Stirling Cycle Working Principle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2008.06405V1 [Physics.Ed-Ph] 14 Aug 2020 Fig.1 Shows Four Classical Cycles: (A) Carnot Cycle, (B) Stirling Cycle, (C) Otto Cycle and (D) Diesel Cycle
Investigating student understanding of heat engine: a case study of Stirling engine Lilin Zhu1 and Gang Xiang1, ∗ 1Department of Physics, Sichuan University, Chengdu 610064, China (Dated: August 17, 2020) We report on the study of student difficulties regarding heat engine in the context of Stirling cycle within upper-division undergraduate thermal physics course. An in-class test about a Stirling engine with a regenerator was taken by three classes, and the students were asked to perform one of the most basic activities—calculate the efficiency of the heat engine. Our data suggest that quite a few students have not developed a robust conceptual understanding of basic engineering knowledge of the heat engine, including the function of the regenerator and the influence of piston movements on the heat and work involved in the engine. Most notably, although the science error ratios of the three classes were similar (∼10%), the engineering error ratios of the three classes were high (above 50%), and the class that was given a simple tutorial of engineering knowledge of heat engine exhibited significantly smaller engineering error ratio by about 20% than the other two classes. In addition, both the written answers and post-test interviews show that most of the students can only associate Carnot’s theorem with Carnot cycle, but not with other reversible cycles working between two heat reservoirs, probably because no enough cycles except Carnot cycle were covered in the traditional Thermodynamics textbook. Our results suggest that both scientific and engineering knowledge are important and should be included in instructional approaches, especially in the Thermodynamics course taught in the countries and regions with a tradition of not paying much attention to experimental education or engineering training. -
Midlothian Council the Moray Council Perth & Kinross Council South
1558 THE EDINBURGH GAZETTE FRIDAY 23 JULY 1999 Glenferness Proposed demolition Area Planning Office Reason for advert Application House of link corridor. 88 High Street and period for response Auldearn 99/00104/LBCNA Nairn IV124BD Listed Building Consent 99/01057/PPLB IV2 SUP Environmental and Erection of manager's house Consumer Services (in outline) on site at Ballintulm / D Rennilson, Director of Planning & Development (1601/86) 46 Leslie Street, Blairgowrie Caravan Park, Ballintulm, (21 days) Blairgowrie, Perthshire for Ballintulm Caravan Park. Midlothian Council Listed Building Consent 99/01077/LBC (21 days) Installation of sash and case windows The following application may be examined at the Community Services at Sealsbridge House, Back Street, Division, Fairfield House, 8 Lothian Road, Dalkeith EH22 3ZQ, from Bridge of Earn, Perth PH2 9AE for 9.1Sam to 4.45pm Mondays to Thursdays and from 9.15am to 3.30pm, LShaw Fridays or in the local library as indicated. Listed Building Consent 99/01098/LBC LISTED BUILDING CONSENT Environmental and Re-paint existing render at 99/00397/LBC Consumer Services Howgait, Lochgelly Road, Greenfield Lodge Erection of conservatory and alterations to 21/25 High Street, Kinross Scotlandwell, Kinross KY13 9JA Lasswade dwellinghouse. (21 days) for Dr and Mrs E Carruthers Midlothian .Local library: Bonnyrigg Listed Building Consent 99/01120/PPLB Environmental and Alterations and extension to house 'Please send any comment to me in writing not later than 13th August Consumer Services at Tirinie House, Glenfender 1999. 26 Atholl Road, Pitlochry Blair Atholl, Pitlochry G W Marwick, Director; Community Services (1601/72) (21 days) Perthshire PH185TU for Mr and Mrs D Profumo. -
Abstract 1. Introduction 2. Robert Stirling
Stirling Stuff Dr John S. Reid, Department of Physics, Meston Building, University of Aberdeen, Aberdeen AB12 3UE, Scotland Abstract Robert Stirling’s patent for what was essentially a new type of engine to create work from heat was submitted in 1816. Its reception was underwhelming and although the idea was sporadically developed, it was eclipsed by the steam engine and, later, the internal combustion engine. Today, though, the environmentally favourable credentials of the Stirling engine principles are driving a resurgence of interest, with modern designs using modern materials. These themes are woven through a historically based narrative that introduces Robert Stirling and his background, a description of his patent and the principles behind his engine, and discusses the now popular model Stirling engines readily available. These topical models, or alternatives made ‘in house’, form a good platform for investigating some of the thermodynamics governing the performance of engines in general. ---------------------------------------------------------------------------------------------------------------- 1. Introduction 2016 marks the bicentenary of the submission of Robert Stirling’s patent that described heat exchangers and the technology of the Stirling engine. James Watt was still alive in 1816 and his steam engine was gaining a foothold in mines, in mills, in a few goods railways and even in pioneering ‘steamers’. Who needed another new engine from another Scot? The Stirling engine is a markedly different machine from either the earlier steam engine or the later internal combustion engine. For reasons to be explained, after a comparatively obscure two centuries the Stirling engine is attracting new interest, for it has environmentally friendly credentials for an engine. This tribute introduces the man, his patent, the engine and how it is realised in example models readily available on the internet. -
