Heat Engines Efficiency of a Heat Engine Carnot Cycle

Total Page:16

File Type:pdf, Size:1020Kb

Heat Engines Efficiency of a Heat Engine Carnot Cycle Second Law of Thermodynamics Three Statements of the second law Heat engines (Kelvin-Planck Law) Second Law of Thermodynamics. 9.1 Refrigerators (Claussius Statement) Second Law of Thermodynamics Entropy Principle Carnot cycle efficiency -Heat engines - Refrigerators Kelvin-Planck Statement of Heat Engines the second law of thermodynamics Perfect heat engine A heat engine takes in heat at a high temperature and exhausts heat at a low temperature. In the process of heat flow some of the input heat is converted to work Tc It is impossible to construct a heat engine operating in a cycle that extracts heat from a reservoir and delivers an equal amount of work. First Law (for a cycle) No perfect heat engine Q = Qh + Qc = W Second Law ( puts limits on Qh and QC) Efficiency of a heat engine Carnot Cycle The efficiency is the Sadi Carnot, a French engineer (1796-1832) proposed a fraction of the heat input cycle set the limits to the efficiency of a heat engine operating at high temperature converted between two temperatures. to work. Th W QQ− The cycle consists of 4 reversible steps. Tc e hc 1 == Qh QQhh P 1. Isothermal expansion at Th 4 Q 2. Adiabatic expansion from T to T 2 e1=− c h c 3. Isothermal compression at Tc Qc Qh 4. Adiabatic compression from Tc to Th. 3 In calculating efficiencies Qh and Qc are taken as positive quantities. V (i.e. the magnitude of the heat) The second law says that a heat engine cannot be 100% efficient. 1 Heat engine undergoing the Carnot Heat engine. cycle. Work is done by the gas in expansion Work must be done on the gas to compress it to the initial state Efficiency of the Carnot cycle Heat transfer in the Carnot cycle Th In the Carnot cycle the magnitude of the heat Th Q T transferred at T is proportional to the absolute e1=− c c A 1 temperature T. T Qh c A 1 Q P Q h B P h becomes 4 QThh(here Q is B 2 = 4 D always positive) T QT 2 c Qc C cc D e1= − 3 Qc C T From the relations 3 h V Isothermal expansion and compression V The efficiency only depends on the ratio of the absolute VB VC temperatures. QRTlnhh= QRTlncc= VA VD Adiabatic expansion and compression The efficiency would be 100% if Qc =0. T V γ-1 = T V γ-1 This is only possible if Tc = 0 K (i.e absolute Zero) h B c c V V Q Q B = C h = c T V γ-1 = T V γ-1 A temperature of absolute zero cannot be attained. h A c D VVAD TThc (Third law of thermodynamics) Carnot’s Theorem Stirling Engine Maximum efficiency is less All Carot engines operating between temperatures Th and Tc than the Carnot efficiency. have the same efficiency. Isothermal Th Q4 T w2 =w4 =0 Q2 = Q4 P Q1 e1=−c T h then Q − Q Q − Q e = in out = 1 3 Q Q + Q in 1 4 Q2 No other heat engine operating between these temperatures Q3 can have a greater efficiency For isothermal Q Q Isothermal Tc 1 = 3 processes same T T volume change h c V ⎛ ⎞ ⎜ ⎟ ⎜ 1 ⎟ thene = ecarnot Efficiency lower due to extra heat added. ⎜ Q4 ⎟ ⎜1+ ⎟ ⎝ Q1 ⎠ 2 Clausius Statement of the Second Law Refrigerator and heat pump of Thermodynamics. Th T c A 1 Q It is impossible to construct a refrigerator P h B operating in a cycle whose sole effect is to 4 2 transfer heat from a cooler object to a hotter D one. Qc C 3 V Heat always flows from high temperature to low temperature. A heat engine run in reverse is a refrigerator and heat pump. Work is done to move heat from a cold temperature source to a hot sink. This device and be used for cooling or heating. Equivalence of the Kelvin-Planck and Proof of the Carnot Principle Clausius statements. higher efficiency Carnot engine engine reversed If a perfect refrigerator were possible (Clausius) then a perfect If a heat engine with a higher efficiency than a Carnot engine heat engine could be constructed (Kelvin-Planck). Thus, the could exist. Then it could convert heat to work with 100% efficiency. impossibility one implies the impossibility of the other. The Carnot engine has the highest efficiency for any heat engine acting between two temperatures. Real Heat Engines Example work done in expansion In a wood burning power plant the steam in the turbine operates between the high temperature of 810 K and a low temperature of 366 K. What is the Carnot efficiency for