Design and Analysis of Run-Of-River Water Turbine by Muhammad Afif Bin Ilham Dissertation Submitted in Partial Fulfilment Of

Total Page:16

File Type:pdf, Size:1020Kb

Design and Analysis of Run-Of-River Water Turbine by Muhammad Afif Bin Ilham Dissertation Submitted in Partial Fulfilment Of Design and Analysis of Run-of-River Water Turbine By Muhammad Afif bin Ilham Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Engineering (Hons) Mechanical Engineering SEPTEMBER 2011 Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan CERTIFICATION OF APPROVAL Design and Analysis of Run-of-River Water Turbine By Muhammad Afif bin Ilham A project dissertation submitted to the Mechanical Engineering Programme UniversitiTeknologi PETRONAS in partial fulfillment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING) Approved by, ___________________________ (Mohd Faizari Mohd Nor) Project Supervisor Universiti Teknologi PETRONAS Tronoh, Perak Sept 2011 CERTIFICATION OF ORIGINALITY This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons. ___________________________ Muhammad Afif bin Ilham ABSTRACT This paper discussed on the project entitled, “Design and analysis of run-of-river water turbine”. It consists of project background, objectives, problem statements, and the relevance of the project, literature reviews, and the methodology which is the flow of the project and finally the result and discussion before the conclusion. In this project the author design a run of river water turbine and analyze the power that can be generated by the turbine. The study is about gathering all possible information about river water turbine for further studies which will lead to the result of the design of the water turbine and the power generated by the turbine. The main objective of this project is merely to prove that the author’s design of the vertical axis run of river water turbine can generate power in form of electric. Water turbines can be classified depending on the direction of rotational axis relative to water flow direction. Axial flow water turbines have their axis of rotation parallel to water stream direction. Other turbines such as cross flow water turbines or Darrieus type water turbines (from Jean-Marie Darrieus, inventor of first vertical axis wind turbine, have rotational axis perpendicular to current direction. A vertical-axis turbine is able to extract power from any direction without adjustment. At the end of this research, the conclusion that can be obtained is the run-of river water turbine can generate power. In order to provide such conclusion, the data that need to be considered are the river water velocity, the cross sectional area of the augmentation channeling, and the height of the augmentation channel that would be immersed in the water. i ACKNWOLEDGEMENT First and foremost, highest gratitude to Allah the almighty for upon His guidance and will, had blessed the author with good health and mind in order to complete the Final Year Project (FYP) successfully within the time given. The author wishes to express his utmost appreciation to his project supervisor Mr. Mohd Faizari Mohd Nor for having confidence in the author to be his FYP student and guiding the author throughout the research. His continuous support since the beginning until the end of the research is highly appreciated. The author also hopes to send his deepest appreciation to Mechanical Engineering Department of Universiti Teknologi Petronas (UTP) for excellent support in terms of providing invaluable knowledge and information for the whole period of project. Special thanks to the author’s family and fellow colleagues especially to for their support and help throughout the completion of this research. Last but not least, to all who’s involved in making this research a success, thank you for your help, motivation and encouragement. This will be a excellent experience and the author hopes that it will bring beneficial output to others as well. The author sincerely appreciates all your kindheartedness. ii TABLE OF CONTENTS ABSTRACT . i ACKNOWLEDGEMENT . ii TABLE OF CONTENTS . iii LIST OF FIGURES . vi LIST OF TABLES . vii CHAPTER 1: INTRODUCTION . 1 1.1 1.2 Background of Study . 1 1.3 Problem Statement . 1 1.3.1 Problem identification . 1 1.3.2 Significant of the project . 2 1.4 Objective . 2 1.5 Scope of Study . 2 1.6 The relevancy of the project . 3 1.7 Feasibility of the project . 3 CHAPTER 2: LITERATURE REVIEW . 4 2.1 Flowing river . 4 2.2 Run – of river water turbine . 5 2.3 Vertical axis run – of river water turbine . 6 2.4 FLUENT software . 7 2.5 Material Selection . 8 iii CHAPTER 3: METHODOLOGY . 10 3.1 Research Methodology . 10 3.2 Project Activities . 11 3.2.1 Review Existing Turbine Design . 12 3.2.2 Modification of Design . 