Chapter 4 Distillation

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 Distillation Chapter 4 Distillation 4.1 Vapor Liquid Equilibrium Relations The equilibrium in vapor-liquid equilibrium is restricted by the phase rule. For a binary mixture in two phases, the degree of freedom F is given by F = m − π + 2 = 2 − 2 + 2 = 2 (4.1-1) As an example we will use the benzene-toluene, vapor-liquid system. The four variables are temperature, pressure, the mole fraction of the more volatile component in the vapor and liquid phases. Benzene is the more volatile component in the benzene-toluene system. If the pressure is fixed at 200 kPa, only one more variable can be set. If we set the temperature, the mole fraction of benzene (component 1) can be determined from the following relations: y Psat 1− y Psat 1 = 1 and 1 = 2 (4.1-2a, b) − x1 P 1 x1 P sat sat In these expressions, P = 200 kPa, P1 and P2 are the vapor pressures of benzene and toluene at the specified temperature, respectively. For ideal solution such as benzene-toluene system, the bubble and dew point temperatures of the mixture will be between the saturation temperatures of benzene and toluene. At 200 kPa, the saturation temperatures of benzene and toluene are 377.31 K and 409.33 K, respectively. If we set the mixture temperature at 400 K, sat sat P1 = 352.160 kPa and P2 = 157.8406 kPa. Equations (4.1-2a, b) become y 352.16 1− y 157.841 1 = and 1 = (4.1-3a, b) − x1 200 1 x1 200 Solving these two equations, we obtain x1 = 0.2170 and y1 = 0.3820. The vapor-liquid equilibrium relations for benzene (1)-toluene (2) at a total pressure of 200 kPa are given as a boiling-point Txy diagram shown in Figure 4.1-1. The upper curve is the saturated vapor curve (the dew-point curve) and the lower curve is the saturated liquid curve (the bubble- point curve). The region between these two curve is the two-phase region. In Figure 4.1-1, if we start with a cold liquid mixture of x1 = 0.217 and heat the mixture, it will start to boil at 400 K, and the composition of the first vapor in equilibrium is y1 = 0.382. As we continue boiling, the composition x1 in the remaining liquid mixture will decrease since y1 is richer in benzene. If we start with a hot gas mixture of y1 = 0.382 and cool the mixture, it will start to condense at 400 K, and the composition of the first liquid drop in equilibrium is x1 = 0.217. As we continue condensing, the composition y1 in the remaining gas mixture will increase since x1 is richer in toluene. The Txy diagram for an ideal mixture can be calculated from the pure vapor-pressure data as illustrated in Example 4.1-1. 4-1 Figure 4.1-1 Calculated Txy diagram of benzene and toluene at 200 kPa. Example 4.1-1 ---------------------------------------------------------------------------------- Construct a Txy diagram for a mixture of benzene and toluene at 200 kPa. Benzene and toluene mixtures may be considered as ideal. Data: Vapor pressure, Psat , data: ln Psat = A − B/( T + C), where Psat is in kPa and T is in K. Compound A B C Benzene (1) 14.1603 2948.78 − 44.5633 Toluene (2) 14.2515 3242.38 − 47.1806 Solution ------------------------------------------------------------------------------------------ The temperature for the Txy diagram should be between the boiling points of benzene and toluene given by boil 2948 78. T1 = + 44.5633 = 377.31 K 14 .1603 − log( 200 ) boil 3242 38. T2 = + 47.1806 = 409.33 K 14 .2515 − log( 200 ) 4-2 The simplest procedure is to choose a temperature T between 377.31 K and 409.33 K, evaluate the vapor pressures, and solve for x and y from the following equations: sat yi Pi = (E-1) xi P At 400 K, the vapor pressure of benzene and toluene are given by sat P1 = exp(14.1603 − 2948.78/(400 − 44.5633)) = 352.160 kPa sat P2 = exp(14.2515 − 3242.38/(400 − 47.1806)) = 157.8406 kPa Therefore y1 352.16 = ⇒ y1 = K1 x1 = 