Response of Ten Yellow Mango Cultivars to Powdery Mildew (Erysiphe Quercicola) Damage in Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Response of Ten Yellow Mango Cultivars to Powdery Mildew (Erysiphe Quercicola) Damage in Mexico Response of ten yellow mango cultivars to powdery mildew (Erysiphe quercicola) damage in Mexico Respuesta de diez cultivares de mango amarillo al daño por cenicilla (Erysiphe quercicola) en México Amado Pérez-Rodríguez, José Antonio Mora-Aguilera*, Carlos De León-García de Alba, José Sergio Sandoval-Islas, Instituto de Fitosanidad, Colegio de Postgraduados, km 36.5, Carretera México-Texcoco, Montecillo, Texcoco, Estado de México, CP. 56230, México; Elías Hernández-Castro, Unidad Académica de Ciencias Agropecuarias y Ambientales, Universidad Autónoma de Guerrero, Carretera Iguala-Tuxpan km 2.5, CP. 40101, Iguala, Guerrero, México; Alfonso Vásquez-López, Laboratorio de Fitopatología, Instituto Poli- técnico Nacional-CIIDIR, Calle Hornos 1003, Colonia Noche Buena, Municipio Santa Cruz Xoxocotlán, CP. 71230, Oaxaca, Oaxaca, México. *Autor para correspondencia: [email protected]. Recibido: 30 de Noviembre, 2017. Aceptado: 28 de Enero, 2018. Pérez-Rodríguez A, Mora-Aguilera JA, De León-Gar- Abstract. Mango powdery mildew (Erysiphe cía de Alba C, Sandoval-Islas JS, Hernández-Castro E, quercicola) causes up to 90% production losses, Vásquez-López A. 2018. Response of ten yellow man- so it is necessary to estimate the tolerance to this go cultivars to powdery mildew (Erysiphe quercicola) pathogen of the new germplasm introduced or damage in México. Revista Mexicana de Fitopatología recently generated to increase the export potential 36(2): 196-214. of Mexico. The objective of this study was to DOI: 10.18781/R.MEX.FIT.1711-5 determine the response to powdery mildew damage by means of an optimized inoculation Primera publicación DOI: 06 de Marzo, 2018. technique to induce the disease in attached leaves First DOI publication: March 06, 2018. of 10 new yellow mango cultivars for Mexico. Two inoculation methods were evaluated. The best was to spray conidia at 4.6 x 105 spores mL-1 Resumen. La cenicilla del mango (Erysiphe on the adaxial and abaxial leaves surfaces, at ± quercicola) causa pérdidas de producción de hasta 300-450 lux and suspended in polysorbate 20 + 90%, por lo que es necesario estimar la tolerancia surfactant based on ethoxilate alcohols at 2%. The a este patógeno en el nuevo germoplasma introdu- inoculation test showed that the cv. Alphonso was cido o generado recientemente para incrementar el moderately tolerant and Neelum and Fairchild potencial de exportación de México. El objetivo de were slightly tolerant. In contrast, Nam Doc Mai, este estudio fue determinar la respuesta al daño por Rosigold, Ataulfo Zafiro, Cotaxtla and Kesar were cenicilla mediante una técnica de inoculación optimi- susceptible and Mallika and Ivory were highly zada para inducir la enfermedad en hojas adheridas de susceptible. The most tolerant cultivars had lower Publicación en línea, mayo 2018 196 Revista Mexicana de FITOPATOLOGÍA Fully Bilingual Mexican Journal of Phytopathology 10 cultivares de mango amarillo nuevos para Méxi- values of incidence, maximum severity, area under co. Se evaluaron dos métodos de inoculación. El the disease progress curve, apparent infection rate mejor fue por aspersión de conidios a una concen- and conidia density per cm2 of damaged leaf area tración de 4.6 × 105 esporas mL-1, en las superficies (LSD, P≤0.05). adaxial y abaxial de las hojas, a ± 300 – 450 lux y suspendidos en polisorbato 20 + surfactante a base Key words: leaves, susceptibility, germplasm, de alcoholes etoxilados al 2%. La prueba de inocu- severity. lación mostró que el cv. Alphonso fue moderada- mente tolerante y Neelum y Fairchild ligeramente tolerantes. En contraste, Nam Doc