13 3.2.3 Design of Augmentation Channel . 14 3.2.4 Material Selection . 15 3.2.5 Analysis using CFD Software . 17 3.3 Gant Chart . 17 3.4 Key Milestones . 18 CHAPTER 4: RESULT & DISCUSSION . 19 4.1 Proposed Design . 19 4.1.1 Water Wheel . 19 4.1.2 Augmentation Channeling . 20 4.2 Analysis of Result . 21 4.2.1 Velocity Profile . 21 4.2.2 Velocity Contour . 22 4.2.3 Pressure Contour . 23 4.3 Calculation . 24 iv CHAPTER 5: CONCLUSION & RECOMMENDATION . 26 CHAPTER 6: REFFERENCES . 27 CHAPTER 7: APPENDIX . 28 v LIST OF FIGURES Figure 1: Relationship between speed of river and power available. 5 Figure 2: Vertical axis turbines . 6 Figure 3: Ashby material selection chart: strength vs density . 8 Figure 4: Flow chart of the research methodology . 9 Figure 5: Flow chart of the project activities . 10 Figure 6: Gorlov Helical Turbine . 12 Figure 7: Pelton Turbine . 12 Figure 8: Turgo Turbine . 12 Figure 9: Water Wheel . 13 Figure 10: Design of augmentation channeling . 14 Figure 11: Water Wheel . 19 Figure 12: Augmentation Channel . 20 Figure 13: Velocity profile . 21 Figure 14: Velocity contour . 22 Figure 15: Pressure contour . 23 Figure 16: Velocity magnitude Contour . 28 Figure 17: Static pressure contour . 29 vi LIST OF TABLES Table 1: Comparison between horizontal and vertical turbine . 7 Table 2: Performance indices . 9 Table 3: Available material . 15 Table 4: Material chosen . 16 Table 5: Gant Chart . 17 Table 6: Key Milestones . 18 Table 7: Power generated without turbine efficiency . 24 Table 8: Power generated with turbine efficiency . 25 vii CHAPTER 1 INRODUCTION 1.1 Background of Study The power from running river has been interest for electricity production for many years. This project will focus on small scale river current turbine with the output of 0.5- 5 kW. This turbine is to be used for domestic electricity application such as lighting and battery charging in rural area that uses electricity for basic application. Water current turbine generates power from the river current kinetic energy without using a dam. This type of turbine is low in cost and continuously supply electrical energy is the advantage compared to solar power. There are many river exist in Malaysia especially in the East – Malaysia. There are 12 rivers in Sarawak and 9 rivers in Sabah. This is the source of power that can be used to supply the needed electricity to small communities and villages. 1.2 Problem Statement 1.2.1 Problem identification Hydroelectric energy is being used widely in generating electricity now days. However, it is done is large scale using dams to produce megawatts of electricity in order to cater for the current energy demand all around the country. Is there any possibility to extract this kind of energy in a small scale? Is energy can be extract from flowing water streams? This is the questions that will be answered through this project. 1 1.2.2 Significant of the project By referring to the problem identification, this project is to study about the small scale run-of-river water turbine in terms of its design to generate power output from flowing river stream. Thus, the author need to come out with a design and also analyzed the design using Computational Fluid Dynamic (CFD) software as well as with anticipated power calculations before fabrication and testing. 1.3 Objective 1. To design the small scale vertical axis run-of river water turbine. 2. Analyze the power output generated from the turbine that been designed. 1.4 Scope of study The scope of study is mainly focusing on the design of the turbine for generate electricity from the kinetic energy from flowing river. The velocity of the river will be determining the power that can be generated. The power available from the river can be 3 worked out using the following formula. Pa = ½ x Cp x ρ x A v . The power will increased in a cubed relationship to the velocity of the flow of water past turbine. This project will be divided into two stages; the first stage will involves on researching and study thoroughly about run-of river water turbine. Then with the help and assist from supervisor, the most suitable design will be used for fabrication. It takes into consideration the concepts of the turbine and the buoyancy of the turbine. The second stage will focus on the fabrication of the turbine and the analysis of the turbine. The fabrication will be performed in the lab and the analysis will be performed at the river itself. The efficiency of the turbine will be monitored. 2 1.5 The relevancy of the project Water current turbine has received an increasing interest in many part of the world. The small scale hydropower is considered environmentally friendly, meaning that the water that passing through the turbine is going back to the stream with small impact on surrounding.