1.7608 x1 (E-1) x1 200 1 − y 157.841 1 = ⇒ 1 − y = K (1 − x ) = 0.7892 (1 − x ) (E-1) − 1 2 1 1 1 x1 200 Substituting Eq. (E-2) into (E-1) yields 1 − K1 x1 = K2 (1 − x1) Therefore 1 − K 1 − .0 7892 x = 2 = = 0.2170 1 − − K1 K2 1.7608 0.7892 y1 = K1 x1 = 1.7608 x1 = 0.3820 The Matlab program listed in Table E4.1-1 plots the Txy diagram shown in Figure 4.1-1. Table E4.1-1-------------------------------------------------------------------------- % Example 4.1-1, Txy diagram for benzene-toluene mixture at 200 kPa % P=200; % kPa A=[14.1603 14.2515]; B=[2948.78 3242.38]; C=[-44.5633 -47.1806]; % Boling point at 200 kPa Tb=B./(A-log(P))-C; fprintf('Boiling point of Benzene at P = %g, Tb = %6.2f C\n',P,Tb(1)) fprintf('Boiling point of Toluene at P = %g, Tb = %6.2f C\n',P,Tb(2)) T=linspace(Tb(1),Tb(2),50); K1=exp(A(1)-B(1)./(T+C(1)))/P; K2=exp(A(2)-B(2)./(T+C(2)))/P; x=(1-K2)./(K1-K2); y = K1.*x; ymin=round(Tb(1)-1);ymax=round(Tb(2)+1); 4-3 % Solve for x and y at T = 400 K T1=400; K1=exp(A(1)-B(1)./(T1+C(1)))/P; K2=exp(A(2)-B(2)./(T1+C(2)))/P; x1=(1-K2)/(K1-K2); y1 = K1*x1; plot(x,T,y,T,':',[0 y1],[T1 T1],'--',[x1 x1],[ymin T1],'--',[y1 y1],[ymin T1],'--') axis([0 1 ymin ymax]); grid on xlabel('x,y');ylabel('T(K)') legend('Saturated liquid','Saturated vapor') ----------------------------------------------------------------------------------------- When deviations from Raoult’s law are large enough, the Tx and Ty curves can go through a maximum or a minimum. The extreme point (either minimum or maximum) is called azeotrope where the liquid mole fraction is equal to the vapor mole fraction for each species: xi = yi (4.1-1) A system that exhibits a maximum in pressure (positive deviations from Raoult’s law) will exhibits a minimum in temperature called minimum boiling azeotrope as shown the top part of Figure 4.1-1 for a mixture of chloroform and hexane. The Pxy diagram is plotted at 318 K and the Txy diagram is plotted at 1 atm. This is the case when the like interaction is stronger than the unlike interaction between the molecules. The mixture will require less energy to go to the vapor phase and hence will boil at a lower temperature that that of the pure components. If the unlike interaction is stronger than the like interaction we have negative deviations from Raoult’s law and the system will exhibit a minimum in pressure or a maximum in temperature called maximum boiling azeotrope. A mixture of acetone and chloroform shows this behavior in the bottom part of Figure 4.1-1. The Pxy diagram is plotted at 328 K and the Txy diagram is plotted at 1 atm. The data for vapor pressure and Wilson model are from the Thermosolver program by Koretsky. This program can also plot Pxy and Txy diagrams for different mixtures. Table 4.1-1 lists the Matlab program used to produce Figure 4.1-2. 4-4 Chloroform-Hexane Chloroform-Hexane x 342 x y y 0.55 340 0.5 338 T(K) P(atm) 336 0.45 334 0.4 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x,y x,y Acetone-Chloroform Acetone-Chloroform 1 340 x x 0.95 y 338 y 0.9 336 0.85 T(K) 334 P(atm) 0.8 0.75 332 0.7 330 0.65 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x,y x,y Figure 4.1-2 Top: minimum boiling azeotrope for chloroform and n-Hexane system. Bottom: maximum boiling azeotrope for acetone and chloroform system Table 4.1-2 ----------------------------------------------------------------------------------- % Figure 4.1-2: Construct a Txy diagram for chloroform (1) and hexane (2) mixture % at a total pressure (atm) of P = 1; % Use the Wilson equation with parameters G12 = 1.2042; G21 = 0.39799; % Vapor pressure data: P(atm), T(K) p1sat = 'exp(9.33984-2696.79/(T-46.14))'; p2sat = 'exp(9.20324-2697.55/(T-48.78))'; % Estimate boiling points Tb1 = 2696.79/(9.33984-log(P))+46.14; Tb2 = 2697.55/(9.20324-log(P))+48.78; x1=[0 .002 .004 .006 .008 .01 .015]; x2=linspace(.02,.92,46); x3=[.93 .94 .95 .96 .97 .98 .985 .990 .995 1]; xp=[x1 x2 x3];np=length(xp); yp=xp;Tp=xp; Tp(1)=Tb2;Tp(np)=Tb1; dT = .01; T=Tb2; 4-5 for i=2:np x1=xp(i);x2=1-x1; % Evaluate activity coefficients tem1 = x1 + x2*G12; tem2 = x2 + x1*G21; gam1 = exp(-log(tem1)+x2*(G12/tem1-G21/tem2)); gam2 = exp(-log(tem2)+x1*(G21/tem2-G12/tem1)); for k=1:20 fT=x1*gam1*eval(p1sat)+x2*gam2*eval(p2sat)-P; T=T+dT; fT2=x1*gam1*eval(p1sat)+x2*gam2*eval(p2sat)-P; dfT=(fT2-fT)/dT; eT=fT/dfT; T=T-dT-eT; if abs(eT)<.001, break ,end end Tp(i)=T; yp(i)=x1*gam1*eval(p1sat)/P; fprintf('T(K) = %8.2f , x=%8.4f;y = %8.4f, iteration = %g\n',T,x1,yp(i),k) end subplot(2,2,2); plot(xp,Tp,yp,Tp,':') axis([0 1 333 343]) xlabel('x,y');ylabel('T(K)');title('Chloroform-Hexane') grid on legend('x','y') % % Construct a Pxy diagramfor chloroform (1) and hexane (2) mixture % at a temperature (K) of T=318; p1vap=eval(p1sat);p2vap=eval(p2sat); xp2=1-xp; tem1 = xp + xp2*G12; tem2 = xp2 + xp*G21; gam1 = exp(-log(tem1)+xp2.*(G12./tem1-G21./tem2)); gam2 = exp(-log(tem2)+xp.*(G21./tem2-G12./tem1)); p1=xp.*gam1*p1vap;p2=xp2.*gam2*p2vap; Pp=p1+p2;yp=p1./Pp; subplot(2,2,1); plot(xp,Pp,yp,Pp,':') axis([0 1 0.4 0.6]) xlabel('x,y');ylabel('P(atm)');title('Chloroform-Hexane') grid on legend('x','y',2) % % Figure 4.1-2: Construct a Txy diagramfor acetone (1) and chloroform (2) mixture % at a total pressure (atm) of P = 1; % Use the Wilson equation with parameters G12 = 1.324; G21 = 1.7314; % Vapor pressure data: P(atm), T(K) p1sat = 'exp(10.0179-2940.46/(T-35.93))'; p2sat = 'exp(9.33984-2696.79/(T-46.14))'; % Estimate boiling points 4-6 Tb1 = 2940.46/(10.0179-log(P))+35.93; Tb2 = 2696.79/(9.33984-log(P))+46.14; x1=[0 .002 .004 .006 .008 .01 .015]; x2=linspace(.02,.92,46); x3=[.93 .94 .95 .96 .97 .98 .985 .990 .995 1]; xp=[x1 x2 x3];np=length(xp); yp=xp;Tp=xp; Tp(1)=Tb2;Tp(np)=Tb1; dT = .01; T=Tb2; for i=2:np x1=xp(i);x2=1-x1; % Evaluate activity coefficients tem1 = x1 + x2*G12; tem2 = x2 + x1*G21; gam1 = exp(-log(tem1)+x2*(G12/tem1-G21/tem2));
Recommended publications
  • Thermodynamics
    TREATISE ON THERMODYNAMICS BY DR. MAX PLANCK PROFESSOR OF THEORETICAL PHYSICS IN THE UNIVERSITY OF BERLIN TRANSLATED WITH THE AUTHOR'S SANCTION BY ALEXANDER OGG, M.A., B.Sc., PH.D., F.INST.P. PROFESSOR OF PHYSICS, UNIVERSITY OF CAPETOWN, SOUTH AFRICA THIRD EDITION TRANSLATED FROM THE SEVENTH GERMAN EDITION DOVER PUBLICATIONS, INC. FROM THE PREFACE TO THE FIRST EDITION. THE oft-repeated requests either to publish my collected papers on Thermodynamics, or to work them up into a comprehensive treatise, first suggested the writing of this book. Although the first plan would have been the simpler, especially as I found no occasion to make any important changes in the line of thought of my original papers, yet I decided to rewrite the whole subject-matter, with the inten- tion of giving at greater length, and with more detail, certain general considerations and demonstrations too concisely expressed in these papers. My chief reason, however, was that an opportunity was thus offered of presenting the entire field of Thermodynamics from a uniform point of view. This, to be sure, deprives the work of the character of an original contribution to science, and stamps it rather as an introductory text-book on Thermodynamics for students who have taken elementary courses in Physics and Chemistry, and are familiar with the elements of the Differential and Integral Calculus. The numerical values in the examples, which have been worked as applications of the theory, have, almost all of them, been taken from the original papers; only a few, that have been determined by frequent measurement, have been " taken from the tables in Kohlrausch's Leitfaden der prak- tischen Physik." It should be emphasized, however, that the numbers used, notwithstanding the care taken, have not vii x PREFACE.