Mai, Rosigold, Mexico is the seventh largest mango (Mangifera Ataúlfo Zafiro, Cotaxtla y Kesar fueron suscepti- indica L.) producing country in the world, with bles y Mallika e Ivory altamente susceptibles. Los an annual volume of more than 1.8 Mt, and is cultivares más tolerantes presentaron valores me- the main exporter, accounting for 24% of global nores de incidencia, severidad máxima, área bajo mango exports (FAO, 2016). Between 1992 la curva del progreso de la enfermedad, tasa de in- and 2006, Mexico lost approximately 27.6% of fección aparente y densidad de conidios por cm2 de its competitiveness as a mango exporter to the área foliar dañada. United States due to the increased commercial share of India, Thailand, Peru, Brazil and Ecuador Palabras clave: hojas, susceptibilidad, germoplas- (Hernández and Martínez, 2009). This growing ma, severidad. problem is associated with the limited supply of yellow mangoes on the international market, since Mexico trades only Ataulfo cv. fruits, México representa el séptimo país productor whose productivity is low mainly due to diseases, de mango (Mangifera indica L.) con un volumen parthenocarpic fruits, genetic mixtures, as well as anual superior a 1.8 Mt y es el principal exportador marked seasonality and alternate bearing (Villegas con el 24% del volumen exportado global (FAO, and Mora, 2011). To mitigate such limitations, 2016). Entre 1992 y 2006 México perdió compe- in 2011 and 2012, the Colegio de Postgraduados titividad en aproximadamente 27.6% en la expor- introduced eight new yellow mango cultivars from tación de mango a EE.UU., debido al incremento Florida, USA, that have export potential. Also, the de la participación comercial de India, Tailandia, Instituto Nacional de Investigaciones Forestales Perú, Brasil y Ecuador (Hernández y Martínez, Agrícolas y Pecuarias (INIFAP) registered two 2009). Este problema creciente está asociado a la new local cultivars of the Ataulfo clone in 2009 (A. oferta limitada de mango amarillo en el mercado Diamante) and 2012 (A. Zafiro). internacional, ya que México comercializa única- Mango powdery mildew caused by Erysiphe mente frutos del cv. Ataúlfo y este presenta baja quercicola (anamorph: Pseudoidium anacardii) productividad debido principalmente a presencia (Braun and Cook, 2012; Félix et al., 2013; Tam, de enfermedades, frutos partenocárpicos, mezclas 2017) is one of the most important diseases that genéticas y marcada estacionalidad y alternancia de affects mango because of its high level of severity, cosecha (Villegas y Mora, 2011). Para mitigar estas endemism and cosmopolitan distribution (Raheel limitantes, el Colegio de Postgraduados introdujo et al., 2008) that cause 80-90% of the mango Publicación en línea, mayo 2018 197 Revista Mexicana de FITOPATOLOGÍA Mexican Journal of Phytopathology Fully Bilingual en 2011 y 2012 ocho nuevos cultivares de mango production losses (Gupta, 1989b; Shoeman et al., amarillo con potencial de exportación procedentes 1995; Nasir et al., 2014). In mango exporting states de Florida, EE.UU. Además, el Instituto Nacional such as Michoacan, it may affect 60% of commercial de Investigaciones Forestales Agrícolas y Pecua- trees, the equivalent of 30,000 to 50,000 tons of rias (INIFAP) registró dos nuevos cultivares loca- fruit (Arias et al., 2004); in Sinaloa, the disease les del clon Ataúlfo en 2009 (A. Diamante) y 2012 causes 70% losses during the flowering stage (Félix (A. Zafiro). et al., 2017). The fungus damages leaves, flowers La cenicilla del mango, causada por Erysiphe and young fruits. The infected tissue is covered quercicola (anamorfo: Pseudoidium anacardii) with white powder due to mycelial growth and (Braun y Cook, 2012; Félix et al., 2013; Tam, sporulation. The first lesions on leaves are reddish 2017) es una de las enfermedades más importan- in color, but at advanced