this plant. T 366 e1= − c =−1 =05.5 Th 810 Compare this to the efficiency calculated from the electrical power output of 59 MW and heat power input of 165 MW (see prob. 60) Q h Qc WP 59MW e === =0.35 heat must be removed Qh H 165MW to condense the gas The actual efficiency is less than the Carnot efficiency. Power Plant 3 How to improve the efficiency Cogeneration of a heat engine. Use of waste heat Increase Th This requires high temperature materials Decrease Tc This requires efficient heat transfer. This power plant in Denmark uses the waste heat to heat green houses nearby. Refrigerators Refrigerator The refrigerator uses a liquid with a low Coefficient of performance boiling point. The evaporation takes up heat COP- the heat removed from the 4 from the refrigerator and the condensation of cold source divided by the work the gas releases the heat outside the refrigerator. done. 1 Compressor – gas is compresses and heated QQ COP ==cc wQQhc− 2 Heat exchange coils - the heat is released from the gas and exhausted outside of the 1 The maximum Carnot COP refrigerator. T COP = c 2 TT− 3 Expansion valve – The pressure is decreased hc after going through the valve. The gas is cooled 3 since Q Q h = c 4 Cooling coils- Heat is absorbed from within the TThc refrigerator. The gas is heated. Refrigerator Summary A freezer is kept at a temperature of 0o F. What is the maximum COP for a Carnot refrigerator with output temperature of 85o F. If the • The second law of thermodynamics limits the efficiency electrical energy use is 500kWh/year how much heat is removed in of heat engines to less than 100% one year, assume 90% conversion of electrical energy to work. • The Carnot cycle is a reversible cycle taking in heat at COP high T and exhausting heat at low T. T = ( 0 -32)(5/9) +273=255 K T 255 c COP = c ==54. • The maximum efficiency of a heat engine working TThc− 302 − 255 Th =(85-32)(5/9)+273=302 K between two temperatures is the Carnot efficiency that depends only on the ratio of the absolute temperatures. Work • Refrigerators and heat pumps are heat engines run in 3 ⎛⎞⎛⎞60min 60s 9 WxWhr=⋅0.9(500 10 )⎜⎟⎜⎟= 1.62xJ 10 reverse. ⎝⎠⎝⎠hr min • The maximum coefficient of performance is determined Heat Q by a Carnot cycle. COP = c w 9 9 Heat removed QCOPwc ==( ) 5.4 x 1.62 x 10 =8.7x 10 J 4.
Recommended publications
  • Arxiv:2008.06405V1 [Physics.Ed-Ph] 14 Aug 2020 Fig.1 Shows Four Classical Cycles: (A) Carnot Cycle, (B) Stirling Cycle, (C) Otto Cycle and (D) Diesel Cycle
    Investigating student understanding of heat engine: a case study of Stirling engine Lilin Zhu1 and Gang Xiang1, ∗ 1Department of Physics, Sichuan University, Chengdu 610064, China (Dated: August 17, 2020) We report on the study of student difficulties regarding heat engine in the context of Stirling cycle within upper-division undergraduate thermal physics course. An in-class test about a Stirling engine with a regenerator was taken by three classes, and the students were asked to perform one of the most basic activities—calculate the efficiency of the heat engine. Our data suggest that quite a few students have not developed a robust conceptual understanding of basic engineering knowledge of the heat engine, including the function of the regenerator and the influence of piston movements on the heat and work involved in the engine. Most notably, although the science error ratios of the three classes were similar (∼10%), the engineering error ratios of the three classes were high (above 50%), and the class that was given a simple tutorial of engineering knowledge of heat engine exhibited significantly smaller engineering error ratio by about 20% than the other two classes. In addition, both the written answers and post-test interviews show that most of the students can only associate Carnot’s theorem with Carnot cycle, but not with other reversible cycles working between two heat reservoirs, probably because no enough cycles except Carnot cycle were covered in the traditional Thermodynamics textbook. Our results suggest that both scientific and engineering knowledge are important and should be included in instructional approaches, especially in the Thermodynamics course taught in the countries and regions with a tradition of not paying much attention to experimental education or engineering training.
