The Turgo Impulse Turbine; a CFD Based Approach to the Design Improvement with Experimental Validation

Total Page:16

File Type:pdf, Size:1020Kb

The Turgo Impulse Turbine; a CFD Based Approach to the Design Improvement with Experimental Validation The Turgo impulse turbine; a CFD based approach to the design improvement with experimental validation David Shaun Benzon PhD Thesis SUPERVISOR: PROFESSOR GEORGE A. AGGIDIS Lancaster University in collaboration with Gilbert Gilkes & Gordon Ltd. Department of Engineering, Faculty of Science and Technology, Lancaster University, Lancaster, UK Declaration The author declares that this thesis has not been previously submitted for award of a higher degree to this or any university, and that the contents, except where otherwise stated, are the author’s own work. Signed: Date: i Abstract The use of Computational Fluid Dynamics (CFD) has become a well-established approach in the analysis and optimisation of impulse hydro turbines. Recent studies have shown that modern CFD tools combined with faster computing processors can be used to accurately simulate the operation of impulse turbine runners and injectors in timescales suitable for design optimisation studies and which correlate well with experimental results. This work has however focussed mainly on Pelton turbines and the use of CFD in the analysis and optimisation of Turgo turbines is still in its infancy, with no studies showing a complete simulation of a Turgo runner capturing the torque on the inside and outside blade surfaces and producing a reliable extrapolation of the torque and power at a given operating point. Although there have been some studies carried out in the past where injector geometries (similar for both Pelton and Turgo turbines) have been modified to improve their performance, there has been no thorough investigation of the basic injector design parameters and the influence they have on the injector performance. The aim of this research is to use modern CFD tools to develop models which aid the better understanding of Turgo impulse turbine runners and injectors and facilitate the optimisation of existing designs. CFD is used to model and optimise both the injectors and the runner of a modern commercial Turgo impulse turbine and the accuracy of the models are verified by carrying out experimental tests on the original and optimised designs. The original designs together with experience in the operation of these turbines were provided by the industrial sponsors of this research Gilbert Gilkes and Gordon Ltd. The research described in this thesis can be split into five main parts: 1. Development of a numerical model to analyses the flow through the Turgo runner using modern CFD tools combined with a series of assumptions to reduce the computational time while still retaining the accuracy of the model. Using this model to optimise the design of the Turgo runner provided by Gilkes. 2. Development of a similar numerical model for a simplified 2D injector design to facilitate a study of the impact of the basic design parameters on the performance over a range of operating conditions. Applying these optimisations to the existing Gilkes design and taking the numerical analysis further by including the full injector geometry as well as the branch pipe and guide vanes. 3. Manufacture and experimental testing of the original and optimised Turgo runners. 4. Manufacture and experimental testing of the original and optimised injector designs. ii 5. Verification of the numerical models developed in 1.) and 2.) by comparison with the experimental results. The numerical model developed in 1.) includes several simplifying assumptions in order to reduce the computational time and produce models which could solve in reasonable timescales allowing many design variations to be analysed. As the runner simulations require a transient analysis of complex multi-phase free surface flow with a rotating frame of reference they are already computationally costly and efforts have to be made to reduce this computational cost if the models are to be effective for optimisation purposes. The runner model simplifications were the exclusion of any casing interactions by not modelling the casing and the use of a 2 blade model analysing only a single blade passage in order to reduce the size of the computational domain. Several modelling assumptions were also introduced and attempts are made to quantify the effects of these assumptions through unit tests. For discretisation of the domain two mesh sizes were used, a coarse mesh which slightly under predicts the efficiency but was suitable for comparing designs and a fine mesh which gave mesh independent results. The fine mesh took over 4 times longer to solve rendering it unfeasible for optimisation purposes and it was therefore used only at key points to verify the design changes made using the coarse mesh. The analysis and optimisation of the injectors carried out in 2.) use similar CFD tools as the runner analysis however the geometry (excluding the branch pipe and guide vanes) could be simplified into a 2D axisymmetric case operating at steady state conditions. This drastically reduces the solve time and allows the use of