stages, the fungus deforms tes de este frutal por su alta severidad, endemis- the leaf lamina and produces abundant sporulation, mo, distribución cosmopolita (Raheel et al., 2008) necrosis and severe defoliation. In the reproductive y causar pérdidas de cosecha de 80-90% (Gupta, tissue, it causes fall of flowers, extensive necrosis 1989b; Shoeman et al., 1995; Nasir et al., 2014). of inflorescences and abortion of young fruits En entidades federativas exportadoras de man- (Sinha et al., 2001; 2002; Nasir et al., 2014). go como Michoacán puede afectar el 60% de los The effect of foliar infections on the frequency árboles comerciales, representando 30-50 mil ton and severity of epidemics on inflorescences is de fruta (Arias et al., 2004) y en Sinaloa ocasio- widely documented, because the fungus survives nar pérdidas de 70% durante floración (Félixet al., in the form of mycelium in buds and leaves during 2017). El hongo ataca hojas, inflorescencias y fru- the growth season, or from previous years, when tos juveniles. El tejido infectado se cubre con un environmental conditions do not favor infection, or polvo blanco debido al crecimiento micelial y es- when there is no reproductive tissue (Schoeman et porulación. Las lesiones iniciales en follaje son de al., 1995; Misra, 2001; Nasir et al., 2014). When coloración rojiza, el daño avanzado causa deforma- there are no flowers, early infection on young ción de lámina foliar con esporulación abundante, leaves perpetuates inoculum availability and favors necrosis y defoliación severa. En tejido reproduc- the beginning of the infection on panicles (Munshi tivo induce caída de flores, necrosis extensiva de et al., 1988; Misra et al., 2012). Also, during inflorescencias y aborto de frutos pequeños (Sinha flowering, sporulation on leaves (with conidia et al., 2001; 2002; Nasir et al., 2014). attached to conidiophores) increases inoculum La relevancia de la infección foliar en la recu- development and preserves its viability from 10 to rrencia y severidad de epidemias en inflorescencias 19 (Gupta, 1989a; Nelson, 2008) or 40 more
Recommended publications
  • Origin and Classification of Mango Varieties in Hawaii
    ORIGIN AND CLASSIFICATION OF MANGO VARIETIES IN HAWAII R. A. Hamilton Emeritus Professor, Department of Horticulture College of Tropical Agriculture and Human Resources University of Hawaii at Manoa Mangos (Mangifera indica) are widely grown of polyembronic mango that became popular in as a home garden fruit in the warmer, drier areas Hawaii was the "Chinese" mango (,No.9'), of all major islands of Hawaii. The fruit is mostly originally from the West Indies, but so called consumed fresh as a breakfast or dessert fruit. because it was frequently grown by persons of Small quantities are also processed into mango Chinese ancestry. Indian mangos are mostly seed preserves, pickles, chutney, and sauce. mono embryonic types originating on the Indian subcontinent, a center of mango diversity. Many Production monoembryonic mango cuitivars have been Most mangos in Hawaii are grown in introduced to Hawaii as a result of their dooryards and home gardens. Although introduction and selection in Florida, an important commercial production has been attempted, center of mango growing in the Americas. Finally, acreages remain small. Production from year to several cuitivars, mostly seedlings of mono­ year tends to be erratic, which has resulted in embryonic cuitivars, have been selected and limited commercial success. Shipment to the U.S. named in Hawaii (Tables 1 and 2). mainland is presently prohibited due to the presence in Hawaii of tephritid fruit flies and the Cultivar Introduction and Selection mango weevil, Cryptorhynchus mangiferae, which is The exact date of the first introduction of not found in other mango-growing areas of the mangos into Hawaii is not known.