Feasibility Study Into Stirling Engines Application in Ship's Energy Systems
Transactions on the Built Environment vol 42, © 1999 WIT Press, www.witpress.com, ISSN 1743-3509 Feasibility study into Stirling engines application in ship's energy systems S. Zmudzki, Faculty of Maritime Technology, Technical University of Szczecin, 71- 065 Szczecin, al Piastow 41, Poland E-mail: szmudzkia@shiptech. tuniv.szczecin.pl Abstract The possibility of utilization of solar energy as well as exhaust gas energy from main and auxiliary marine diesel engines for driving Stirling engines has been analysed. The Stirling engines are used for driving current generators. The solar dish Stirling units of 100 kW total effective power may be installed on a board of different type of ships. The system utilizing the exhaust gas energy has been provided with three-way catalyst which may lead to the reduction of emissions below limits established by appropriate regulations. 1 Introduction The Stirling engine belongs to a group of piston engines with so called external supply of heat energy, flowing then through metal walls of engine heater into working gas circulating in the working space. The heat energy supply may be realized or by means of direct effect of the high temperature energy source or by an intermediate heating system i.e. heat pipe or pool-boiler receiver. Thus, the design provides for the possibility of application of different types of heat energy of sufficiently large power. In particular, the advantages of Stirling engines are set off when using the alternative energy sources, especially waste heat energy, the operating costs for which are relatively lower in comparison with capital costs. In case of ship s energy installations, the solar energy available at appropriate geographical latitudes for ships having very large open deck surface / i.e. -
Fuel Cells Versus Heat Engines: a Perspective of Thermodynamic and Production
Fuel Cells Versus Heat Engines: A Perspective of Thermodynamic and Production Efficiencies Introduction: Fuel Cells are being developed as a powering method which may be able to provide clean and efficient energy conversion from chemicals to work. An analysis of their real efficiencies and productivity vis. a vis. combustion engines is made in this report. The most common mode of transportation currently used is gasoline or diesel engine powered automobiles. These engines are broadly described as internal combustion engines, in that they develop mechanical work by the burning of fossil fuel derivatives and harnessing the resultant energy by allowing the hot combustion product gases to expand against a cylinder. This arrangement allows for the fuel heat release and the expansion work to be performed in the same location. This is in contrast to external combustion engines, in which the fuel heat release is performed separately from the gas expansion that allows for mechanical work generation (an example of such an engine is steam power, where fuel is used to heat a boiler, and the steam then drives a piston). The internal combustion engine has proven to be an affordable and effective means of generating mechanical work from a fuel. However, because the majority of these engines are powered by a hydrocarbon fossil fuel, there has been recent concern both about the continued availability of fossil fuels and the environmental effects caused by the combustion of these fuels. There has been much recent publicity regarding an alternate means of generating work; the hydrogen fuel cell. These fuel cells produce electric potential work through the electrochemical reaction of hydrogen and oxygen, with the reaction product being water. -
Recording and Evaluating the Pv Diagram with CASSY