a mesh independent model and the analysis of hundreds of designs and operating conditions. Once the optimisations had been carried out, the design changes were verified by extending the model to analyse the 3D case with a straight pipe upstream of the injector and a 3D full case including the branch pipe and guide vanes. In 3.), following the optimisation of the runner in 1.), a Finite Element Analysis (FEA) of the runner was carried out to ensure the optimised runner had sufficient strength for operation at the highest heads recommended for a runner of this size. The design was strengthened based on the results of the FEA and CFD was carried out in conjunction with these changes to ensure minimal loss in hydraulic efficiency. The manufacturing process was also researched and Design for Manufacture and Assembly (DFMA) was applied to the strengthened design identifying two optimised designs (LE4 and LE1) which will be tested before and after additional dressing of the leading edges. Both optimised runner designs were manufactured and tested at the Laboratory of Hydraulic Machines, National Technical University of Athens (NTUA). iii Following the injector analysis and optimisations in 2.), the optimised injectors were manufactured for experimental testing using both the Pelton and the Turgo test rig at NTUA in 4.). As the design changes made were not critical to the strength of the injectors there was no need to carry out a FEA. The CFD model verification in Part 5.) looks initially at the full Turgo system in order to compare the absolute difference between the numerical efficiency and the experimental efficiency of the original Turgo runner at the best efficiency point. The mechanical losses of the test rig are estimated to determine the experimental hydraulic efficiency. The numerical hydraulic efficiency is then determined by calculating the losses upstream of the injector, using standard pipe flow equations and combing these with the losses through the injector, as well as the numerical efficiency of the runner by simulating the runner using the ‘real jet’ profile produced by the full injector simulations. The results showed the numerical model to be over-predicting the efficiency by 1.26%. The numerical difference in the performance of the two injectors is then compared to the experimental difference measured during testing. This is done by importing the ‘real jet’ profiles produced by the full 3D injector simulations into the LE1 runner simulation. This allows the difference in total efficiency between the injectors combined with the runner to be compared to the experimental differences which also includes the impact of the jet on the runner performance. The comparison between the injectors is less accurate as more uncertainties are introduced when combining these models and the differences are smaller however the CFD was able to predict the improvements to within 0.4%. Finally, the numerical differences between the runner designs and the experimental differences are compared showing that the runner model is able to predict differences in hydraulic efficiency to within 0.1%. This accuracy is largely down to that fact that many of the systematic experimental and modelling errors are cancelled out when comparing only the runners. The CFD model verification has shown that although the absolute performance of the Turgo system can be modelled numerically to within a good degree of accuracy, it requires combining injector and runner models as well as estimating additional losses in the pipework which can prove time consuming. However for design comparison and optimisations the CFD models have been shown to be far more accurate suggesting that this is where these numerical models are most useful. Keywords Renewable Energy, Hydropower, Impulse turbines, Turgo turbines, Computational Fluid Dynamics, Design Optimisation, Experimental Testing iv Dedication I would like to dedicate this research to the memory of my grandfather, Philip Rudolf Botha 1923 -2000 From a young age he encouraged me to pursue a career in engineering. Here is a quote he often used, which I find a great source of inspiration. “The heights by great men reached and kept Were not attained by sudden flight, But they, while their companions slept, Were toiling upward in the night.” (From ‘The Ladder of St Augustine’ by Henry Wadsworth Longfellow) v Acknowledgements Firstly I would like to thank my supervisor Professor George Aggidis for encouraging me to study a PhD, showing continued enthusiasm in this research and for providing support and guidance. None of this would have been possible without you. My gratitude goes to Gilbert Gilkes & Gordon Ltd for sponsoring this research and supporting the experimental testing carried out in Athens. I would specifically like to thank Jonathan Martin, Alan Robinson, Dr Jo Scott and Anthony Watson for sharing their experience, providing support and giving valuable insight into this research. I would like to thank Sam Clegg, Ioannis Kassanos and Austen Wheatman for their support during the experimental testing. I would also like to thank Andy Eaton for his help in organising the presentations given at the Africa Utility Week Conference in Cape Town.