    [Show full text]
  • OUTSTANDING WARRANTS As of 10/10/2017
    OUTSTANDING WARRANTS as of 10/10/2017 AGUILAR, CESAR JESUS ALEXANDER, SARAH KATHEREN ALLEN, RYAN MICHAEL A AGUILAR, ROBERTO CARLOS ALEXANDER, SHARRONA LAFAYE ALLEN, TERRELL MARQUISE AARON, WOODSTON AGUILERA, ROBERTO ALEXANDER, STANLEY TOWAYNE ALLEN, VANESSA YVONNE ABABTAIN, ABDULLAH AGUILIAR, CANDIDO PEREZ ALEXANDER, STEPHEN PAUL ALMAHAMED, HUSSAIN HADI M MOHAMMED A AHMADI, PAULINA GRACE ALEXANDER, TERRELL ALMAHYAWI, HAMED ABDELTIF, ALY BEN AIKENS, JAMAL RAHEEM ALFONSO, MIGUEL RODRIGUEZ ALMASOUDI, MANSOUR ABODERIN, OLUBUSAYO ADESAJI AITKEN, ROBERT ALFORD, LARRY ANTONIO MOHAMMED ALMUTAIRI, ABDULHADI HAZZAA ABRAMS, TWANA AKIBAR, BRIANNA ALFREDS, BRIAN DANIEL ALNUMARI, HESHAM MOHSMMED ABSTON, CALEB JAMES AKINS, ROBERT LEE ALGHAMDI, FAHADAHMED-A ALONZO, RONY LOPEZ ACAMPORA, ADAM CHRISTOPHER AL NAME, TURKI AHMED M ALHARBI, MOHAMMED JAZAA ALOTAIBI, GHAZI MAJWIL ACOSTA, ESPIRIDION GARCIA AL-SAQAF, HUSSEIN M H MOHSEB ALHARBI, MOHAMMED JAZAA ALSAIF, NAIF ABDULAZIZ ACOSTA, JADE NICOLE ALASMARI, AHMAD A MISHAA ALIJABAR, ABDULLAH ALSHEHRI, MAZEN N DAFER ADAMS, ANTONIO QUENTERIUS ALBERDI, TOMMY ALLANTAR, OSCAR CVELLAR ALSHERI, DHAFER SALEM ADAMS, BRIAN KEITH ALBOOSHI, AHMED ABALLA ALLEN, ANDREW TAUONE ALSTON, COREY ROOSEVELT ADAMS, CHRISTOPHER GENE ALBRIGHT, EDMOND JERRELL ALLEN, ANTHONY TEREZ ALSTON, TORIANO ADARRYL ADAMS, CRYSTAL YVONNE ALCANTAR, ALVARO VILCHIS ALLEN, ARTHUR JAMES ALTMAN, MELIS CASSANDRA ADAMS, DANIEL KENNETH ALCANTAR, JOSE LUIS MORALES ALLEN, CHADWICK DONOVAN ALVARADO, CARLOS ADAMS, DARRELL OSTELLE ALCANTARA, JESUS ALLEN, CHRISTOPHER
    [Show full text]
  • Site-Specific Fertilization Approach Increased
    Site-specific fertilization approach increased productivity of rainfed ‘Ataúlfo’ mango El enfoque de fertilización de sitio específico incrementó la productividad del mango ‘Ataúlfo’ Samuel Salazar-García1‡ , Martha Elva Ibarra-Estrada2 , Edgardo Federico Hernández-Valdés3 , Raúl Medina-Torres4 , and Luis Enrique Fregoso-Tirado1 1 INIFAP, Campo Experimental Santiago Ixcuintla. Entronque carretera Internacional México-Nogales km 6. 63300 Santiago Ixcuintla, Nayarit, México. ‡ Corresponding autor ([email protected]) 2 Independent researcher. Santiago Ixcuintla, Nayarit, México. 3 Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo. Paseo Lázaro Cárdenas esq. Berlín s/n, Col. Viveros. 60190 Uruapan, Michoacán, México. 4 Universidad Autónoma de Nayarit, Unidad Académica de Agricultura. Carretera Tepic-Compostela km 9, Apdo. Postal 49. 63780 Xalisco, Nayarit, México. SUMMARY increased yield 38% as compared to the Control, as well as fruit size. The highest total fruit yield and C22 There is considerable diversity in fertilization (196-220 g) and C20 (221-250 g), as well as the highest management of ‘Ataúlfo’ mango (Mangifera cost-benef it, were obtained with the Normal dose. indica L.) in the state of Nayarit, Mexico, and there This treatment consisted of applying per year and tree, is no systematic information available in this regard. depending on the orchard, 509-608 g N, 21-206 g P, The aim of this research was to evaluate the medium- 132-582 g K, 19-234 g Mg, 6.5-18 g Fe, 6-46 g Mn, term effect (2010-14) of the site-specif ic fertilization 2-6 g Zn and 3-13 g B. approach on fruit yield and size in ‘Ataúlfo’ mango grown under rainfed conditions (annual average Index words: alternate bearing, fruit size, Mangifera summer rainfall 1300-1450 mm).