LD Heat Physics Thermodynamic cycle Leaflets P2.6.2.4 Hot-air engine: quantitative experiments The hot-air engine as a heat engine: Recording and evaluating the pV diagram with CASSY Objects of the experiment Recording the pV diagram for different heating voltages. Determining the mechanical work per revolution from the enclosed area. Principles The cycle of a heat engine is frequently represented as a closed curve in a pV diagram (p: pressure, V: volume). Here the mechanical work taken from the system is given by the en- closed area: W = − ͛ p ⋅ dV (I) The cycle of the hot-air engine is often described in an idealised form as a Stirling cycle (see Fig. 1), i.e., a succession of isochoric heating (a), isothermal expansion (b), isochoric cooling (c) and isothermal compression (d). This description, however, is a rough approximation because the working piston moves sinusoidally and therefore an isochoric change of state cannot be expected. In this experiment, the pV diagram is recorded with the computer-assisted data acquisition system CASSY for comparison with the real behaviour of the hot-air engine. A pressure sensor measures the pressure p in the cylinder and a displacement sensor measures the position s of the working piston, from which the volume V is calculated. The measured values are immediately displayed on the monitor in a pV diagram. Fig. 1 pV diagram of the Stirling cycle 0210-Wei 1 P2.6.2.4 LD Physics Leaflets Setup Apparatus The experimental setup is illustrated in Fig. 2. 1 hot-air engine . 388 182 1 U-core with yoke . -
William Stirling
William Stirling William Stirling was born 31 August 1841 in Forfar, Angus, Scotland. He was the second of eight children of Thomas Stirling and Elizabeth Bell, three of whom died young. In 1851, the family was living in Forfar, Scotland.1 William joined the Mormon Church in 1859.2 He was a ploughman living in Inverarity, Angus, Scotland, in 1861.3 The next year he sailed with his sister Jessie from Liverpool, England, to New York, United States, on the ship “William Tapscott”. They arrived 26 June 1862.4 They continued to the Utah Territory with the Horton D Haight Company, departing 10 August 1862 and arriving19 October 1862.5 William drove an ox team across the plains. He moved to Dixie in December 1862.6 He became a naturalized citizen.7 William married Sarah Ann Leany in 1865 in Harrisburg, Washington, Utah Territory.8 They had fourteen children.9 He built a small two-room lumber house in 1868 in Leeds, Washington, Utah Territory (the Stirling-Olsen home). He helped fund his parents and two younger sisters to immigrate to Great Salt Lake City. He was a farmer, winemaker, and the chief executive officer for the Leeds Water Company. One winter he was riding his horse through Silver Reef (a silver mining town near Leeds) and noticed a frenzy at the Christy Mill. The boilers were under full fire, but the mill stream was frozen. Knowing an explosion was inevitable if the water was unavailable to cool the mill, he quickly rode to open the head gates which directed water from the Leeds Canal.10 The owners showed their gratitude by placing William on the payroll for a year with no expectation that he would work for the salary. -
Novel Hot Air Engine and Its Mathematical Model – Experimental Measurements and Numerical Analysis
POLLACK PERIODICA An International Journal for Engineering and Information Sciences DOI: 10.1556/606.2019.14.1.5 Vol. 14, No. 1, pp. 47–58 (2019) www.akademiai.com NOVEL HOT AIR ENGINE AND ITS MATHEMATICAL MODEL – EXPERIMENTAL MEASUREMENTS AND NUMERICAL ANALYSIS 1 Gyula KRAMER, 2 Gabor SZEPESI *, 3 Zoltán SIMÉNFALVI 1,2,3 Department of Chemical Machinery, Institute of Energy and Chemical Machinery University of Miskolc, Miskolc-Egyetemváros 3515, Hungary e-mail: [email protected], [email protected], [email protected] Received 11 December 2017; accepted 25 June 2018 Abstract: In the relevant literature there are many types of heat engines. One of those is the group of the so called hot air engines. This paper introduces their world, also introduces the new kind of machine that was developed and built at Department of Chemical Machinery, Institute of Energy and Chemical Machinery, University of Miskolc. Emphasizing the novelty of construction and the working principle are explained. Also the mathematical model of this new engine was prepared and compared to the real model of engine. Keywords: Hot, Air, Engine, Mathematical model 1. Introduction There are three types of volumetric heat engines: the internal combustion engines; steam engines; and hot air engines. The first one is well known, because it is on zenith nowadays. The steam machines are also well known, because their time has just passed, even the elder ones could see those in use. But the hot air engines are forgotten. Our aim is to consider that one. The history of hot air engines is 200 years old. -
Strategic Plan
Strategic Plan Clackmannanshire and Stirling Strategic Plan 2016 - 2019 Health and Social Care Partnership Clackmannanshire and Stirling Strategic Plan Clackmannanshire and Stirling Strategic Plan Contents Foreword 2 Background to Health & Social Care Integration .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..3 .. .. .. .. .. Clackmannanshire & Stirling Health and Social Care Partnership 3 Integration Joint Board 3 Chief Officer .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..3 .. .. .. .. .. .. The Strategic Plan .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. Localities .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3 Community Planning Partnerships 3 The Case for Change .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..4 .. .. .. Why do we need to change? 4 Profile of Clackmannanshire Council & Stirling Council Areas 4 Our Vision and Outcomes 9 Our Local Vision and Outcomes 9 Outcomes .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 9 How we will achieve Improved Outcomes 10 What does all of this mean for you? 11 Services working in partnership 11 Key Themes and Ambitions 12 Our -