Recommended publications
  • A SOPAC Desktop Study of Ocean-Based, Renewable Energy
    A SOPAC Desktop Study of Ocean-Based RENEWABLE ENERGY TECHNOLOGIES SOPAC Miscellaneous Report 701 A technical publication produced by the SOPAC Community Lifelines Programme Acknowledgements Information presented in this publication has been sourced mainly from the internet and from publications produced by the International Energy Agency (IEA). The compiler would like to thank the following for reviewing and contributing to this publication: • Dr. Luis Vega • Anthony Derrick of IT Power, UK • Guillaume Dréau of Société de Recherche du Pacifique (SRP), New Caledonia • Professor Young-Ho Lee of Korea Maritime University, Korea • Professor Chul H. (Joe) Jo of Inha University, Korea • Luke Gowing and Garry Venus of Argo Environmental Ltd, New Zealand SOPAC Miscellaneous Report 701 Pacific Islands Applied Geoscience Commission (SOPAC), Fiji • Paul Fairbairn – Manager Community Lifelines Programme • Rupeni Mario – Senior Energy Adviser • Arieta Gonelevu – Senior Energy Project Officer • Frank Vukikimoala – Energy Project Officer • Koin Etuati – Energy Project Officer • Reshika Singh – Energy Resource Economist • Atishma Vandana Lal – Energy Support Officer • Mereseini (Lala) Bukarau – Senior Adviser Technical Publications Ivan Krishna • Sailesh Kumar Sen – Graphic Arts Officer Compiler First Edition October 2009 Cover Photo Source: HTTP://WALLPAPERS.FREE-REVIEW.NET/42__BIG_WAVE.HTM Back Cover Photo: Raj Singh A SOPAC Desktop Study of Ocean-Based Renewable Energy Technologies SOPAC Miscellaneous Report 701 Ivan Krishna Compiler First Edition
    [Show full text]
  • Hydrogeology
    Hydrogeology Principles of Groundwater Flow Lecture 3 1 Hydrostatic pressure The total force acting at the bottom of the prism with area A is Dividing both sides by the area, A ,of the prism 1 2 Hydrostatic Pressure Top of the atmosphere Thus a positive suction corresponds to a negative gage pressure. The dimensions of pressure are F/L2, that is Newton per square meter or pascal (Pa), kiloNewton per square meter or kilopascal (kPa) in SI units Point A is in the saturated zone and the gage pressure is positive. Point B is in the unsaturated zone and the gage pressure is negative. This negative pressure is referred to as a suction or tension. 3 Hydraulic Head The law of hydrostatics states that pressure p can be expressed in terms of height of liquid h measured from the water table (assuming that groundwater is at rest or moving horizontally). This height is called the pressure head: For point A the quantity h is positive whereas it is negative for point B. h = Pf /ϒf = Pf /ρg If the medium is saturated, pore pressure, p, can be measured by the pressure head, h = pf /γf in a piezometer, a nonflowing well. The difference between the altitude of the well, H, and the depth to the water inside the well is the total head, h , at the well. i 2 4 Energy in Groundwater • Groundwater possess mechanical energy in the form of kinetic energy, gravitational potential energy and energy of fluid pressure. • Because the amount of energy vary from place-­­to-­­place, groundwater is forced to move from one region to another in order to neutralize the energy differences.