    [Show full text]
  • Changes in the Sensory Characteristics of Mango Cultivars During the Production of Mango Purée and Sorbet
    DIFFERENCES IN SENSORY CHARACTERISTICS AMONG VARIOUS MANGO CULTIVARS IN THE FORM OF FRESH SLICED MANGO, MANGO PURÉE, AND MANGO SORBET by CHRISTIE N. LEDEKER B.S., University of Delaware, 2008 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Interdisciplinary Food Science Graduate Program Department of Human Nutrition KANSAS STATE UNIVERSITY Manhattan, Kansas 2011 Approved by: Major Professor Dr. Delores H. Chambers Abstract Fresh mangoes are highly perishable, and therefore, they are often processed to extend shelf-life and facilitate exportation. Studying the transformation that mango cultivars undergo throughout processing can aid in selecting appropriate varieties for products. In the 1st part of this study, the flavor and texture properties of 4 mango cultivars available in the United States (U.S.) were analyzed. Highly trained descriptive panelists in the U.S. evaluated fresh, purée, and sorbet samples prepared from each cultivar. Purées were made by pulverizing mango flesh, passing it through a china cap, and heating it to 85 °C for 15 s. For the sorbets, purées were diluted with water (1:1), sucrose was added, and the bases were frozen in a batch ice cream freezer. Much of the texture variation among cultivars was lost after fresh samples were transformed into purées, whereas much of the flavor and texture variation among cultivars was lost once fresh mangoes and mango purées were transformed into sorbets. Compared to the other cultivars, Haden and Tommy Atkins underwent greater transformations in flavor throughout sorbet preparation, and processing reduced the intensities of some unpleasant flavors in these cultivars.
    [Show full text]
  • Effect of Fruit Thinning on 'Sensation' Mango (Mangifera Indica) Trees With
    University of Pretoria etd – Yeshitela, T B (2004) CHAPTER 3 EFFECT OF FRUIT THINNING ON ‘SENSATION’ MANGO (MANGIFERA INDICA) TREES WITH RESPECT TO FRUIT QUALITY, QUANTITY AND TREE PHENOLOGY. 3.1 ABSTRACT Different fruit thinning methods (various intensities in manual fruit thinning as well as a chemical thinner) were tested on ‘Sensation’ mango trees both as initial and cumulative effects during two seasons (2001/2002 and 2002/2003). The trial was conducted at Bavaria Estate, in the Hoedspruit area, Northern Province of South Africa. The thinning treatments were carried out in October before the occurrence of excessive natural fruit drop. The objective of the study was to select the best thinning intensity or method, based on their impacts on different parameters. Where fruit on ‘Sensation’ were thinned to one and two fruit per panicle, a significant increase was obtained for most of the fruit quantitative yield parameters. With the treatments where one fruit and two fruit per panicle were retained and 50% of the panicles removed, a significant increase in fruit size was noted. The same trees also produced higher figures for most of the fruit qualitative parameters as well as fruit retention percentage. However, the trend showed that bigger sized fruit were prone to a higher incidence of physiological problems, especially jelly seed. Chemical fruit thinning with Corasil.E produced very small sized fruit with a considerable percentage of “mules” 43 University of Pretoria etd – Yeshitela, T B (2004) (fruit without seed). Trees subjected to severe thinning intensities showed earlier revival of starch reserves and better vegetative growth. Key words: fruit per panicle, fruit quantity, fruit quality • Published in Experimental Agriculture, vol 40(4), pp.