    [Show full text]
  • Equation of State for Benzene for Temperatures from the Melting Line up to 725 K with Pressures up to 500 Mpa†
    High Temperatures-High Pressures, Vol. 41, pp. 81–97 ©2012 Old City Publishing, Inc. Reprints available directly from the publisher Published by license under the OCP Science imprint, Photocopying permitted by license only a member of the Old City Publishing Group Equation of state for benzene for temperatures from the melting line up to 725 K with pressures up to 500 MPa† MONIKA THOL ,1,2,* ERIC W. Lemm ON 2 AND ROLAND SPAN 1 1Thermodynamics, Ruhr-University Bochum, Universitaetsstrasse 150, 44801 Bochum, Germany 2National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA Received: December 23, 2010. Accepted: April 17, 2011. An equation of state (EOS) is presented for the thermodynamic properties of benzene that is valid from the triple point temperature (278.674 K) to 725 K with pressures up to 500 MPa. The equation is expressed in terms of the Helmholtz energy as a function of temperature and density. This for- mulation can be used for the calculation of all thermodynamic properties. Comparisons to experimental data are given to establish the accuracy of the EOS. The approximate uncertainties (k = 2) of properties calculated with the new equation are 0.1% below T = 350 K and 0.2% above T = 350 K for vapor pressure and liquid density, 1% for saturated vapor density, 0.1% for density up to T = 350 K and p = 100 MPa, 0.1 – 0.5% in density above T = 350 K, 1% for the isobaric and saturated heat capaci- ties, and 0.5% in speed of sound. Deviations in the critical region are higher for all properties except vapor pressure.
    [Show full text]
  • Determination of the Identity of an Unknown Liquid Group # My Name the Date My Period Partner #1 Name Partner #2 Name
    Determination of the Identity of an unknown liquid Group # My Name The date My period Partner #1 name Partner #2 name Purpose: The purpose of this lab is to determine the identity of an unknown liquid by measuring its density, melting point, boiling point, and solubility in both water and alcohol, and then comparing the results to the values for known substances. Procedure: 1) Density determination Obtain a 10mL sample of the unknown liquid using a graduated cylinder Determine the mass of the 10mL sample Save the sample for further use 2) Melting point determination Set up an ice bath using a 600mL beaker Obtain a ~5mL sample of the unknown liquid in a clean dry test tube Place a thermometer in the test tube with the sample Place the test tube in the ice water bath Watch for signs of crystallization, noting the temperature of the sample when it occurs Save the sample for further use 3) Boiling point determination Set up a hot water bath using a 250mL beaker Begin heating the water in the beaker Obtain a ~10mL sample of the unknown in a clean, dry test tube Add a boiling stone to the test tube with the unknown Open the computer interface software, using a graph and digit display Place the temperature sensor in the test tube so it is in the unknown liquid Record the temperature of the sample in the test tube using the computer interface Watch for signs of boiling, noting the temperature of the unknown Dispose of the sample in the assigned waste container 4) Solubility determination Obtain two small (~1mL) samples of the unknown in two small test tubes Add an equal amount of deionized into one of the samples Add an equal amount of ethanol into the other Mix both samples thoroughly Compare the samples for solubility Dispose of the samples in the assigned waste container Observations: The unknown is a clear, colorless liquid.
    [Show full text]
  • The Basics of Vapor-Liquid Equilibrium (Or Why the Tripoli L2 Tech Question #30 Is Wrong)
    The Basics of Vapor-Liquid Equilibrium (Or why the Tripoli L2 tech question #30 is wrong) A question on the Tripoli L2 exam has the wrong answer? Yes, it does. What is this errant question? 30.Above what temperature does pressurized nitrous oxide change to a gas? a. 97°F b. 75°F c. 37°F The correct answer is: d. all of the above. The answer that is considered correct, however, is: a. 97ºF. This is the critical temperature above which N2O is neither a gas nor a liquid; it is a supercritical fluid. To understand what this means and why the correct answer is “all of the above” you have to know a little about the behavior of liquids and gases. Most people know that water boils at 212ºF. Most people also know that when you’re, for instance, boiling an egg in the mountains, you have to boil it longer to fully cook it. The reason for this has to do with the vapor pressure of water. Every liquid wants to vaporize to some extent. The measure of this tendency is known as the vapor pressure and varies as a function of temperature. When the vapor pressure of a liquid reaches the pressure above it, it boils. Until then, it evaporates until the fraction of vapor in the mixture above it is equal to the ratio of the vapor pressure to the total pressure. At that point it is said to be in equilibrium and no further liquid will evaporate. The vapor pressure of water at 212ºF is 14.696 psi – the atmospheric pressure at sea level.