    [Show full text]
  • CPT-Geoenviron-Guide-2Nd-Edition
    Engineering Units Multiples Micro (P) = 10-6 Milli (m) = 10-3 Kilo (k) = 10+3 Mega (M) = 10+6 Imperial Units SI Units Length feet (ft) meter (m) Area square feet (ft2) square meter (m2) Force pounds (p) Newton (N) Pressure/Stress pounds/foot2 (psf) Pascal (Pa) = (N/m2) Multiple Units Length inches (in) millimeter (mm) Area square feet (ft2) square millimeter (mm2) Force ton (t) kilonewton (kN) Pressure/Stress pounds/inch2 (psi) kilonewton/meter2 kPa) tons/foot2 (tsf) meganewton/meter2 (MPa) Conversion Factors Force: 1 ton = 9.8 kN 1 kg = 9.8 N Pressure/Stress 1kg/cm2 = 100 kPa = 100 kN/m2 = 1 bar 1 tsf = 96 kPa (~100 kPa = 0.1 MPa) 1 t/m2 ~ 10 kPa 14.5 psi = 100 kPa 2.31 foot of water = 1 psi 1 meter of water = 10 kPa Derived Values from CPT Friction ratio: Rf = (fs/qt) x 100% Corrected cone resistance: qt = qc + u2(1-a) Net cone resistance: qn = qt – Vvo Excess pore pressure: 'u = u2 – u0 Pore pressure ratio: Bq = 'u / qn Normalized excess pore pressure: U = (ut – u0) / (ui – u0) where: ut is the pore pressure at time t in a dissipation test, and ui is the initial pore pressure at the start of the dissipation test Guide to Cone Penetration Testing for Geo-Environmental Engineering By P. K. Robertson and K.L. Cabal (Robertson) Gregg Drilling & Testing, Inc. 2nd Edition December 2008 Gregg Drilling & Testing, Inc. Corporate Headquarters 2726 Walnut Avenue Signal Hill, California 90755 Telephone: (562) 427-6899 Fax: (562) 427-3314 E-mail: [email protected] Website: www.greggdrilling.com The publisher and the author make no warranties or representations of any kind concerning the accuracy or suitability of the information contained in this guide for any purpose and cannot accept any legal responsibility for any errors or omissions that may have been made.
    [Show full text]
  • DESIGN of a WATER TOWER ENERGY STORAGE SYSTEM a Thesis Presented to the Faculty of Graduate School University of Missouri
    DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM A Thesis Presented to The Faculty of Graduate School University of Missouri - Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by SAGAR KISHOR GIRI Dr. Noah Manring, Thesis Supervisor MAY 2013 The undersigned, appointed by the Dean of the Graduate School, have examined he thesis entitled DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM presented by SAGAR KISHOR GIRI a candidate for the degree of MASTER OF SCIENCE and hereby certify that in their opinion it is worthy of acceptance. Dr. Noah Manring Dr. Roger Fales Dr. Robert O`Connell ACKNOWLEDGEMENT I would like to express my appreciation to my thesis advisor, Dr. Noah Manring, for his constant guidance, advice and motivation to overcome any and all obstacles faced while conducting this research and support throughout my degree program without which I could not have completed my master’s degree. Furthermore, I extend my appreciation to Dr. Roger Fales and Dr. Robert O`Connell for serving on my thesis committee. I also would like to express my gratitude to all the students, professors and staff of Mechanical and Aerospace Engineering department for all the support and helping me to complete my master’s degree successfully and creating an exceptional environment in which to work and study. Finally, last, but of course not the least, I would like to thank my parents, my sister and my friends for their continuous support and encouragement to complete my program, research and thesis. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ ii ABSTRACT .................................................................................................................... v LIST OF FIGURES .......................................................................................................
