A SOPAC Desktop Study of Ocean-Based, Renewable Energy

Total Page:16

File Type:pdf, Size:1020Kb

Load more

A SOPAC Desktop Study of

Ocean-Based

RenewAble eneRgy TeChnOlOgieS

SOPAC Miscellaneous Report 701

A technical publication produced by the SOPAC Community Lifelines Programme

Acknowledgements

Information presented in this publication has been sourced mainly from the internet and from publications produced by the International Energy Agency (IEA).

The compiler would like to thank the following for reviewing and contributing to this publication:

••••••
Dr. Luis Vega Anthony Derrick of IT Power, UK Guillaume Dréau of Société de Recherche du Pacifique (SRP), New Caledonia Professor Young-Ho Lee of Korea Maritime University, Korea Professor Chul H. (Joe) Jo of Inha University, Korea Luke Gowing and Garry Venus of Argo Environmental Ltd, New Zealand

Pacific Islands Applied Geoscience Commission (SOPAC), Fiji •••••••••
Paul Fairbairn Rupeni Mario
– Manager Community Lifelines Programme – Senior Energy Adviser – Senior Energy Project Officer – Energy Project Officer – Energy Project Officer – Energy Resource Economist – Energy Support Officer
Arieta Gonelevu Frank Vukikimoala Koin Etuati Reshika Singh Atishma Vandana Lal Mereseini (Lala) Bukarau – Senior Adviser Technical Publications Sailesh Kumar Sen – Graphic Arts Officer

Cover Photo Source: HTTP://WALLPAPERS.FREE-REVIEW.NET/42__BIG_WAVE.HTM Back Cover Photo: Raj Singh

A SOPAC Desktop Study of

Ocean-Based

Renewable Energy Technologies

SOPAC Miscellaneous Report 701
Ivan Krishna

Compiler

First edition October 2009

A technical publication produced by the SOPAC Community Lifelines Programme

A SOPAC Desktop Study of Ocean-based-Renewable energy Technologies

List of Acronyms

ACP ADb eU member states in Africa, Caribbean and Pacific Asian Development bank
ASTM AwS CDM CwP CiRAD CAD$ CO2
American Standards and Measurements bureau Archimedes wave Swing Clean Development Mechanism Cold water Pipe Centre de co-opération internationale en Recherche Agronomique de Développement Canadian Dollars Carbon Dioxide
DOe (USA) DeCM DTi ePC ePA
Department Of energy - USA Direct energy Conversion Method Department of Trade and industry electric Power Corporation, Samoa environmental Protection Agency

  • european norm
  • en

  • eU
  • european Union

  • eST
  • early Stage Technologies

eMeC FRP FJ$ european Marine energy Centre Fibreglass Reinforced Plastic Fiji Dollar gDP geF ghg ieA iMF kVA kw lFPM MJ gross Domestic Product global environmental Facility greenhouse gas international energy Agency international Monetary Fund Kilo Volt Ampere, a measure of apparent power Kilo watt, a measure of real power longitudinal Flux Permanent Magnet Mega Joule

  • Mw
  • Mega watt

  • MST
  • Multi-Stage Turbine

MhD nelhA niOT naReC nRel OTeC CC-OTeC OC-OTeC OwC PiC
Magnetohydrodynamic natural energy laboratory of hawaii Authority national institute of Ocean Technology new and Renewable energy Centre national Renewable energy laboratory Ocean Thermal energy Conversion Closed Cycle OTeC Open Cycle OTeC Oscillating water column Pacific island Country
PiePSAP PiFS PiReP PRO Png PTO PM
Pacific island energy Policy and Strategic Action Plan Pacific island Forum Secretariat Pacific island Renewable energy Project Pressure Retarded Osmosis Papua new guinea Power Take-Off Mechanism Permanent Magnet
ReM ReD
Regional energy Officials Meeting Reversed electro Dialysis

  • RiTe
  • Roosevelt island Tidal energy

Solar energy Research institute Secretariat of the Pacific Applied geoscience Commission Société de Recherche du Pacifique Secretariat of the Pacific Community Syncwave Power Resonator Syncwave energy latching System Seawave Slot-Cone generator Scientific Applications & Research Associates Società per Azioni
SeRi SOPAC SRP SPC SPR SwelS SSg SARA S.p.A TFPM UK
Transverse Flux Permanent Magnet United Kingdom
UnCTAD UnDP Un
United nations Conference on Trade And Development United nations Development Programme United nations
UnelCO USP USA
Vanuatu’s Power Utility University of the South Pacific United States of America