    [Show full text]
  • 24Unv22xt2as4sgwsw.Pdf
    SweetSweet areare the fruits of our labour ...... When tasted byby the worldworld Treasures of the Tropics Golden mangoes. Juicy guavas. Luscious papayas. Tender cucumbers. Succulent tomatoes. The tropics abound in the choicest of fruits and vegetables which are sought after by the rest of the world for their taste and fl avour. And India, as a tropical country, has been abundantly blessed by Nature Capricorn Pioneer and Leader Capricorn Food Products Limited was one of the fi rst to explore the potential of the fruit and vegetable processing industry in India. For more than a decade now, we have been de- livering the best of nature’s bounty, freshness and goodness preserved intact, to countries around the globe. Today Capricorn is known worldwide as a fruit processing company manufacturing pulp/purees and concentrates of tropical fruits like Mango, Guava and Papaya. We also process vegetables like Gherkins, Peppers, Baby corn, Beans, Potatoes and Green Peas in frozen form. Our Goals Capricorn was founded with an aim to deliver excellent products and services which include the fi nest quality processed fruits and veg- etables. Our dedication to hygiene, food and safety procedures is total. We are committed to innovation, service and value creation as well as nurturing a business culture of dignity and respect for employees. We believe in build- ing long term partnerships with our suppliers. Focussed on Quality Food service professionals will vouch for Capricorn’s focus on quality. We don’t compromise on convenience and taste either. A highly skilled team, comprising the best minds in the industry is in place to handle our operations which are totally systems driven and adhere to Approved Manufacturing Practices.
    [Show full text]
  • Flowering Synchronization of Sensation Mango Trees by Winter Pruning
    Flowering Synchronization of Sensation Mango Trees by Winter Pruning S.A. Oosthuyse and G. Jacobs Horticultural Science, University of Stellenbosch, Stellenbosch 7600 ABSTRACT To synchronize flowering, all of the terminal shoots on separate sets of Sensation mango trees were pruned on a number dates occurring just prior to and during the flowering period. Pruning was performed 5 em beneath the site of apical bud or inflorescence attachment or at this site. Only trees in their 'on' year were pruned. Flowering was effectively delayed in accordance with pruning date due to the consequent development of axillary inflorescences beneath the pruning cuts. Flowering was synchronized, and resulted in a reduction in variability of the stage of fruit maturation at harvest. Flowering intensity was increased by winter pruning due to the enhanced number of inflorescences developing per terminal shoot. Fruit drop was also increased. Tree yield was unaffected due to a compensatory increase in fruit size. Stage of fruit maturation at harvest and time of flowering were inversely related. A reduction in fruit retention and tree yield was associated with pruning the terminal shoots 5 em beneath the site of apical bud or inflorescence attachment, as opposed to at this site. Our results show that winter pruning can be recommended as a measure to synchronize the flowering of Sensation mango trees when the trees are in a positive phase of bearing alternation. ering period, as a measure to reduce variability of flowering and of the degree of maturation at harvest. Assessment was In mango, the removal of the apical bud or inflorescence also made of the effect of winter pruning on the time and on terminal shoots just prior to or during the flowering intensity of flowering, on fruit retention, and on tree yield period ('winter pruning') results in the development of at harvest.
    [Show full text]
  • Ataulfo’ Mango Under Pruning and Paclobutrazol Management
    J. Agr. Sci. Tech. (2014) Vol. 16: 385-393 Vegetative and Reproductive Development of ‘Ataulfo’ Mango under Pruning and Paclobutrazol Management ∗ D. A. García De Niz 1, G. L. Esquivel 2 , R. B. Montoya 2, B. G. Arrieta Ramos 2, G. A. Santiago 2, J. R. Gómez Aguilar 2, and A. R. Sao José 3 ABSTRACT Pruning of the plant canopy and paclobutrazol application to the root zone are agronomic practices that improve harvest yield in mango ( Mangifera indica L.) orchards. To assess the effect of pruning and paclobutrazol treatment on the vegetative and reproductive development of ‘Ataulfo’ mango, three pruning dates (20 April, 20 May, and 20 June) and three concentrations of paclobutrazol (PBZ) (7.5, 11.25, and 15 mL of active ingredient) were used. While control trees presented only one vegetative growth during the productive cycle, trees that were pruned and treated with PBZ had up to three vegetative growth cycles before flowering, regardless of whether pruning occurred in April, May, or June. The number of vegetative shoots and inflorescences (m -2) were equal when trees were pruned and PBZ was applied. When pruning was performed in April or May, the time of harvest occurred 28 days earlier compared to the control. Pruning in April numerically resulted in the greatest production efficiency (7-11 kg m -2). For all the three pruning dates, fruit production of trees treated with PBZ and pruning was from 38 to 98 kg; these values were always less than those obtained for the control trees. The greatest incidence of seedless fruits (57-80%) occurred when pruning was performed in June.
