES ET SYSTEMES présentée et soutenue publiquement par Milan DJILAS le 13 octobre 2008 Titre: INTERPRETATION DES INFORMATIONS SENSORIELLES DES RECEPTEURS DU MUSCLE SQUELETTIQUE POUR LE CONTROLE EXTERNE INTERPRETATION OF SENSORY INFORMATION FROM SKELETAL MUSCLE RECEPTORS FOR EXTERNAL CONTROL JURY Jacques LEVY VEHEL Directeur de Recherches, INRIA Rapporteur
    [Show full text]
  • Works Neuroembryology
    Swarthmore College Works Biology Faculty Works Biology 1-1-2017 Neuroembryology D. Darnell Scott F. Gilbert Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons Let us know how access to these works benefits ouy Recommended Citation D. Darnell and Scott F. Gilbert. (2017). "Neuroembryology". Wiley Interdisciplinary Reviews: Developmental Biology. Volume 6, Issue 1. DOI: 10.1002/wdev.215 https://works.swarthmore.edu/fac-biology/493 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Wiley Interdiscip Manuscript Author Rev Dev Manuscript Author Biol. Author manuscript; available in PMC 2018 January 01. Published in final edited form as: Wiley Interdiscip Rev Dev Biol. 2017 January ; 6(1): . doi:10.1002/wdev.215. Neuroembryology Diana Darnell1 and Scott F. Gilbert2 1University of Arizona College of Medicine 2Swarthmore College and University of Helsinki Abstract How is it that some cells become neurons? And how is it that neurons become organized in the spinal cord and brain to allow us to walk and talk, to see, recall events in our lives, feel pain, keep our balance, and think? The cells that are specified to form the brain and spinal cord are originally located on the outside surface of the embryo. They loop inward to form the neural tube in a process called neurulation.
    [Show full text]
  • The Genetic Basis of Mammalian Neurulation
    REVIEWS THE GENETIC BASIS OF MAMMALIAN NEURULATION Andrew J. Copp*, Nicholas D. E. Greene* and Jennifer N. Murdoch‡ More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects. 6 ECTODERM Neurulation is a fundamental event of embryogenesis distinct locations in the brain and spinal cord .By The outer of the three that culminates in the formation of the neural tube, contrast, the mechanisms that underlie the forma- embryonic (germ) layers that which is the precursor of the brain and spinal cord. A tion, elevation and fusion of the neural folds have gives rise to the entire central region of specialized dorsal ECTODERM, the neural plate, remained elusive. nervous system, plus other organs and embryonic develops bilateral neural folds at its junction with sur- An opportunity has now arisen for an incisive analy- structures. face (non-neural) ectoderm. These folds elevate, come sis of neurulation mechanisms using the growing battery into contact (appose) in the midline and fuse to create of genetically targeted and other mutant mouse strains NEURAL CREST the neural tube, which, thereafter, becomes covered by in which NTDs form part of the mutant phenotype7.At A migratory cell population that future epidermal ectoderm.
    [Show full text]
  • Role of Notochord in Specification of Cardiac Left-Right Orientation In
    DEVELOPMENTAL BIOLOGY 177, 96±103 (1996) ARTICLE NO. 0148 Role of Notochord in Speci®cation of Cardiac Left± View metadata, citation and similar papers at core.ac.uk brought to you by CORE Right Orientation in Zebra®sh and Xenopus provided by Elsevier - Publisher Connector Maria C. Danos and H. Joseph Yost1 Department of Cell Biology and Neuroanatomy, University of Minnesota, 4-135 Jackson Hall, 321 Church Street S.E., Minneapolis, Minnesota 55455 The left±right body axis is coordinately aligned with the orthogonal dorsoventral and anterioposterior body axes. The developmental mechanisms that regulate axis coordination are unknown. Here it is shown that the cardiac left±right orientation in zebra®sh (Danio rerio) is randomized in notochord-defective no tail and ¯oating head mutants. no tail (Brachyury) and ¯oating head (Xnot) encode putative transcription factors that are expressed in the organizer and notochord, structures which regulate dorsoventral and anterioposterior development in vertebrate embryos. Results from dorsal tissue extirpation and cardiac primordia explantation indicate that cardiac left±right orientation is dependent on dorsoanterior structures including the notochord and is speci®ed during neural fold stages in Xenopus laevis. Thus, the notochord coordinates the development of all three body axes in the vertebrate body plan. q 1996 Academic Press, Inc. INTRODUCTION lations early in development or by genetic mutation, re- sulting in a population frequency of approximately 50% In all vertebrates examined, left±right asymmetries are reversal of the normal left±right orientations (for review, consistently aligned with respect to the anterioposterior see Yost, 1995b). This suggests that in the absence of normal and dorsoventral axes.