    [Show full text]
  • Physics 170 - Thermodynamic Lecture 40
    Physics 170 - Thermodynamic Lecture 40 ! The second law of thermodynamic 1 The Second Law of Thermodynamics and Entropy There are several diferent forms of the second law of thermodynamics: ! 1. In a thermal cycle, heat energy cannot be completely transformed into mechanical work. ! 2. It is impossible to construct an operational perpetual-motion machine. ! 3. It’s impossible for any process to have as its sole result the transfer of heat from a cooler to a hotter body ! 4. Heat flows naturally from a hot object to a cold object; heat will not flow spontaneously from a cold object to a hot object. ! ! Heat Engines and Thermal Pumps A heat engine converts heat energy into work. According to the second law of thermodynamics, however, it cannot convert *all* of the heat energy supplied to it into work. Basic heat engine: hot reservoir, cold reservoir, and a machine to convert heat energy into work. Heat Engines and Thermal Pumps 4 Heat Engines and Thermal Pumps This is a simplified diagram of a heat engine, along with its thermal cycle. Heat Engines and Thermal Pumps An important quantity characterizing a heat engine is the net work it does when going through an entire cycle. Heat Engines and Thermal Pumps Heat Engines and Thermal Pumps Thermal efciency of a heat engine: ! ! ! ! ! ! From the first law, it follows: Heat Engines and Thermal Pumps Yet another restatement of the second law of thermodynamics: No cyclic heat engine can convert its heat input completely to work. Heat Engines and Thermal Pumps A thermal pump is the opposite of a heat engine: it transfers heat energy from a cold reservoir to a hot one.
    [Show full text]
  • Physics 100 Lecture 7
    2 Physics 100 Lecture 7 Heat Engines and the 2nd Law of Thermodynamics February 12, 2018 3 Thermal Convection Warm fluid is less dense and rises while cool fluid sinks Resulting circulation efficiently transports thermal energy 4 COLD Convection HOT Turbulent motion of glycerol in a container heated from below and cooled from above. The bright lines show regions of rapid temperature variation. The fluid contains many "plumes," especially near the walls. The plumes can be identified as mushroom-shaped objects with heat flowing through the "stalk" and spreading in the "cap." The hot plumes tend to rise with their caps on top; falling, cold plumes are cap-down. All this plume activity is carried along in an overall counterclockwise "wind" caused by convection. Note the thermometer coming down from the top of the cell. Figure adapted from J. Zhang, S. Childress, A. Libchaber, Phys. Fluids 9, 1034 (1997). See detailed discussion in Kadanoff, L. P., Physics Today 54, 34 (August 2001). 5 The temperature of land changes more quickly than the nearby ocean. Thus convective “sea breezes” blow ____ during the day and ____ during the night. A. onshore … onshore B. onshore … offshore C. offshore … onshore D. offshore … offshore 6 The temperature of land changes more quickly than the nearby ocean. Thus convective “sea breezes” blow ____ during the day and ____ during the night. A. onshore … onshore B.onshore … offshore C.offshore … onshore D.offshore … offshore 7 Thermal radiation Any object whose temperature is above zero Kelvin emits energy in the form of electromagnetic radiation Objects both absorb and emit EM radiation continuously, and this phenomenon helps determine the object’s equilibrium temperature 8 The electromagnetic spectrum 9 Thermal radiation We’ll examine this concept some more in chapter 6 10 Why does the Earth cool more quickly on clear nights than it does on cloudy nights? A.