  • US$
  • United States Dollar

  • VAT
  • Value Added Tax

weC wb wave energy Converter world bank

4

A SOPAC Desktop Study of Ocean-based-Renewable energy Technologies

Table of Contents

executive Summary.........................................................................................................................................................................................9 1. introduction......................................................................................................................................................................................................1 0 2. Ocean Thermal energy Conversion Technology....................................................................................1 1

2.1 introduction....................................................................................................................................................................................................................................................................11 2.2 background and history of OTeC .............................................................................................................................................................................................11 2.3 Technology Types.............................................................................................................................................................................................................................................. 13

2.3.1 Closed-Cycle OTeC.....................................................................................................................................................................................................................13

  • 2.3.1.1
  • Kalina and Uehara Cycles...................................................................................................................................................................15

2.3.2 Open-Cycle OTeC........................................................................................................................................................................................................................ 17 2.3.3 hybrid OTeC System.................................................................................................................................................................................................................19

2.4 Plant Design and location.....................................................................................................................................................................................................................19 2.5 Other Uses of OTeC Technology.................................................................................................................................................................................................21

2.5.1 Air Conditioning.................................................................................................................................................................................................................................21 2.5.2 Chilled-soil Agriculture.............................................................................................................................................................................................................21 2.5.3 Aquaculture.............................................................................................................................................................................................................................................21 2.5.4 Desalination............................................................................................................................................................................................................................................ 22 2.5.5 hydrogen Production............................................................................................................................................................................................................... 22 2.5.6 Mineral extraction.......................................................................................................................................................................................................................... 22

2.6 limitations of OTeC Technologies............................................................................................................................................................................................. 22

2.6.1 Technical Challenges...............................................................................................................................................................................................................22 2.6.2 engineering Challenges.......................................................................................................................................................................................................24 2.6.3 Disadvantages of OTeC........................................................................................................................................................................................................24 2.6.4 OTeC and the environment............................................................................................................................................................................................25 2.6.5 economic Considerations and Market Potential..............................................................................................................................27

2.7 Discussion......................................................................................................................................................................................................................................................................28

3. wave energy Technology..........................................................................................................................................................3 0

3.1 introduction and background............................................................................................................................................................................................................30

3.1.1 hydrodynamics................................................................................................................................................................................................................................. 34

3.2 Technology Types...............................................................................................................................................................................................................................................35

3.2.1 Oscillating bodies..........................................................................................................................................................................................................................36
3.2.1.1 3.2.1.2 3.2.1.3 3.2.1.4 3.2.1.5 3.2.1.6 3.2.1.7 3.2.1.8 3.2.1.9
Pelamis wave Power...................................................................................................................................................................................36 AwS Ocean energy.......................................................................................................................................................................................38 Fred Olsen’s FO3...............................................................................................................................................................................................39 wavebob.......................................................................................................................................................................................................................40 Finavera Renewables AquabuOy............................................................................................................................................40 wave energy Technologies (weT engen).................................................................................................................. 42 CeTO...................................................................................................................................................................................................................................43 wave Star energy............................................................................................................................................................................................. 44 Seabased.....................................................................................................................................................................................................................45
3.2.1.10 bioPower Systems (biowAVe).........................................................................................................................................................46 3.2.1.11 Aquamarine Power (Oyster)................................................................................................................................................................47

5

A SOPAC Desktop Study of Ocean-based-Renewable energy Technologies

3.2.1.12 Trident energy....................................................................................................................................................................................................... 48 3.2.1.13 Ocean navitas...................................................................................................................................................................................................... 48 3.2.1.14 Syncwave Systems....................................................................................................................................................................................... 49
3.2.2 Oscillating water Column...................................................................................................................................................................................................50
3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.4 wavegen.......................................................................................................................................................................................................................51 Oceanlinx......................................................................................................................................................................................................................51 Offshore wave energy (Owel)..................................................................................................................................................... 52 Orecon............................................................................................................................................................................................................................. 53
3.2.3 Overtopping Devices................................................................................................................................................................................................................ 53
3.2.3.1 3.2.3.2 wave Dragon..........................................................................................................................................................................................................53 Seawave Slot-Cone generator (SSg)...................................................................................................................................55