    [Show full text]
  • Ian Whitmore Professor (Teaching) of Surgery (Anatomy) Surgery - Anatomy
    Ian Whitmore Professor (Teaching) of Surgery (Anatomy) Surgery - Anatomy Bio BIO Ian Whitmore was born in England of an English father and an Icelandic mother just before the end of the second world war. He was educated in the United Kingdom, graduating with MBBS and LRCP MRCS from Guy's Hospital Medical School (University of London) in 1968. Following two years of clinical experience as a junior hospital doctor, he started teaching Anatomy in Manchester in 1970. He was granted the MD degree by the University of London in 1980 following submission of a thesis relating research into Oesophageal Striated Muscle. The textbook and color atlas “Human Anatomy” with Ian Whitmore as one of the five authors was published in1985 and has now reached the sixth edition. In 1990 he moved to Queen Mary & Westfield College in London as Senior Lecturer in Anatomy, before being persuaded to take early retirement in 1996. Having been a Visiting Professor at Stanford several times since 1984, he has been teaching there every year since 1996, and was made a Full Professor in 2002. He continues to teach in Stanford. Between 1989 and 2009 Ian was Chairman of the Federated International Committee on Anatomical Terminology, which published Terminologia Anatomica in 1998, Terminologia Histologica in 2007 and Terminologia Embryologica in 2013. In 2005 the American Association of Clinical Anatomists awarded him Honored Member status for his work in Terminology. He has similarly been made an honorary member of the anatomical societies in South Africa, Costa Rica, Italy and Russia. In 2010, he was awarded the Jubilee Medal "For the great contribution to Morphology” by the All-Russian Scientific Society of Anatomists, Histologists and Embryologists.
    [Show full text]
  • THE MUSCLE SPINDLE Anatomical Structures of the Spindle Apparatus
    56 Chapter Three Figure 3-2. Organization of muscle from macro- scopic to microscopic levels. Reprinted with permis- sion from Oatis CA. Kinesiology: The Mechanics and Pathomechanics of Human Movement. Philadelphia, Pa: Lippincott Williams & Wilkins; 2004:46. which contains only actin (thin) filaments. The darker area is the A-band, which contains alternating actin and myosin (thick) filaments. The Z-line consists of a connective tissue network that bisects the I-band, anchors the thin filaments, and provides structural integrity to the sarcomere. The H- Figure 3-1. Successive connective tissue sheaths with- zone, located in the middle of the A-band, is the region of in muscle. Reprinted with permission from Oatis thick filaments not overlapped by thin filaments. The M- CA. Kinesiology: The Mechanics and Pathomechanics band bisects the H-zone and represents the middle of the of Human Movement. Philadelphia, Pa: Lippincott sarcomere. The M-band consists of protein structures that Williams & Wilkins; 2004:47. support the arrangement of the myosin filaments. During muscle contraction, the sarcomere I-band and H-zone decrease in length while the length of the A-band remains constant.2,3 THE MUSCLE SPINDLE The muscle spindle is a long, thin structure located adjacent and parallel to muscle fibers and is composed of multiple components that have both afferent and efferent innervation (Figures 3-4a and 3-4b). The muscle spindle functions as a stretch receptor and responds to static and dynamic length changes of skeletal muscle.4-6 This complex receptor is found in all muscles, primarily in extremity, inter- costal, and cervical muscles.