    [Show full text]
  • Fuel Cells Versus Heat Engines: a Perspective of Thermodynamic and Production
    Fuel Cells Versus Heat Engines: A Perspective of Thermodynamic and Production Efficiencies Introduction: Fuel Cells are being developed as a powering method which may be able to provide clean and efficient energy conversion from chemicals to work. An analysis of their real efficiencies and productivity vis. a vis. combustion engines is made in this report. The most common mode of transportation currently used is gasoline or diesel engine powered automobiles. These engines are broadly described as internal combustion engines, in that they develop mechanical work by the burning of fossil fuel derivatives and harnessing the resultant energy by allowing the hot combustion product gases to expand against a cylinder. This arrangement allows for the fuel heat release and the expansion work to be performed in the same location. This is in contrast to external combustion engines, in which the fuel heat release is performed separately from the gas expansion that allows for mechanical work generation (an example of such an engine is steam power, where fuel is used to heat a boiler, and the steam then drives a piston). The internal combustion engine has proven to be an affordable and effective means of generating mechanical work from a fuel. However, because the majority of these engines are powered by a hydrocarbon fossil fuel, there has been recent concern both about the continued availability of fossil fuels and the environmental effects caused by the combustion of these fuels. There has been much recent publicity regarding an alternate means of generating work; the hydrogen fuel cell. These fuel cells produce electric potential work through the electrochemical reaction of hydrogen and oxygen, with the reaction product being water.
    [Show full text]
  • Recording and Evaluating the Pv Diagram with CASSY
    LD Heat Physics Thermodynamic cycle Leaflets P2.6.2.4 Hot-air engine: quantitative experiments The hot-air engine as a heat engine: Recording and evaluating the pV diagram with CASSY Objects of the experiment Recording the pV diagram for different heating voltages. Determining the mechanical work per revolution from the enclosed area. Principles The cycle of a heat engine is frequently represented as a closed curve in a pV diagram (p: pressure, V: volume). Here the mechanical work taken from the system is given by the en- closed area: W = − ͛ p ⋅ dV (I) The cycle of the hot-air engine is often described in an idealised form as a Stirling cycle (see Fig. 1), i.e., a succession of isochoric heating (a), isothermal expansion (b), isochoric cooling (c) and isothermal compression (d). This description, however, is a rough approximation because the working piston moves sinusoidally and therefore an isochoric change of state cannot be expected. In this experiment, the pV diagram is recorded with the computer-assisted data acquisition system CASSY for comparison with the real behaviour of the hot-air engine. A pressure sensor measures the pressure p in the cylinder and a displacement sensor measures the position s of the working piston, from which the volume V is calculated. The measured values are immediately displayed on the monitor in a pV diagram. Fig. 1 pV diagram of the Stirling cycle 0210-Wei 1 P2.6.2.4 LD Physics Leaflets Setup Apparatus The experimental setup is illustrated in Fig. 2. 1 hot-air engine . 388 182 1 U-core with yoke .
    [Show full text]
  • Thermodynamics of Power Generation
    THERMAL MACHINES AND HEAT ENGINES Thermal machines ......................................................................................................................................... 1 The heat engine ......................................................................................................................................... 2 What it is ............................................................................................................................................... 2 What it is for ......................................................................................................................................... 2 Thermal aspects of heat engines ........................................................................................................... 3 Carnot cycle .............................................................................................................................................. 3 Gas power cycles ...................................................................................................................................... 4 Otto cycle .............................................................................................................................................. 5 Diesel cycle ........................................................................................................................................... 8 Brayton cycle .....................................................................................................................................
    [Show full text]
  • Power Plant Steam Cycle Theory - R.A
    THERMAL POWER PLANTS – Vol. I - Power Plant Steam Cycle Theory - R.A. Chaplin POWER PLANT STEAM CYCLE THEORY R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam Turbines, Carnot Cycle, Rankine Cycle, Superheating, Reheating, Feedwater Heating. Contents 1. Cycle Efficiencies 1.1. Introduction 1.2. Carnot Cycle 1.3. Simple Rankine Cycles 1.4. Complex Rankine Cycles 2. Turbine Expansion Lines 2.1. T-s and h-s Diagrams 2.2. Turbine Efficiency 2.3. Turbine Configuration 2.4. Part Load Operation Glossary Bibliography Biographical Sketch Summary The Carnot cycle is an ideal thermodynamic cycle based on the laws of thermodynamics. It indicates the maximum efficiency of a heat engine when operating between given temperatures of heat acceptance and heat rejection. The Rankine cycle is also an ideal cycle operating between two temperature limits but it is based on the principle of receiving heat by evaporation and rejecting heat by condensation. The working fluid is water-steam. In steam driven thermal power plants this basic cycle is modified by incorporating superheating and reheating to improve the performance of the turbine. UNESCO – EOLSS The Rankine cycle with its modifications suggests the best efficiency that can be obtained from this two phaseSAMPLE thermodynamic cycle wh enCHAPTERS operating under given temperature limits but its efficiency is less than that of the Carnot cycle since some heat is added at a lower temperature. The efficiency of the Rankine cycle can be improved by regenerative feedwater heating where some steam is taken from the turbine during the expansion process and used to preheat the feedwater before it is evaporated in the boiler.