3.3 Secondary Technologies..........................................................................................................................................................................................................................55

3.3.1 Power Take-Off Methods.....................................................................................................................................................................................................55
3.3.1.1 3.3.1.2 3.3.1.3 hydraulic System...............................................................................................................................................................................................56 linear generator.................................................................................................................................................................................................56 Magnetohydrodynamic generator..........................................................................................................................................57

3.4 wave Power Potential in Pacific island Countries.................................................................................................................................................58 3.5 Discussion......................................................................................................................................................................................................................................................................59

4. Tidal energy Technology............................................................................................................................................................60

4.1 background..................................................................................................................................................................................................................................................................60 4.2 Technology Types.............................................................................................................................................................................................................................................. 61

4.2.1 Tidal barrage........................................................................................................................................................................................................................................ 61
4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 4.2.1.5
Offshore Tidal lagoons, Tidal electric, UK................................................................................................................... 63 Tidal Delay, woodshed Technologies Pty ltd, Australia...........................................................................63 Two-basin barrage, UnAM engineering institute, Mexico....................................................................63 environment implications of Tidal barrage................................................................................................................. 64 Cost effectiveness of Tidal barrages....................................................................................................................................65
4.2.2 Tidal Stream........................................................................................................................................................................................................................................... 65
4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 4.2.2.5 4.2.2.6 4.2.2.7 4.2.2.8 4.2.2.9
SeaFlow and Seagen, Marine Current Technologies, UK.................................................................. 66 Verdant Power, USA.......................................................................................................................................................................................68 hammerfest Strom AS, norway....................................................................................................................................................69 Underwater electric Kite, UeK Systems, US...............................................................................................................69 Clean Current, Canada.............................................................................................................................................................................70 Tidel, Soil Machine Dynamics hydrovision, UK....................................................................................................71 Open-Centre Turbine, Openhydro, ireland..................................................................................................................71 gorlov helical Turbine, gCK Technology, US.........................................................................................................72 enermar Kobold Turbine, Ponte Di Archimede international S.p.A., italy...................................................................................................................................................................................................................... 72
4.2.2.10 wanxiang Vertical Turbines, China......................................................................................................................................... 73 4.2.2.11 Pulse Tidal PS100 energy Converter, UK...................................................................................................................... 73

4.3 Case Study: Tide-energy Project near the Mouth of the Amazon................................................................................................75 4.4 Discussion......................................................................................................................................................................................................................................................................78

5. Salinity gradient Technology.................................................................................................................................................7 9

5.1 Reversed electro Dialysis (ReD)......................................................................................................................................................................................................79 5.2 Pressure Retarded Osmosis (PRO).............................................................................................................................................................................................80 5.3 Discussion......................................................................................................................................................................................................................................................................82

Recommended publications
  • A Numerical Approach for Estimating the Aerodynamic Characteristics of a Two Bladed Vertical Darrieus Wind Turbine Ervin Amet, Christian Pellone, Thierry Maître

    A Numerical Approach for Estimating the Aerodynamic Characteristics of a Two Bladed Vertical Darrieus Wind Turbine Ervin Amet, Christian Pellone, Thierry Maître

    A numerical approach for estimating the aerodynamic characteristics of a two bladed vertical Darrieus wind turbine Ervin Amet, Christian Pellone, Thierry Maître To cite this version: Ervin Amet, Christian Pellone, Thierry Maître. A numerical approach for estimating the aerodynamic characteristics of a two bladed vertical Darrieus wind turbine. 2nd Workshop on Vortex dominated flows, Jul 2006, Bucarest, Romania. hal-00232721 HAL Id: hal-00232721 https://hal.archives-ouvertes.fr/hal-00232721 Submitted on 27 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Scientific Bulletin of the 2nd Workshop on Politehnica University of Timisoara Vortex Dominated Flows Transactions on Mechanics Bucharest, Romania Special issue June 30 – July 1, 2006 A NUMERICAL APPROACH FOR ESTIMATING THE AERODYNAMIC CHARACTERISTICS OF A 2 BLADED VERTICAL DARRIEUS WIND TURBINE Ervin AMET, Phd. Student* Christian PELLONE, Scientist Researcher CNRS Laboratory of Geophysical and Industrial Fluid Laboratory
  • Marine Current Energy Conversion