Recommended publications
  • DESIGN of a WATER TOWER ENERGY STORAGE SYSTEM a Thesis Presented to the Faculty of Graduate School University of Missouri
    DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM A Thesis Presented to The Faculty of Graduate School University of Missouri - Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by SAGAR KISHOR GIRI Dr. Noah Manring, Thesis Supervisor MAY 2013 The undersigned, appointed by the Dean of the Graduate School, have examined he thesis entitled DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM presented by SAGAR KISHOR GIRI a candidate for the degree of MASTER OF SCIENCE and hereby certify that in their opinion it is worthy of acceptance. Dr. Noah Manring Dr. Roger Fales Dr. Robert O`Connell ACKNOWLEDGEMENT I would like to express my appreciation to my thesis advisor, Dr. Noah Manring, for his constant guidance, advice and motivation to overcome any and all obstacles faced while conducting this research and support throughout my degree program without which I could not have completed my master’s degree. Furthermore, I extend my appreciation to Dr. Roger Fales and Dr. Robert O`Connell for serving on my thesis committee. I also would like to express my gratitude to all the students, professors and staff of Mechanical and Aerospace Engineering department for all the support and helping me to complete my master’s degree successfully and creating an exceptional environment in which to work and study. Finally, last, but of course not the least, I would like to thank my parents, my sister and my friends for their continuous support and encouragement to complete my program, research and thesis. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ ii ABSTRACT .................................................................................................................... v LIST OF FIGURES .......................................................................................................
    [Show full text]
  • An Abstract of the Thesis Of
    AN ABSTRACT OF THE THESIS OF Bryan R. Cobb for the degree of Master of Science in Mechanical Engineering presented on July 8, 2011 Title: Experimental Study of Impulse Turbines and Permanent Magnet Alternators for Pico-hydropower Generation Abstract Approved: Kendra V. Sharp Increasing access to modern forms of energy in developing countries is a crucial component to eliminating extreme poverty around the world. Pico-hydro schemes (less than 5-kW range) can provide environmentally sustainable electricity and mechanical power to rural communities, generally more cost-effectively than diesel/gasoline generators, wind turbines, or solar photovoltaic systems. The use of these types of systems has in the past and will continue in the future to have a large impact on rural, typically impoverished areas, allowing them the means for extended hours of productivity, new types of commerce, improved health care, and other services vital to building an economy. For this thesis, a laboratory-scale test fixture was constructed to test the operating performance characteristics of impulse turbines and electrical generators. Tests were carried out on a Pelton turbine, two Turgo turbines, and a permanent magnet alternator (PMA). The effect on turbine efficiency was determined for a number of parameters including: variations in speed ratio, jet misalignment and jet quality. Under the best conditions, the Turgo turbine efficiency was observed to be over 80% at a speed ratio of about 0.46, which is quite good for pico-hydro-scale turbines. The Pelton turbine was found to be less efficient with a peak of just over 70% at a speed ratio of about 0.43.
    [Show full text]
  • An Experimental Investigation of Design Parameters for Pico-Hydro Turgo Turbines Using a Response Surface Methodology
    UC Davis UC Davis Previously Published Works Title An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology Permalink https://escholarship.org/uc/item/464972qm Journal Renewable Energy, 85(C) ISSN 0960-1481 Authors Gaiser, K Erickson, P Stroeve, P et al. Publication Date 2016 DOI 10.1016/j.renene.2015.06.049 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Renewable Energy 85 (2016) 406e418 Contents lists available at ScienceDirect Renewable Energy journal homepage: www.elsevier.com/locate/renene An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology * Kyle Gaiser a, c, Paul Erickson a, , Pieter Stroeve b, Jean-Pierre Delplanque a a University of California Davis, Department of Mechanical and Aerospace Engineering, One Shields Avenue, Davis, CA 95616, USA b University of California Davis, Department of Chemical Engineering, One Shields Avenue, Davis, CA 95616, USA c Sandia National Lab, Livermore, CA, USA article info abstract Article history: Millions of off-grid homes in remote areas around the world have access to pico-hydro (5 kW or less) Received 9 February 2015 resources that are undeveloped due to prohibitive installed costs ($/kW). The Turgo turbine, a hy- Received in revised form droelectric impulse turbine generally suited for medium to high head applications, has gained renewed 3 June 2015 attention in research due to its potential applicability to such sites. Nevertheless, published literature Accepted 17 June 2015 about the Turgo turbine is limited and indicates that current theory and experimental knowledge do Available online xxx not adequately explain the effects of certain design parameters, such as nozzle diameter, jet inlet angle, number of blades, and blade speed on the turbine's efficiency.