Measuring the Steady State Thermal Efficiency of a Heating System
Measuring the Steady State Thermal Efficiency of a Heating System. Last week you had a tour of “Colby Power and Light” and had a chance to see Gus Libby’s really cool, campus-scale, multi-million dollar calorimeter. This week we will use lab-scale calorimeters to measure the heat and carbon content of different fuels (methane, propane, butane, and gasoline). Our simple calorimeters were designed by Whitney King and Chuck Jones, Science Division Instrument Wizard, to simulate the highly efficient HTP Versa Flame fire-tube boiler. The lab has three parts: 1) Calibrate the calorimeter 2) Measure the heat content of different fuels 3) Compare the measured heat content to the calculated heat content 1) Calibrate the Calorimeter. You lab instructor will demonstrate the assembly of the laboratory- scale fire-tube calorimeter. The heat transferred from the burning fuel to the calorimeter can be determined from the mass of the object being heated, the heat capacity of the object and the change in temperature. � = ���� ∗ �� ∗ ∆� We will begin the experiment by adding a known amount of heat to our calorimeters from a coffee cup heater. The heater is a simple resistor that converts electrical energy into heat. The heater has a resistance of 47.5 ohms and is plugged into a 120 V outlet. Recalling your electricity basics, we know that V=IR where V is the voltage in Figure 1. HTP Versa Flame Fire Tube volts, I is the current in amps, and R is the Boiler. Brown Tubes carry the hot resistance in ohms. The power, P, consumed by combustion gasses inside of the the heater is volts times current, water tank where they condense releasing the maximum available 2 heat. -
Stirling Hall Business Foyer Center
TERRACE LOADING DOCK K J I H G OFFICES EDINBURGH HALL SALONS KITCHEN STAGE L F STAGE M STIRLING E BALLROOM V I TERRACE TERRACE SALONS EAST SALONS N D X I EDINBURGH V O C BALLROOM GARDEN X EAST I V LAWN TERRACE TERRACE SALONS SALONS P B WEST I X III STIRLING Q BOARDROOM VIII II WEST FOYER EDINBURG VII BOARDROOM STIRLING HALL BUSINESS FOYER CENTER STIRLING HALL Stirling Ballroom Ceiling Height is 14’ 9” Room Name Sq. Ft. Dimensions Terrace Theater Classroom Hollow Conference U-Shape Reception Banquet Exhibit Cresent Stage Dimensions Square Rounds of 6 Stirling Ballroom 8,280 115 x 72 1,100 600 140 800 660 48 (8x10) 396 20D x 30W x 3 8”H Stirling East 5,112 71 x 72 550 300 400 360 216 Stirling West 3,168 44 x 72 300 180 250 240 144 Stirling Boardroom 576 18 x 32 14* Salons B – Q 576 18 x 32 60 32 30 24 20 40 40 24 Salons B – C 1,152 36 x 32 110 65 46 32 36 125 80 78 Salons D – F/I – K/L – N/O – Q 1,760 55 x 32 175 100 56 48 125 120 72 Salons G – H 1,344 42 x 32 150 76 48 36 40 100 100 54 Salon G 768 24 x 32 75 45 35 28 32 65 50 30 Salon H 576 18 x 32 60 32 30 24 20 40 40 24 Terrace Salons B – F 99L x 15 5”W Terrace Salons G – K 111L x 15 7”W Terrace Salons L – Q 114L x 16 4”W All dimensions are in square feet unless otherwise noted. -
25 Kw Low-Temperature Stirling Engine for Heat Recovery, Solar, and Biomass Applications
25 kW Low-Temperature Stirling Engine for Heat Recovery, Solar, and Biomass Applications Lee SMITHa, Brian NUELa, Samuel P WEAVERa,*, Stefan BERKOWERa, Samuel C WEAVERb, Bill GROSSc aCool Energy, Inc, 5541 Central Avenue, Boulder CO 80301 bProton Power, Inc, 487 Sam Rayburn Parkway, Lenoir City TN 37771 cIdealab, 130 W. Union St, Pasadena CA 91103 *Corresponding author: [email protected] Keywords: Stirling engine, waste heat recovery, concentrating solar power, biomass power generation, low-temperature power generation, distributed generation ABSTRACT This paper covers the design, performance optimization, build, and test of a 25 kW Stirling engine that has demonstrated > 60% of the Carnot limit for thermal to electrical conversion efficiency at test conditions of 329 °C hot side temperature and 19 °C rejection temperature. These results were enabled by an engine design and construction that has minimal pressure drop in the gas flow path, thermal conduction losses that are limited by design, and which employs a novel rotary drive mechanism. Features of this engine design include high-surface- area heat exchangers, nitrogen as the working fluid, a single-acting alpha configuration, and a design target for operation between 150 °C and 400 °C. 1 1. INTRODUCTION Since 2006, Cool Energy, Inc. (CEI) has designed, fabricated, and tested five generations of low-temperature (150 °C to 400 °C) Stirling engines that drive internally integrated electric alternators. The fifth generation of engine built by Cool Energy is rated at 25 kW of electrical power output, and is trade-named the ThermoHeart® Engine. Sources of low-to-medium temperature thermal energy, such as internal combustion engine exhaust, industrial waste heat, flared gas, and small-scale solar heat, have relatively few methods available for conversion into more valuable electrical energy, and the thermal energy is usually wasted.