    [Show full text]
  • Cortex Brainstem Spinal Cord Thalamus Cerebellum Basal Ganglia
    Harvard-MIT Division of Health Sciences and Technology HST.131: Introduction to Neuroscience Course Director: Dr. David Corey Motor Systems I 1 Emad Eskandar, MD Motor Systems I - Muscles & Spinal Cord Introduction Normal motor function requires the coordination of multiple inter-elated areas of the CNS. Understanding the contributions of these areas to generating movements and the disturbances that arise from their pathology are important challenges for the clinician and the scientist. Despite the importance of diseases that cause disorders of movement, the precise function of many of these areas is not completely clear. The main constituents of the motor system are the cortex, basal ganglia, cerebellum, brainstem, and spinal cord. Cortex Basal Ganglia Cerebellum Thalamus Brainstem Spinal Cord In very broad terms, cortical motor areas initiate voluntary movements. The cortex projects to the spinal cord directly, through the corticospinal tract - also known as the pyramidal tract, or indirectly through relay areas in the brain stem. The cortical output is modified by two parallel but separate re­ entrant side loops. One loop involves the basal ganglia while the other loop involves the cerebellum. The final outputs for the entire system are the alpha motor neurons of the spinal cord, also called the Lower Motor Neurons. Cortex: Planning and initiation of voluntary movements and integration of inputs from other brain areas. Basal Ganglia: Enforcement of desired movements and suppression of undesired movements. Cerebellum: Timing and precision of fine movements, adjusting ongoing movements, motor learning of skilled tasks Brain Stem: Control of balance and posture, coordination of head, neck and eye movements, motor outflow of cranial nerves Spinal Cord: Spontaneous reflexes, rhythmic movements, motor outflow to body.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Effect of Lntrafusal Muscle Mechanics on Mammalian Muscle Spindle Sensitivity’
    0270.6474/85/0507-1881$02.00/O The Journal of Neurowence CopyrIght 0 Society for Neuroscience Vol. 5, No. 7, pp. 1881-1885 Printed in U.S.A. July 1985 Effect of lntrafusal Muscle Mechanics on Mammalian Muscle Spindle Sensitivity’ R. E. POPPELE*V2 AND D. c. QUICK* * Laboratory of Neurophysiology and $ Department of Anatomy, University of Minnesota, Minneapolis, Minnesota 55455 Abstract Materials and Methods Spindles were dissected free from tenuissimus muscles taken from anes- Sensitivity differences between primary and secondary thetized cats (pentobarbttal sodium, Nembutal, Abbott Laboratories, 35 mg/ endings of mammalian muscle spindles under various con- kg, or ketamine hydrochloride, Parke, Davis, 20 mg/kg). The isolated recep- ditions of stretch and fusimotor activation may be due to tor, together with about 1 cm of nerve, was mounted in a small chamber by differences in their respective mechanoelectric transducers tying each pole (near the capsule sleeve) to a small tungsten wire shaft or to mechanical properties of the intrafusal muscle support- connected to a servo-controlled Ling vibrator (model 108). The chamber was ing those endings. This study of isolated cat muscle spindles continuously perfused with oxygenated, modified Krebs’ solution (Poppele et al., 1979). The nerve was drawn onto a pair of electrodes in an adjacent examines the strain in individual intrafusal muscle fibers chamber containtng a high density fluorocarbon compound (FC-80, 3M Co.). resulting from stretch and fusimotor stimulation. The degree The entire assembly was mounted on a Zeiss photomicroscope equipped of local stretch occurring at the sensory endings under these with tine camera and Nomarski optics (see Poppele et al., 1979, and Poppele conditions was measured.
    [Show full text]
  • Update on the Notochord Including Its Embryology, Molecular Development, and Pathology: a Primer for the Clinician
    Open Access Review Article DOI: 10.7759/cureus.1137 Update on the Notochord Including its Embryology, Molecular Development, and Pathology: A Primer for the Clinician Tushar Ramesh 1 , Sai V. Nagula 1 , Gabrielle G. Tardieu 2 , Erfanul Saker 2 , Mohammadali Shoja 3 , Marios Loukas 2 , Rod J. Oskouian 4 , R. Shane Tubbs 5 1. Neurology, University of Alabama at Birmingham 2. Department of Anatomical Sciences, St. George's University School of Medicine, Grenada, West Indies 3. Neurological Surgery, University of Alabama at Birmingham 4. Swedish Neuroscience Institute 5. Neurosurgery, Seattle Science Foundation Corresponding author: Gabrielle G. Tardieu, [email protected] Abstract The notochord is a rod-like embryological structure, which plays a vital role in the development of the vertebrate. Though embryological, remnants of this structure have been observed in the nucleus pulposus of the intervertebral discs of normal adults. Pathologically, these remnants can give rise to slow-growing and recurrent notochord-derived tumors called chordomas. Using standard search engines, the literature was reviewed regarding the anatomy, embryology, molecular development, and pathology of the human notochord. Clinicians who interpret imaging or treat patients with pathologies linked to the notochord should have a good working knowledge of its development and pathology. Categories: Genetics, Neurology, Other Keywords: notochord, nucleus pulposus, chordoma, spine, embryology, development Introduction And Background The notochord, namesake of the phylum chordata (Figure 1), plays a central role in vertebrate development. It is most prominent in the first trimester, wherein it guides the folding of the embryo and regulates the differentiation and maturation of surrounding tissues. It is a transient embryologic entity in humans, thought to be completely absent or present in minute quantities, within the nucleus pulposus of intervertebral discs in adults.
    [Show full text]