    [Show full text]
  • A Numerical Approach for Estimating the Aerodynamic Characteristics of a Two Bladed Vertical Darrieus Wind Turbine Ervin Amet, Christian Pellone, Thierry Maître
    A numerical approach for estimating the aerodynamic characteristics of a two bladed vertical Darrieus wind turbine Ervin Amet, Christian Pellone, Thierry Maître To cite this version: Ervin Amet, Christian Pellone, Thierry Maître. A numerical approach for estimating the aerodynamic characteristics of a two bladed vertical Darrieus wind turbine. 2nd Workshop on Vortex dominated flows, Jul 2006, Bucarest, Romania. hal-00232721 HAL Id: hal-00232721 https://hal.archives-ouvertes.fr/hal-00232721 Submitted on 27 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Scientific Bulletin of the 2nd Workshop on Politehnica University of Timisoara Vortex Dominated Flows Transactions on Mechanics Bucharest, Romania Special issue June 30 – July 1, 2006 A NUMERICAL APPROACH FOR ESTIMATING THE AERODYNAMIC CHARACTERISTICS OF A 2 BLADED VERTICAL DARRIEUS WIND TURBINE Ervin AMET, Phd. Student* Christian PELLONE, Scientist Researcher CNRS Laboratory of Geophysical and Industrial Fluid Laboratory
    [Show full text]
  • An Abstract of the Thesis Of
    AN ABSTRACT OF THE THESIS OF Bryan R. Cobb for the degree of Master of Science in Mechanical Engineering presented on July 8, 2011 Title: Experimental Study of Impulse Turbines and Permanent Magnet Alternators for Pico-hydropower Generation Abstract Approved: Kendra V. Sharp Increasing access to modern forms of energy in developing countries is a crucial component to eliminating extreme poverty around the world. Pico-hydro schemes (less than 5-kW range) can provide environmentally sustainable electricity and mechanical power to rural communities, generally more cost-effectively than diesel/gasoline generators, wind turbines, or solar photovoltaic systems. The use of these types of systems has in the past and will continue in the future to have a large impact on rural, typically impoverished areas, allowing them the means for extended hours of productivity, new types of commerce, improved health care, and other services vital to building an economy. For this thesis, a laboratory-scale test fixture was constructed to test the operating performance characteristics of impulse turbines and electrical generators. Tests were carried out on a Pelton turbine, two Turgo turbines, and a permanent magnet alternator (PMA). The effect on turbine efficiency was determined for a number of parameters including: variations in speed ratio, jet misalignment and jet quality. Under the best conditions, the Turgo turbine efficiency was observed to be over 80% at a speed ratio of about 0.46, which is quite good for pico-hydro-scale turbines. The Pelton turbine was found to be less efficient with a peak of just over 70% at a speed ratio of about 0.43.
    [Show full text]
  • An Experimental Investigation of Design Parameters for Pico-Hydro Turgo Turbines Using a Response Surface Methodology
    UC Davis UC Davis Previously Published Works Title An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology Permalink https://escholarship.org/uc/item/464972qm Journal Renewable Energy, 85(C) ISSN 0960-1481 Authors Gaiser, K Erickson, P Stroeve, P et al. Publication Date 2016 DOI 10.1016/j.renene.2015.06.049 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Renewable Energy 85 (2016) 406e418 Contents lists available at ScienceDirect Renewable Energy journal homepage: www.elsevier.com/locate/renene An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology * Kyle Gaiser a, c, Paul Erickson a, , Pieter Stroeve b, Jean-Pierre Delplanque a a University of California Davis, Department of Mechanical and Aerospace Engineering, One Shields Avenue, Davis, CA 95616, USA b University of California Davis, Department of Chemical Engineering, One Shields Avenue, Davis, CA 95616, USA c Sandia National Lab, Livermore, CA, USA article info abstract Article history: Millions of off-grid homes in remote areas around the world have access to pico-hydro (5 kW or less) Received 9 February 2015 resources that are undeveloped due to prohibitive installed costs ($/kW). The Turgo turbine, a hy- Received in revised form droelectric impulse turbine generally suited for medium to high head applications, has gained renewed 3 June 2015 attention in research due to its potential applicability to such sites. Nevertheless, published literature Accepted 17 June 2015 about the Turgo turbine is limited and indicates that current theory and experimental knowledge do Available online xxx not adequately explain the effects of certain design parameters, such as nozzle diameter, jet inlet angle, number of blades, and blade speed on the turbine's efficiency.