    [Show full text]
  • Hydropower Systems
    HYDROPOWER SYSTEMS BY APPOINTMENT TO H.M. THE QUEEN WATER TURBINE ENGINEERS, GILBERT GILKES & GORDON LTD, KENDAL 1 WWW.GILKES.COM CONTENTS THE COMPANY 3 GILKES HYDROPOWER 5 GILKES PACKAGE 7 TURBINE SELECTION 10 PELTON TURBINES 11 FRANCIS TURBINES 13 TURGO TURBINES 15 SERVICE & REFURBISHMENT 17 WWW.GILKES.COM 2 AN INTRODUCTION TO Gilbert Gilkes & Gordon Ltd (Gilkes) is an internationally established manufacturing company, based in Kendal, UK on the edge of the English Lake District. In 1856, Gilkes installed their first hydroelectric scheme. Over 150 years later, it is still a world leader in small hydropower systems supplying over 6500 turbines to over 80 countries during its history. With thousands of installations around the world, Gilkes continue to demonstrate the ability to be sensitive to regional differences and requirements and continually design, manufacture and install bespoke engineered solutions for their customers. The company’s head office is in Kendal, however other operations include a dedicated hydro refurbishment unit in Fort William, Scotland and offices in Vancouver and Tokyo for the North American and Far East markets. Gilkes also acts as the parent company to Gilkes Energy Ltd, which was formed in 2008 as our hydro project development business to help our clients develop and finance hydro projects and focuses on Joint Ventures with landowners. Other products designed and manufactured by the company include a range of sophisticated pumps for the cooling of diesel engines and plant, supplying many of the world’s major diesel engine manufacturers. Gilkes also produce pumping solutions for the lubricating of oil or gas and steam turbines and supply a range of industrial pumps for virtually any application.
    [Show full text]
  • Hydraulic Turbines and Auxiliary Equipment
    BR01B1848 ETDE-BR--0278 Hydraulic Turbines and Auxiliary Equipment Reporter: Mr. Luo Gaorong Deputy Director of International Centre of PCH of ONU in China .. Small Hydro Power in China L The Procedures of Small Hydro Power (SHP) Construction 1. The SHP Planning 1.1. The planning of middle and small rivers. Since all SHP stations are built on middle and small rivers, it is necessary to mnduct river planning before the SHP design, which shall be in accordance with multipurpose water resources utilization and cascade optimal development. To be more specific, river planning should take such purposes into account, namely, flood control, water supply, navigation, power generation, environmental protection, natural scene improvement, improvement of surviving conditions of human being, etc so as to develop water resources fully and rationally. At present, most rivers in China have been planned and the planning can be modified annually according to the social and economic development. The planning can be accomplished by water conse~ancy bureaus (departments) at the provincial, prefectural or county level as the river basin varies. 1.2. The planning of rural grid. Most SHP has been incorporated into the rural grid, so the electricity demand of the grid and load forecasting determine the SHP development. At present, most rural SHP grids face such a contradiction, i.e. abundant electricity during the flood season vs. electricity shortage during dry season, which can be relaxed a little bit by exchanging electricity with the national grid. So constructing SHP stations with yearly regulating reservoir has become a priority, 1.3. The SHP planning.
    [Show full text]
  • APEN 7411 Edit Report.Pdf
    elsevier_APEN_7411 Development of the Turgo Impulse turbine: Past and Presentpresent D.S. Benzona G.A. Aggidisa, ⁎ [email protected] J.S. Anagnostopoulosb aLancaster University Renewable Energy Group and Fluid Machinery Group, Engineering Department, Engineering Building, Bailrigg, Lancaster, Lancs LA1 4YR, UK bSchool of Mechanical Engineering, National Technical University of Athens, Athens, Greece ⁎Corresponding author. Tel.: +44 1524593052, mobile: +44 7813697630. Abstract The Turgo Impulse turbine provides a unique and novel solution to increasing the capacity of a hydraulic impulse turbine while maintaining the nozzle and spear injector system (as used in Pelton turbines) for flow regulation. This has produced a turbine which operates in the higher flow ranges usually reserved for Francis machines while maintaining a relatively flat efficiency curve, characteristic of impulse machines. Since its invention nearly 100 years ago, the Turgo turbine has been installed in thousands of locations across the globe. The majority of the development of the Turgo turbine design has been through the use of paper based and experimental studies however recent advances in computational fluid dynamics (CFD) tools have allowed the simulation of the complex, highly turbulent, multiphase flows associated with impulse turbines and some work has been done in applying this to the Turgo design. This review looks at the development of the of the Turgo turbine since its invention in 1919 and includes the paper-based analyses, experimental studies and the more recent CFD analyses carried out on the design. Keywords: Turgo turbines; Impulse turbines; Hydropower; Hydraulic design; Numerical modelling 1 Introduction The Turgo hydro turbine belongs to the impulse turbines class, along with Pelton and Cross Flow machines, in which the energy exchange is based on the kinetic energy of the water that enters and leaves the turbine at atmospheric pressure.