    Marine Current Energy Conversion

    Marine Current Energy Conversion Resource and Technology MÅRTEN GRABBE UURIE 309-09L ISSN 0349-8352 Division of Electricity Department of Engineering Sciences Uppsala, December 2008 Abstract Research in the area of energy conversion from marine currents has been car- ried out at the Division of Electricity for several years. The focus has been to develop a simple and robust system for converting the kinetic energy in freely flowing water to electricity. The concept is based on a vertical axis turbine di- rectly coupled to a permanent magnet synchronous generator that is designed to match the characteristics of the resource. During this thesis work a pro- totype of such a variable speed generator, rated at 5 kW at 10 rpm, has been constructed to validate previous finite element simulations. Experiments show that the generator is well balanced and that there is reasonable agreement be- tween measurements and corresponding simulations, both at the nominal op- erating point and at variable speed and variable load operation from 2–16 rpm. It is shown that the generator can accommodate operation at fixed tip speed ratio with different fixed pitch vertical axis turbines in current velocities of 0.5–2.5 m/s. The generator has also been tested under diode rectifier opera- tion where it has been interconnected with a second generator on a common DC-bus similar to how several units could be connected in offshore operation. The conditions for marine current energy conversion in Norway have been investigated based on available data in pilot books and published literature. During this review work more than 100 sites have been identified as interest- ing with an estimated total theoretical resource—i.e.
  • Tidal Effect Compensation System for Wave Energy Converters

    Tidal Effect Compensation System for Wave Energy Converters

    TVE 11 036 Examensarbete 30 hp September 2011 Tidal Effect Compensation System for Wave Energy Converters Valeria Castellucci Institutionen för teknikvetenskaper Department of Engineering Sciences Abstract Tidal Effect Compensation System for Wave Energy Converters Valeria Castellucci Teknisk- naturvetenskaplig fakultet UTH-enheten Recent studies show that there is a correlation between water level and energy absorption values for wave energy converters: the absorption decreases when the Besöksadress: water levels deviate from average. The effect for the studied WEC version is evident Ångströmlaboratoriet Lägerhyddsvägen 1 for deviations greater then 25 cm, approximately. The real problem appears during Hus 4, Plan 0 tides when the water level changes significantly. Tides can compromise the proper functioning of the generator since the wire, which connects the buoy to the energy Postadress: converter, loses tension during a low tide and hinders the full movement of the Box 536 751 21 Uppsala translator into the stator during high tides. This thesis presents a first attempt to solve this problem by designing and realizing a small-scale model of a point absorber Telefon: equipped with a device that is able to adjust the length of the rope connected to the 018 – 471 30 03 generator. The adjustment is achieved through a screw that moves upwards in Telefax: presence of low tides and downwards in presence of high tides. The device is sized 018 – 471 30 00 to one-tenth of the full-scale model, while the small-scaled point absorber is dimensioned based on buoyancy's analysis and CAD simulations. Calculations of Hemsida: buoyancy show that the sensitive components will not be immersed during normal http://www.teknat.uu.se/student operation, while the CAD simulations confirm a sufficient mechanical strength of the model.
  • Development of Marine Renewable Energies and the Preservation Of

    Development of Marine Renewable Energies and the Preservation Of

    Development of marine renewable energies and the Renewable energies preservation of biodiversity - VOLUME 2 - Editors: Marion PEGUIN, under the coordination of Christophe LE VISAGE, coordinator of the contact group "Marine Renewable Energy", Guillemette ROLLAND, President of the Commission on Ecosystem Management, and Sébastien MONCORPS, director of the French Committee of IUCN. Acknowledgements: The French Committee of IUCN would particularly like to thank: the reviewers of this report: BARILLIER Agnès (EDF) - BAS Adeline (EDF EN) - BONADIO Jonathan (MEDDE- DGEC) - CARLIER Antoine (IFREMER) - DELENCRE Gildas (Energies Réunion) - GALIANO Mila (Ademe) - GUENARD Vincent (Ademe) - LEJART Morgane (FEM) - MARTINEZ Ludivine (Observatoire Pelagis) - MENARD Jean-Claude (ELV) - MICHEL Sylvain (AAMP) - de MONBRISON David (BRLi), the members of the "Sea and Coasts" working group of the IUCN French Committee, chaired by Ludovic FRERE ESCOFFIER (Nausicaa), the participants of the various steering committees: AMY Frédérique (DREAL HN) - ANDRE Yann (LPO) - ARANA-DE-MALEVILLE Olivia (FEE) - AUBRY Jérémy (Gondwana) - ARGENSON Alain (FNE) - BARBARY Cédric (GDF Suez) - BAS Adeline (Ifremer / EDF EN) - BEER-GABEL Josette (expert) - BELAN Pierre-Yves (CETMEF) - BONADIO Jonathan (MEDDE-DGEC) - BONNET Céline (Va- lorem) - BORDERON Séverine (GREDEG-CNRS) - BOUTTIER Jenny (BRLi) - CAILLET Antonin (Alstom Ocean Energy) - CANON Marina (EDPR) - CANTERI Thierry (PNM Iroise, AAMP) - CARRE Aurélien (UICN France) - CASTÉRAS Rémi (WPD Offshore) - CHATEL Jean (RTE) -
  • Site Selection of Ocean Current Power Generation from Drifter Measurements