    [Show full text]
  • Table of Common Symbols Used in Hydrogeology
    Common Symbols used in GEOL 473/573 A Area [L2] b Saturated thickness of an aquifer [L] d Diameter [L] e void ratio (dimensionless) or e1 is a constant = 2.718281828... f Number of head drops in a flow of net F Force [M L T-2 ] g Acceleration due to gravity [9.81 m/s2] h Hydraulic head [L] (Total hydraulic head; h = ψ + z) ho Initial hydraulic head [L], generally an initial condition or a boundary condition dh/dL Hydraulic gradient [dimensionless] sometimes expressed as i 2 ki Intrinsic permeability [L ] K Hydraulic conductivity [L T-1] -1 Kx, Ky , Kz Hydraulic conductivity in the x, y, or z direction [L T ] L Length from one point to another [L] n Porosity [dimensionless] ne Effective porosity [dimensionless] q Specific discharge [L T-1] (Darcy flux or Darcy velocity) -1 qx, qy, qz Specific discharge in the x, y, or z direction [L T ] Q Flow rate [L3 T-1] (discharge) p Number of stream tubes in a flow of net P Pressure [M L-1T-2] r Radial coordinate [L] rw Radius of well over screened interval [L] Re Reynolds’ number [dimensionless] s Drawdown in an aquifer [L] S Storativity [dimensionless] (Coefficient of storage) -1 Ss Specific storage [L ] Sy Specific yield [dimensionless] t Time [T] T Transmissivity [L2 T-1] or Temperature (degrees) u Theis’ number [dimensionless} or used for fluid pressure (P) in engineering v Pore-water velocity [L T-1] (Average linear velocity) V Volume [L3] 3 VT Total volume of a soil core [L ] 3 Vv Volume voids in a soil core [L ] 3 Vw Volume of water in the voids of a soil core [L ] Vs Volume soilds in a soil
    [Show full text]
  • The Turgo Impulse Turbine; a CFD Based Approach to the Design Improvement with Experimental Validation
    The Turgo impulse turbine; a CFD based approach to the design improvement with experimental validation David Shaun Benzon PhD Thesis SUPERVISOR: PROFESSOR GEORGE A. AGGIDIS Lancaster University in collaboration with Gilbert Gilkes & Gordon Ltd. Department of Engineering, Faculty of Science and Technology, Lancaster University, Lancaster, UK Declaration The author declares that this thesis has not been previously submitted for award of a higher degree to this or any university, and that the contents, except where otherwise stated, are the author’s own work. Signed: Date: i Abstract The use of Computational Fluid Dynamics (CFD) has become a well-established approach in the analysis and optimisation of impulse hydro turbines. Recent studies have shown that modern CFD tools combined with faster computing processors can be used to accurately simulate the operation of impulse turbine runners and injectors in timescales suitable for design optimisation studies and which correlate well with experimental results. This work has however focussed mainly on Pelton turbines and the use of CFD in the analysis and optimisation of Turgo turbines is still in its infancy, with no studies showing a complete simulation of a Turgo runner capturing the torque on the inside and outside blade surfaces and producing a reliable extrapolation of the torque and power at a given operating point. Although there have been some studies carried out in the past where injector geometries (similar for both Pelton and Turgo turbines) have been modified to improve their performance, there has been no thorough investigation of the basic injector design parameters and the influence they have on the injector performance.
    [Show full text]
  • Darcy's Law and Hydraulic Head
    Darcy’s Law and Hydraulic Head 1. Hydraulic Head hh12− QK= A h L p1 h1 h2 h1 and h2 are hydraulic heads associated with hp2 points 1 and 2. Q The hydraulic head, or z1 total head, is a measure z2 of the potential of the datum water fluid at the measurement point. “Potential of a fluid at a specific point is the work required to transform a unit of mass of fluid from an arbitrarily chosen state to the state under consideration.” Three Types of Potentials A. Pressure potential work required to raise the water pressure 1 P 1 P m P W1 = VdP = dP = ∫0 ∫0 m m ρ w ρ w ρw : density of water assumed to be independent of pressure V: volume z = z P = P v = v Current state z = 0 P = 0 v = 0 Reference state B. Elevation potential work required to raise the elevation 1 Z W ==mgdz gz 2 m ∫0 C. Kinetic potential work required to raise the velocity (dz = vdt) 2 11ZZdv vv W ==madz m dz == vdv 3 m ∫∫∫00m dt 02 Total potential: Total [hydraulic] head: P v 2 Φ P v 2 h == ++z Φ= +gz + g ρ g 2g ρw 2 w Unit [L2T-1] Unit [L] 2 Total head or P v hydraulic head: h =++z ρw g 2g Kinetic term pressure elevation [L] head [L] Piezometer P1 P2 ρg ρg h1 h2 z1 z2 datum A fluid moves from where the total head is higher to where it is lower. For an ideal fluid (frictionless and incompressible), the total head would stay constant.