    [Show full text]
  • Past and Future of Water Turbines in Romania Sanda-Carmen Georgescu, Andrei-Mugur Georgescu, Radu Mircea Damian, Jean-Luc Achard
    Past and future of water turbines in Romania Sanda-Carmen Georgescu, Andrei-Mugur Georgescu, Radu Mircea Damian, Jean-Luc Achard To cite this version: Sanda-Carmen Georgescu, Andrei-Mugur Georgescu, Radu Mircea Damian, Jean-Luc Achard. Past and future of water turbines in Romania. 5th International Water History Association Conference on Pasts and Futures of Water, IWHA 2007, Jun 2007, Tampere, Finland. 10.13140/2.1.2133.9207. hal-00267699 HAL Id: hal-00267699 https://hal.archives-ouvertes.fr/hal-00267699 Submitted on 13 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Past and future of water turbines in Romania Sanda-Carmen Georgescu1*, Andrei-Mugur Georgescu2, Radu Mircea Damian2, Jean-Luc Achard3 1) Hydraulics Department, University “Politehnica” of Bucharest, 313 Splaiul Independentei, sector 6, RO-060042, Bucharest, Romania 2) Hydraulic & Environmental Prot. Dept, Technical Civil Engineering University Bucharest, 124 Bd Lacul Tei, sector 2, RO-020396, Bucharest, Romania 3) Laboratoire des Écoulements Géophysiques et Industriels de Grenoble, B.P. 53, 38401, Grenoble cedex 9, France email of corresponding author: [email protected] *Corresponding author Keywords: water wheel, water turbine, hydropower, hydro-power plant.
    [Show full text]
  • JCHMSD-03-2021-0040 Proof 1..19
    The current issue and full text archive of this journal is available on Emerald Insight at: https://www.emerald.com/insight/2044-1266.htm Electro- The repowering of vertical axis mechanical water mills preserving their equipment of cultural heritage: techno-economic water mills analysis with water wheels and Turgo turbines Received 10 March 2021 Revised 29 April 2021 22 June 2021 Emanuele Quaranta Accepted 2 July 2021 European Commission Joint Research Centre Ispra Sector, Ispra, Italy Toni Pujol Universitat de Girona, Girona, Spain, and Maria Carmela Grano CNR, Pisa, Italy Abstract Purpose – The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to preliminary estimate related benefits and costs of a VAWM repowering. Design/methodology/approach – Two sustainable repowering solutions were examined with the additional aim to preserve the original status and aesthetics of a VAWM: the use of a vertical axis water wheel (VAWW) and a vertical axis impulse turbine. The analysis was applied to a database of 714 VAWMs in Basilicata (Italy), with known head and flow. Findings – Expeditious equations were proposed for both solutions to determine: (1) a suitable diameter as a function of the flow rate; (2) the costs of the electromechanical equipment; (3) achievable power. The common operating hydraulic range of a VAWM (head and flow) was also identified. Reality checks on the obtained results are shown, in particular by examining two Spanish case studies and the available literature. The power generated by the impulse turbine (Turgo type) is twice that of a VAWW, but it is one order of magnitude more expensive.
    [Show full text]
  • Challenges Facing the Implementation of Pico-Hydropower Technologies
    Williamson, S. J., Lubitz, W. D., Williams, A. A., Booker, J. D., & Butchers, J. P. (2019). Challenges Facing the Implementation of Pico- Hydropower Technologies. Journal of Sustainability Research, 2(1). https://doi.org/10.20900/jsr20200003 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.20900/jsr20200003 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Hapres at https://www.hapres.com/htmls/JSR_1137_Detail.html . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ sustainability.hapres.com Review Challenges Facing the Implementation of Pico-Hydropower Technologies Samuel J. Williamson 1,*, W. David Lubitz 2, Arthur A. Williams 3, Julian D. Booker 1, Joseph P. Butchers 1 1 Faculty of Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK 2 School of Engineering, University of Guelph, 50 Stone. Rd. E., Guelph, ON, N1G 2W1, Canada 3 Department of Electrical and Electronic Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK * Correspondence: Samuel J. Williamson, Email: [email protected]; Tel.: +44-117-954-5177. ABSTRACT 840 million people living in rural areas across the world lack access to electricity, creating a large imbalance in the development potential between urban and rural areas.