    Site Selection of Ocean Current Power Generation from Drifter Measurements

    SITE SELECTION OF CURRENT POWER GENERATION 1 Site selection of ocean current power generation from drifter 2 measurements 3 4 Yu-Chia Chang1*, Peter C. Chu2, Ruo-Shan Tseng3 5 6 1 Department of Marine Biotechnology and Resources, National Sun Yat-sen University, 7 Kaohsiung 80424, Taiwan 8 2 Naval Ocean Analysis and Prediction Laboratory, Naval Postgraduate School, Monterey, 9 CA 93943, USA 10 3 Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, 11 Taiwan 12 13 14 December 2014 15 16 17 18 19 20 21 ----------------------------------------- 22 *Corresponding author. E-mail: [email protected], Fax: 886-7-5255033 1 SITE SELECTION OF CURRENT POWER GENERATION 23 Abstract 24 Site selection of ocean current power generation is usually based on numerical ocean 25 calculation models. In this study however, the selection near the coast of East Asia is 26 optimally from the Surface Velocity Program (SVP) data using the bin average method. 27 Japan, Vietnam, Taiwan, and Philippines have suitable sites for the development of ocean 28 current power generation. In these regions, the average current speeds reach 1.4, 1.2, 1.1, 29 and 1.0 m s-1, respectively. Vietnam has a better bottom topography to develop the current 30 power generation. Taiwan and Philippines also have good conditions to build plants for 31 generating ocean current power. Combined with the four factors of site selection (near 32 coast, shallow seabed, stable flow velocity, and high flow speed), the waters near 33 Vietnam is most suitable for the development of current power generation.
  • Experimental Investigation of Helical Cross-Flow Axis Hydrokinetic Turbines, Including Effects of Waves and Turbulence

    Experimental Investigation of Helical Cross-Flow Axis Hydrokinetic Turbines, Including Effects of Waves and Turbulence

    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2011 Experimental investigation of helical cross-flow axis hydrokinetic turbines, including effects of waves and turbulence Peter Bachant University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Bachant, Peter, "Experimental investigation of helical cross-flow axis hydrokinetic turbines, including effects of waves and turbulence" (2011). Master's Theses and Capstones. 649. https://scholars.unh.edu/thesis/649 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. EXPERIMENTAL INVESTIGATION OF HELICAL CROSS-FLOW AXIS HYDROKINETIC TURBINES, INCLUDING EFFECTS OF WAVES AND TURBULENCE BY PETER BACHANT BSME, University of Massachusetts Dartmouth, 2008 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering September, 2011 UMI Number: 1504939 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 1504939 Copyright 2011 by ProQuest LLC. All rights reserved.
  • Ocean Energy Task Force Final Report, 2009

    Ocean Energy Task Force Final Report, 2009

    Final Report of the Ocean Energy Task Force to Governor John E. Baldacci December 2009 Photo credits (clockwise from top center): Solberg/Statoil; Maine Coastal Program; Ocean Renewable Power Company; Principle Power; Blue H. Center photo: Global Marine Systems, Ltd. Final Report of the Ocean Energy Task Force to Governor John E. Baldacci December 2009 Financial assistance for this document was provided by a grant from the Maine Coastal Program at the Maine State Planning Office, through funding provided by the U.S. Department of Commerce, Office of Ocean and Coastal Resource Management under the Coastal Zone Management Act of 1972, as amended. Additional financial assistance was provided by the Efficiency Maine Trust (Efficiency Maine Trust is a statewide effort to promote the more efficient use of electricity, help Maine residents and businesses reduce energy costs, and improve Maine’s environment), and by the American Recovery and Reinvestment Act of 2009. This publication was produced under appropriation number 020-07B-008205 Final Report of the Ocean Energy Task Force TABLE OF CONTENTS Acknowledgements.....................................................................................................................................ii Executive Summary ...................................................................................................................................iii Summary of Recommendations..............................................................................................................vii Overview
  • 17. Sayısı’Nda Mısır’In Damanhour Al Behira Şehri’Nden Bir We Welcome a Name from the Damanhour Ismi Ağırlıyoruz