    [Show full text]
  • Comparative Performance Evaluation of Pelton Wheel and Cross Flow Turbines for Power Generation
    EUROPEAN MECHANICAL SCIENCE Research Paper e-ISSN: 2587-1110 Comparative Performance Evaluation of Pelton Wheel and Cross Flow Turbines for Power Generation Oyebode O. O.1* and Olaoye J. O.2 1Department of Food, Agricultural and Biological Engineering, Kwara State University, Malete, Kwara State, Nigeria. 2Department of Agricultural and Biosystems Engineering, University of Ilorin, Ilorin, Kwara State, Nigeria. ORCID: Oyebode (0000-0003-1094-1149) Abstract The performance of two micro hydro power turbines (Pelton Wheel and Cross Flow Turbines) were evaluated at the University of Ilorin (UNILORIN) dam. The Dam has a net head of 4 m, flow rate of 0.017m3 and theoretical hydropower energy of 668W. The two turbines were tested and the optimized value of operating conditions namely; angle of inclination (15o above tangent, tangential and 15o below tangent), height to impact point (200mm, 250mm and 300mm) and length to impact point (50mm, 100mm and 150mm) were pre-set at their various levels for both Turbines. The optimum values of the process output or measured parameters were determined statistically using a 33X2 factorial experiment in three replicates. An optimum Turbine speed (538.38rpm) in off load condition was achieved at 250mm height to impact point, 150mm length to impact point and angle at tangential inclination. Similar combination also yielded an optimum turbine torque of 46.16kNm for Pelton Wheel Turbine. For the Crossflow Turbine, an optimum turbine speed of 330.09rpm was achieved by pre-setting 250mm height to impact point, 100mm length to impact point and 15º below tangent. Same combination also yielded an optimum turbine torque of 39.07kNm.
    [Show full text]
  • Hydropower Systems
    HYDROPOWER SYSTEMS BY APPOINTMENT TO H.M. THE QUEEN WATER TURBINE ENGINEERS, GILBERT GILKES & GORDON LTD, KENDAL 1 WWW.GILKES.COM CONTENTS THE COMPANY 3 GILKES HYDROPOWER 5 GILKES PACKAGE 7 TURBINE SELECTION 10 PELTON TURBINES 11 FRANCIS TURBINES 13 TURGO TURBINES 15 SERVICE & REFURBISHMENT 17 WWW.GILKES.COM 2 AN INTRODUCTION TO Gilbert Gilkes & Gordon Ltd (Gilkes) is an internationally established manufacturing company, based in Kendal, UK on the edge of the English Lake District. In 1856, Gilkes installed their first hydroelectric scheme. Over 150 years later, it is still a world leader in small hydropower systems supplying over 6500 turbines to over 80 countries during its history. With thousands of installations around the world, Gilkes continue to demonstrate the ability to be sensitive to regional differences and requirements and continually design, manufacture and install bespoke engineered solutions for their customers. The company’s head office is in Kendal, however other operations include a dedicated hydro refurbishment unit in Fort William, Scotland and offices in Vancouver and Tokyo for the North American and Far East markets. Gilkes also acts as the parent company to Gilkes Energy Ltd, which was formed in 2008 as our hydro project development business to help our clients develop and finance hydro projects and focuses on Joint Ventures with landowners. Other products designed and manufactured by the company include a range of sophisticated pumps for the cooling of diesel engines and plant, supplying many of the world’s major diesel engine manufacturers. Gilkes also produce pumping solutions for the lubricating of oil or gas and steam turbines and supply a range of industrial pumps for virtually any application.
    [Show full text]