    [Show full text]
  • Levesque, Jennifer
    Levesque, Jennifer From: Dennis Evans Sent: Sunday, December 20, 2020 6:52 PM To: cityclerk Subject: Oral Communications Attachments: Archimedies Screw Turbines.pdf Recognizing Aqueducts as Green infrastructure Underappreciated and Underutilized Constructed wetlands function like natural tubs or sponges absorbing and slowly releasing water into an engineered process. Which reduces its momentum and erosive potential, reduces flood heights, and allows for groundwater recharge. Constructed Wetland cells store enormous amounts of water. With an opportunityn to desig habitat for endangered species like juvenile salmon or delta smelt. Layered substrate, plants and associated microbes reduce the toxic effects of contaminants in our environment. The systems Archimedean screw turbine converts the flow of discharge water into 500 MWh of power, saving more than 210 tons of CO2 emissions per year. Opening up a door for Proposition 68 grant opportunities for constructed wetland projects that provide groundwater recharge using secondary effluent, stormwater runoff or graywater. A conjunctive multi‐use enhancement of existing projects or used to clean up contamination of groundwater that serves as a source of drinking water for disadvantaged communities. To implement Managed Aquifer Recharge water managers must: 1. Recognize aquifers as green infrastructure and environmental assets, and their replenishment as a public benefit 2. Engage in strategic, integrated, and multi‐disciplinary water management planning 3. Align water sectors, institutions, and
    [Show full text]
  • Design and Analysis of Run-Of-River Water Turbine by Muhammad Afif Bin Ilham Dissertation Submitted in Partial Fulfilment Of
    Design and Analysis of Run-of-River Water Turbine By Muhammad Afif bin Ilham Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Engineering (Hons) Mechanical Engineering SEPTEMBER 2011 Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan CERTIFICATION OF APPROVAL Design and Analysis of Run-of-River Water Turbine By Muhammad Afif bin Ilham A project dissertation submitted to the Mechanical Engineering Programme UniversitiTeknologi PETRONAS in partial fulfillment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING) Approved by, ___________________________ (Mohd Faizari Mohd Nor) Project Supervisor Universiti Teknologi PETRONAS Tronoh, Perak Sept 2011 CERTIFICATION OF ORIGINALITY This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons. ___________________________ Muhammad Afif bin Ilham ABSTRACT This paper discussed on the project entitled, “Design and analysis of run-of-river water turbine”. It consists of project background, objectives, problem statements, and the relevance of the project, literature reviews, and the methodology which is the flow of the project and finally the result and discussion before the conclusion. In this project the author design a run of river water turbine and analyze the power that can be generated by the turbine. The study is about gathering all possible information about river water turbine for further studies which will lead to the result of the design of the water turbine and the power generated by the turbine.
    [Show full text]
  • Energy Harvesting from Rainwater Basak Soylu Worcester Polytechnic Institute
    Worcester Polytechnic Institute Digital WPI Major Qualifying Projects (All Years) Major Qualifying Projects March 2018 Energy Harvesting from Rainwater Basak Soylu Worcester Polytechnic Institute Carolyn Detora Worcester Polytechnic Institute Nicole E. Luiz Worcester Polytechnic Institute Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all Repository Citation Soylu, B., Detora, C., & Luiz, N. E. (2018). Energy Harvesting from Rainwater. Retrieved from https://digitalcommons.wpi.edu/mqp- all/2822 This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact [email protected]. Energy Harvesting from Rainwater Carolyn Detora, Kayleah Griffen, Nicole Luiz, and Basak Soylu Worcester Polytechnic Institute Abstract The purpose of this project was to provide electricity that was sufficient for powering lights and charging cell phones in rainy locations with limited electricity access. A household rainwater energy harvesting system was researched, designed, prototyped, and tested to determine the feasibility of rainwater as a source of renewable energy. The system prototyped consisted of a gutter assembly that collected and funneled water from the roof to a downspout. The downspout shielded the stream of water from wind and directed it to a turbine at the ground level. The turbine was connected through a gear train to a DC motor serving as the generator. The device is optimal during high rainfall intensities that produce larger flow rates. An Overshot water wheel, Crossflow turbine, and Pelton wheel turbine were evaluated under 8, 6, 4, and 2 gallons per minute flow rates using a tachometer and a torque meter.
    [Show full text]