    17. Sayısı’Nda Mısır’In Damanhour Al Behira Şehri’Nden Bir We Welcome a Name from the Damanhour Ismi Ağırlıyoruz

    İki Aylık Sektörel Dergi Sayı: 17 OCAK - ŞUBAT 2019 Issue: 17 JANUARY - FEBRUARY 2019 DÜNYANIN REKOLTESİ | 1 Enerjiverimliliği@Festo Doğru, verimli ekipman ve güvenli bağlantı ile zirveye ulaşın... 444 1 378 2 | www.festo.com.tr Enerjiverimliliği@Festo Doğru, verimli ekipman ve güvenli bağlantı ile zirveye ulaşın... 444 1 378 www.festo.com.tr| 3 4 | GÜCÜNÜZE GÜÇ KATIYORUZ YENİ EKO PLUS SERİSİ İLE İŞLETMENİZİN PERFORMANSINI ZİRVEYE TAŞIYIN. Eko plus kompresör serisi yüksek performansı, yaygın servis ağı ve rekabetçi fiyatlarıyla şimdi daha güçlü, daha verimli, daha sessiz. www.ekomak.com.tr | 5 6 | | 7 8 | Gökmen Akyürek Genel Yayın Yönetmeni Exclutive Editor Merhaba Sevgili Dear Valued Okurlar, Readers, Takvimlerde bir yıl daha değişti. Geriye dönüp baktığımızda One more year has changed on calendars. When we look 2018 yılı için, 'Ekonomik düzlemde dalgalanmaların back, we can say, ‘2018 was the year of economic fluctuations.’ yaşandığı bir yıl oldu.' diyebiliriz. Çünkü yılın ikinci yarısında Because the upsurge in exchange rates in the second half of döviz kurlarındaki ani yükseliş iç piyasada tedirginlik the year has caused uneaiseness in domestic market and the yarattı ve kuruluşlar büyümek şöyle dursun, pozisyonlarını enterprises -let alone grow the companies- have preferred korumak yönünde bir ticari strateji uygulamayı tercih to implement commercial strategies in order to keep their ettiler. Ancak bence bu tablo için "kötü" demek yanlış olur. positions. But, personally I think, it would be wrong to say “bad” Çünkü ticari uğraşların doğasında yükselişler, durgunluk for this statement. Because, the periods of rising, recession or dönemleri ve düşüşler olağandır. Gidişatı saptamak, degression are normal in the nature of commercial activities.
  • What About Marine Renewable Energies in Spain?

    What About Marine Renewable Energies in Spain?

    Journal of Marine Science and Engineering Review What about Marine Renewable Energies in Spain? María Dolores Esteban 1,2,*, Juan Manuel Espada 1, José Marcos Ortega 3 , José-Santos López-Gutiérrez 2 and Vicente Negro 2 1 Departamento de Ingeniería Civil, Universidad Europea, 28040 Madrid, Spain 2 Grupo de Investigación de Medio Marino, Costero y Portuario, y Otras Áreas Sensibles, Universidad Politécnica de Madrid, 28670 Madrid, Spain 3 Departamento de Ingeniería Civil, Universidad de Alicante, Ap. Correos 99, 03080 Alacant/Alicante, Spain * Correspondence: [email protected]; Tel.: +34-917407272 Received: 4 July 2019; Accepted: 26 July 2019; Published: 30 July 2019 Abstract: Renewable energies play a fundamental role within the current political and social framework for minimizing the impacts of climate change. The ocean has a vast potential for generating energy and therefore, the marine renewable energies are included in the Sustainable Development Goals (SDGs). These energies include wave, tidal, marine currents, ocean thermal, and osmotic. Moreover, it can also be included wind, solar, geothermal and biomass powers, which their main use is onshore, but in the near future their use at sea may be considered. The manuscript starts with a state-of-the-art review of the abovementioned marine renewable energy resources worldwide. The paper continues with a case study focused on the Spanish coast, divided into six regions: (I) Cantabrian, (II) Galician, (III) South Atlantic, (IV) Canary Islands, (V) Southern Mediterranean, and (VI) Northern Mediterranean. The results show that: (1) areas I and II are suitable for offshore wind, wave and biomass; (2) areas III and V are suitable for offshore wind, marine current and offshore solar; area IV is suitable for offshore wind, ocean wave and offshore solar; (3) and area VI is suitable for offshore wind, osmotic and offshore solar.
  • Cal Poly Nano Hydro