    [Show full text]
  • Stirling Engine)
    Heat Cycles Hot air engine (Stirling engine) OPERATE A FUNCTIONAL MODEL OF A STIRLING ENGINE AS A HEAT ENGINE Operate the hot-air engine as a heat engine Demonstrate how thermal energy is converted into mechanical energy Measure the no-load speed as a function of the thermal power UE2060100 04/16 JS BASIC PRINCIPLES The thermodynamic cycle of the Stirling engine While the working piston is in its top dead centre posi- (invented by Rev. R. Stirling in 1816) can be pre- tion: the displacement piston retracts and air is dis- sented in a simplified manner as the processes placed towards the top end of the large cylinder so that thermal input, expansion, thermal output and com- it cools. pression. These processes have been illustrated by The cooled air is compressed by the working piston schematic diagrams (Fig. 1 to Fig. 4) for the func- extending. The mechanical work required for this is tional model used in the experiment. provided by the flywheel rod. A displacement piston P1 moves upwards and displac- If the Stirling engine is operated without any mechanical es the air downwards into the heated area of the large load, it operates with at a speed which is limited only by cylinder, thereby facilitating the input of air. During this internal friction and which depends on the input heating operation the working piston is at its bottom dead centre energy. The speed is reduced as soon as a load takes position since the displacement piston is ahead of the up some of the mechanical energy. This is most easily working piston by 90°.
    [Show full text]
  • The Carnot Cycle, Reversibility and Entropy
    entropy Article The Carnot Cycle, Reversibility and Entropy David Sands Department of Physics and Mathematics, University of Hull, Hull HU6 7RX, UK; [email protected] Abstract: The Carnot cycle and the attendant notions of reversibility and entropy are examined. It is shown how the modern view of these concepts still corresponds to the ideas Clausius laid down in the nineteenth century. As such, they reflect the outmoded idea, current at the time, that heat is motion. It is shown how this view of heat led Clausius to develop the entropy of a body based on the work that could be performed in a reversible process rather than the work that is actually performed in an irreversible process. In consequence, Clausius built into entropy a conflict with energy conservation, which is concerned with actual changes in energy. In this paper, reversibility and irreversibility are investigated by means of a macroscopic formulation of internal mechanisms of damping based on rate equations for the distribution of energy within a gas. It is shown that work processes involving a step change in external pressure, however small, are intrinsically irreversible. However, under idealised conditions of zero damping the gas inside a piston expands and traces out a trajectory through the space of equilibrium states. Therefore, the entropy change due to heat flow from the reservoir matches the entropy change of the equilibrium states. This trajectory can be traced out in reverse as the piston reverses direction, but if the external conditions are adjusted appropriately, the gas can be made to trace out a Carnot cycle in P-V space.