    [Show full text]
  • María José Grajal Martín Instituto Canario De Investigaciones Agrarias ICIA Botánica
    María José Grajal Martín Instituto Canario de Investigaciones Agrarias ICIA www.icia.es Botánica Orden: Sapindales Familia: Anacardiaceae Género: Mangifera Especie: Mangifera indica L. Nombre común: mango En Canarias a veces mango (fibras) y manga (sin fibras) María José Grajal Martín. Instituto Canario de Investigaciones Agrarias. 18 de Enero 2016. Cabildo de Lanzarote. Área de Agricultura y Ganadería. M. casturi M. zeylanica M. laurina M. odorata 18 de Enero 2016. Cabildo de Lanzarote. Área de Agricultura y Ganadería. Centro Origen Noroeste de Myamar (Birmania), Bangladesh, y Noreste de India 18 de Enero 2016. Cabildo de Lanzarote. Área de Agricultura y Ganadería. Dispersión India: Cultivo hace más de 4000 años China e Indochina <s.VII Comerciantes árabes a África via Persia y Arabia siglo X Siglos XV y XVI europeos en sus viajes de colonización. Portugueses desde sus colonias en India a sus colonias de África (Angola y Mozambique) y a Brasil Españoles tipos poliembriónicos de Filipinas a América (México cv Manila). Antillas XVIII desde Brasil Transporte Semillas recalcitrantes Frutos fresco, plántulas ó plantas injertadas 18 de Enero 2016. Cabildo de Lanzarote. Área de Agricultura y Ganadería. Florida USA 1861 (desde Cuba No. 11) 1868 ᶦPeachᶦ ᶦMulgobaᶦ (India) primeras plantaciones comerciales origen ᶦHadenᶦ (1910) ᶦHadenᶦ ᶦMulgobaᶦ 18 de Enero 2016. Cabildo de Lanzarote. Área de Agricultura y Ganadería. Florida Introducción de material procedente de India, Filipinas.... Desarrollo de un intenso programa de mejora India: ᶦMulgobaᶦ, ᶦSandershaᶦ, ᶦAminiᶦ y ᶦBombayᶦ Antillas: ᶦTurpentineᶦ cv Osteen Desarrollo de la mayoría de los cultivares comerciales de mango: ᶦKeittᶦ , ᶦLippensᶦ, ᶦOsteenᶦ, ᶦTommy Atkinsᶦ, ᶦZillᶦ, etc. cv.
    [Show full text]
  • Incidence of Fruit Fly (Bactrocera Spp.) in Revised : 21.04.2014 Accepted : 01.05.2014 Different Mango Orchards and Varieties
    THEASIAN JOURNAL OF HORTICULTURE Volume 9 | Issue 1 | June, 2014 | 109-111 e ISSN- 0976-724X | Open Access-www.researchjournal.co.in | Research Paper Article history : Received : 08.11.2013 Incidence of fruit fly (Bactrocera spp.) in Revised : 21.04.2014 Accepted : 01.05.2014 different mango orchards and varieties K.S. NAGARAJ1, S. JAGANATH2 AND G.S.K. SWAMY Members of the Research Forum ABSTRACT : Studies were made on monitoring incidence of fruit fly (Bactrocera spp.) using methyl Associated Authors: eugenol traps in different mango orchards and varieties during 2008-2009 at GKVK campus, Bangalore 1Department of Fruit Science, K.R.C. and Srinivaspur, Kolar. Significantly highest number of B. dorsalis was recorded in Mallika mango College of Horticulture, Arabhavi, BELGAUM (KARNATAKA) INDIA orchard followed by the Mixed orchard (11.06 and 9.48 fruit flies / trap / week, respectively) while highest trap catches of B. correcta (12.66 fruit flies / trap / week) and B. zonata (7.82 fruit flies / trap / 2 University of Horticulture week) was recorded in Banganpalli and Alphonso orchard, respectively. When the total fruit flies were Sciences, G.K.V.K., BENGALURU (KARNATAKA) INDIA considered, highest number of fruit flies was trapped in Mallika (22.38 fruit flies / trap / week) orchard followed by Banganpalli (18.65 fruit flies / trap / week). While the lowest trap catches were recorded in Alphonso orchard. In laboratory study, evaluation on maggot emergence in different mango varieties showed highest emergence of maggot was recorded in cv. MALLIKA (1.40 maggot / fruit) followed by Author for correspondence : G.S.K. SWAMY Amrapali (1.00 maggot / fruit).