    Cal Poly Nano Hydro

    Cal Poly Nano Hydro By Brandon N. Fujio Alex J. Sobel Andrew F. Del Prete Mechanical Engineering Department California Polytechnic State University San Luis Obispo 2013 Statement of Disclaimer Since this project is a result of a class assignment, it has been graded and accepted as fulfillment of the course requirements. Acceptance does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the project. Table of Contents Executive Summary ....................................................................................................................................... 1 Chapter 1: Introduction ................................................................................................................................ 5 1.1 Background and Needs ....................................................................................................................... 5 1.2 Problem Definition .............................................................................................................................. 6 1.3 Objective/Specification Development ................................................................................................ 6 1.4 Project Management .........................................................................................................................
  • Evaluation of Potential Marine Current Turbine Sites in North American Waters Independent Project in Electrical Engineering

    Evaluation of Potential Marine Current Turbine Sites in North American Waters Independent Project in Electrical Engineering

    TVE-E 20 002 Examensarbete 15 hp Juli 2020 Evaluation of potential marine current turbine sites in North American waters Independent Project in Electrical Engineering Tim Andersson Muhammad Arsal Akram Carl-Henrik Carlnäs Tiffany Salisbury Abstract Evaluation of potential marine current turbine sites in North American waters Tim Andersson, Muhammad Arsal Akram, Carl-Henrik Carlnäs, Tiffany Salisbury Teknisk- naturvetenskaplig fakultet UTH-enheten Suitable locations for marine current power generation were scouted. The specific turbines considered in this project are vertical axis turbines and require an water Besöksadress: velocity of 0.8 m/s to start and has a system efficiency of 20%. In the beginning of the Ångströmlaboratoriet Lägerhyddsvägen 1 project focus was directed towards areas along Florida's coastal line with high water Hus 4, Plan 0 velocities tapping into the Gulf Stream. Data found the velocities did not meet the water speed requirements. Following this observation, it was decided to discontinue Postadress: further research in the Florida region and divert the attention towards waters in Box 536 751 21 Uppsala Alaska. There current velocities were found to be significantly higher. Because velocities vary over time marine current power is not relevant in Alaska, but rather Telefon: the closely related technology tidal power. Two areas in Alaska distinguished 018 – 471 30 03 themselves, Cook Inlet and Aleutian Islands.Potential power and annual energy Telefax: extraction were estimated for turbine stations at each site. A battery energy storage 018 – 471 30 00 system was implemented to counteract varying water velocities. The most promising site could steadily deliver 269 kW and an annual energy production of 2.44~GWh per Hemsida: turbine.
  • University of Kwazulu-Natal Design of a Novel Hydrokinetic Turbine for Ocean Current Power Generation

    University of Kwazulu-Natal Design of a Novel Hydrokinetic Turbine for Ocean Current Power Generation

    UNIVERSITY OF KWAZULU-NATAL COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE DESIGN OF A NOVEL HYDROKINETIC TURBINE FOR OCEAN CURRENT POWER GENERATION Kumaresan Cunden Dissertation submitted in fulfilment of the academic requirements for the degree of Master of Science in Mechanical Engineering Supervisor: Dr Freddie L. Inambao October 2014 “As the candidate’s Supervisor I agree/do not agree to the submission of this dissertation”. The supervisor must sign all copies after deleting which is not applicable. Dr Freddie L. Inambao NAME OF SUPERVISOR SIGNATURE I Form EX1-5 COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE DECLARATION 1 - PLAGIARISM I, Kumaresan Cunden, declare that: 1. The research reported in this dissertation, except where otherwise indicated, is my original research. 2. This dissertation has not been submitted for any degree or examination at any other university. 3. This dissertation does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This dissertation does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This dissertation does not contain text, graphics or tables copied and pasted