    [Show full text]
  • Lecture 11 Second Law of Thermodynamics
    LECTURE 11 SECOND LAW OF THERMODYNAMICS Lecture instructor: Kazumi Tolich Lecture 11 2 ¨ Reading chapter 18.5 to 18.10 ¤ The second law of thermodynamics ¤ Heat engines ¤ Refrigerators ¤ Air conditions ¤ Heat pumps ¤ Entropy Second law of thermodynamics 3 ¨ The second law of thermodynamics states: Thermal energy flows spontaneously from higher to lower temperature. Heat engines are always less than 100% efficient at using thermal energy to do work. The total entropy of all the participants in any physical process cannot decrease during that process. Heat engines 4 ¨ Heat engines depend on the spontaneous heat flow from hot to cold to do work. ¨ In each cycle, the hot reservoir supplies heat �" to the engine which does work �and exhausts heat �$ to the cold reservoir. � = �" − �$ ¨ The energy efficiency of a heat engine is given by � � = �" Carnot’s theorem and maximum efficiency 5 ¨ The maximum-efficiency heat engine is described in Carnot’s theorem: If an engine operating between two constant-temperature reservoirs is to have maximum efficiency, it must be an engine in which all processes are reversible. In addition, all reversible engines operating between the same two temperatures, �$ and �", have the same efficiency. ¨ This is an idealization; no real engine can be perfectly reversible. ¨ The maximum efficiency of a heat engine (Carnot engine) can be written as: �$ �*+, = 1 − �" Quiz: 1 6 ¨ Consider the heat engine at right. �. denotes the heat extracted from the hot reservoir, and �/ denotes the heat exhausted to the cold reservoir in one cycle. What is the work done by this engine in one cycle in Joules? Quiz: 11-1 answer 7 ¨ 4000 J ¨ � = �.
    [Show full text]
  • The Carnot Cycle Ray Fu
    The Carnot Cycle Ray Fu The Carnot Cycle We will investigate some properties of the Carnot cycle and explore the subtleties of Carnot's theorem. 1. Recall that the Carnot cycle consists of the following four reversible steps, in order: (a) isothermal expansion at TH (b) isentropic expansion at Smax (c) isothermal compression at TC (d) isentropic compression at Smin TH and TC represent the temperatures of the hot and cold thermal reservoirs; Smin and Smax represent the minimum and maximum entropy reached by the working fluid in the Carnot cycle. Draw the Carnot cycle on a TS plot and label each step of the cycle, as well as TH , TC , Smin, and Smax. 2. On the same plot, sketch the cycle that results when steps (a) and (c) are respectively replaced with irreversible isothermal expansion and compression, assuming that the resulting cycle operates between the same two entropies Smin and Smax. We will prove geometrically that the Carnot cycle is the most efficient thermodynamic cycle working between the range of temperatures bounded by TH and TC . To this end, consider an arbitrary reversible thermody- namic cycle C with working fluid having maximum and minimum temperatures TH and TC , and maximum and minimum entropies Smax and Smin. It is sufficient to consider reversible cycles, for irreversible cycles must have lower efficiencies by Clausius's inequality. 3. Define two areas A and B on the corresponding TS plot for C. A is the area enclosed by C, whereas B is the area bounded above by the bottom of C, bounded below by the S-axis, and bounded to left and right by the lines S = Smin and S = Smax.
    [Show full text]
  • Thermodynamics Cycle Analysis and Numerical Modeling of Thermoelastic Cooling Systems
    international journal of refrigeration 56 (2015) 65e80 Available online at www.sciencedirect.com ScienceDirect www.iifiir.org journal homepage: www.elsevier.com/locate/ijrefrig Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems Suxin Qian, Jiazhen Ling, Yunho Hwang*, Reinhard Radermacher, Ichiro Takeuchi Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, 4164 Glenn L. Martin Hall Bldg., College Park, MD 20742, USA article info abstract Article history: To avoid global warming potential gases emission from vapor compression air- Received 3 October 2014 conditioners and water chillers, alternative cooling technologies have recently garnered Received in revised form more and more attentions. Thermoelastic cooling is among one of the alternative candi- 3 March 2015 dates, and have demonstrated promising performance improvement potential on the Accepted 2 April 2015 material level. However, a thermoelastic cooling system integrated with heat transfer fluid Available online 14 April 2015 loops have not been studied yet. This paper intends to bridge such a gap by introducing the single-stage cycle design options at the beginning. An analytical coefficient of performance Keywords: (COP) equation was then derived for one of the options using reverse Brayton cycle design. Shape memory alloy The equation provides physical insights on how the system performance behaves under Elastocaloric different conditions. The performance of the same thermoelastic cooling cycle using NiTi Efficiency alloy was then evaluated based on a dynamic model developed in this study. It was found Nitinol that the system COP was 1.7 for a baseline case considering both driving motor and Solid-state cooling parasitic pump power consumptions, while COP ranged from 5.2 to 7.7 when estimated with future improvements.
    [Show full text]