    [Show full text]
  • "Ripening of Mangos Following Low-Temperature Storage "
    perature, concentration and exposure time to acetylene on initi- of acetylene and ethylene gas on initiation of banana ripening. ation of banana ripening. J. Sci. Food Agr. 40:43-50. Ann. Applied Biol. 101:407-410. 18. Subramanyam, H., N.V.N. Moorthy, S. Lakshminarayana, and 20. Wang, C.Y. and W.M. Mellenthin. 1972. Internal ethylene lev- S. Krishnamurthy. 1972. Studies on harvesting, transport and els during ripening and climacteric in Anjou pears. Plant Physiol. storage of mango. Intl. Soc. Hort. Sci. 24:260-264. 50:311-312. 19. Thompson, A.K. and G.B. Seymour. 1982. Comparative effects J. AMER. SOC. HORT. SCI. 115(3):430-434. 1990. Ripening of Mangos Following Low-temperature Storage A.P. Medlicott1 Overseas Development and Natural Resources Institute, 56-62 Gray’s Inn Road, London, WX1X 8LU, England J.M.M. Sigrist Instituto de Tecnologia de Alimentos, Av. Brasil 2880, Campinas SP 13100, Brazil O. Sy Institut de Technologie Alimentaire, Route des Pères Maristes, Hann, Dakar BP 2765, Senegal Additional index words. Mangifera indica, harvest maturity, postharvest physiology; quality control Abstract. The effects of harvest maturity of mangos (Mangifera indica L.) on storage tinder various low-temperature regimes and the influence of storage on quality development during subsequent ripening at higher temperatures were investigated. The capacity for storage of mango fruit depended on harvest maturity, storage temperature, and the time of harvest within the season. Development of peel and pulp color, soluble solids concentration, pH, and softening in ‘Amelie’, ‘Tommy Atkins’, and ‘Keitt’ mangos occurred progressively during storage for up to 21 days at 12C.
    [Show full text]
  • Bonita Springs Tropical Fruit Club 2017 Tree Sale Pre-Order Form
    BONITA SPRINGS TROPICAL FRUIT CLUB 2017 TREE SALE PRE-ORDER FORM Customer Name:____________________________________________________________________________________ Phone:_______________________ (OK to Text this number? Y/N) Email:____________________________________ NOTE: Tree Sale is Saturday, Feb. 25 at Riverside Park in Bonita Springs, from 9-1:00. Pre-orders must be picked up and paid for by noon that day or they may be sold. Submit pre-orders by Sunday, Feb. 12 to Kathy at [email protected] or 239-822-7151. You will receive order confirmation. Tree availability may change due to factors beyond our control. TREE* 1 gallon 3 gallon 7 gallon* Your Notes or Variety Selection (see back), if applicable TOTAL COST All Citrus $15 $30 $50 Atemoya $65 Avocado $35 $60 Banana $25 $40 Barbados Cherry $30 $50 Black Sapote $35 $60 Blackberry $25 Canistel $35 $60 Carambola $35 $60 Coconut $35 $60 Dragon Fruit $15 $35 Fig $35 $60 Guanabana See Soursop Grumichama $35 $60 Jaboticaba $35 $60 Jackfruit $35 $60 Jujube $35 $60 Longan $35 $60 Loquat $35 $60 Lychee $35 $60 Macadamia $35 $65 Mamey Sapote $40 $75 Mango $40 $65 Miracle Fruit $20 $40 Mulberry $35 $60 Circle: regular / dwarf Papaya $20 Passion Fruit $25 Peach or Plum $35 $60 Indicate which: Persimmon $35 $60 Pineapple $10 Raspberry $25 Sapodilla $40 $75 Soursop $35 $65 Sugar Apple $35 $65 Fruitilizer 50 lbs. $25 Fruitscapes’ special fertilizer blend for growing fruit. Perlite, large bag $20 A must-have for successful container growing. Book: Florida’s Best Fruiting Plants $22 The bible of tropical fruit for home growers in Florida.
    [Show full text]