    [Show full text]
  • Phase Diagrams
    Module-07 Phase Diagrams Contents 1) Equilibrium phase diagrams, Particle strengthening by precipitation and precipitation reactions 2) Kinetics of nucleation and growth 3) The iron-carbon system, phase transformations 4) Transformation rate effects and TTT diagrams, Microstructure and property changes in iron- carbon system Mixtures – Solutions – Phases Almost all materials have more than one phase in them. Thus engineering materials attain their special properties. Macroscopic basic unit of a material is called component. It refers to a independent chemical species. The components of a system may be elements, ions or compounds. A phase can be defined as a homogeneous portion of a system that has uniform physical and chemical characteristics i.e. it is a physically distinct from other phases, chemically homogeneous and mechanically separable portion of a system. A component can exist in many phases. E.g.: Water exists as ice, liquid water, and water vapor. Carbon exists as graphite and diamond. Mixtures – Solutions – Phases (contd…) When two phases are present in a system, it is not necessary that there be a difference in both physical and chemical properties; a disparity in one or the other set of properties is sufficient. A solution (liquid or solid) is phase with more than one component; a mixture is a material with more than one phase. Solute (minor component of two in a solution) does not change the structural pattern of the solvent, and the composition of any solution can be varied. In mixtures, there are different phases, each with its own atomic arrangement. It is possible to have a mixture of two different solutions! Gibbs phase rule In a system under a set of conditions, number of phases (P) exist can be related to the number of components (C) and degrees of freedom (F) by Gibbs phase rule.
    [Show full text]
  • Liquid-Vapor Equilibrium in a Binary System
    Liquid-Vapor Equilibria in Binary Systems1 Purpose The purpose of this experiment is to study a binary liquid-vapor equilibrium of chloroform and acetone. Measurements of liquid and vapor compositions will be made by refractometry. The data will be treated according to equilibrium thermodynamic considerations, which are developed in the theory section. Theory Consider a liquid-gas equilibrium involving more than one species. By definition, an ideal solution is one in which the vapor pressure of a particular component is proportional to the mole fraction of that component in the liquid phase over the entire range of mole fractions. Note that no distinction is made between solute and solvent. The proportionality constant is the vapor pressure of the pure material. Empirically it has been found that in very dilute solutions the vapor pressure of solvent (major component) is proportional to the mole fraction X of the solvent. The proportionality constant is the vapor pressure, po, of the pure solvent. This rule is called Raoult's law: o (1) psolvent = p solvent Xsolvent for Xsolvent = 1 For a truly ideal solution, this law should apply over the entire range of compositions. However, as Xsolvent decreases, a point will generally be reached where the vapor pressure no longer follows the ideal relationship. Similarly, if we consider the solute in an ideal solution, then Eq.(1) should be valid. Experimentally, it is generally found that for dilute real solutions the following relationship is obeyed: psolute=K Xsolute for Xsolute<< 1 (2) where K is a constant but not equal to the vapor pressure of pure solute.
    [Show full text]
  • Pressure Vs Temperature (Boiling Point)
    Boiling Points and Vapor Pressure Background Boiling Points and Vapor Pressure Background: Definitions Vapor Pressure: The equilibrium pressure of a vapor above its liquid; the pressure of the vapor resulting from the evaporation of a liquid above a sample of the liquid in a closed container. Boiling Point: The temperature at which the vapor pressure of a liquid is equal to the atmospheric (or applied) pressure. As the temperature of the liquid increases, the vapor pressure will increase, as seen below: https://www.chem.purdue.edu/gchelp/liquids/vpress.html Vapor pressure is interpreted in terms of molecules of liquid converting to the gaseous phase and escaping into the empty space above the liquid. In order for the molecules to escape, the intermolecular forces (Van der Waals, dipole- dipole, and hydrogen bonding) have to be overcome, which requires energy. This energy can come in the form of heat, aka increase in temperature. Due to this relationship between vapor pressure and temperature, the boiling point of a liquid decreases as the atmospheric pressure decreases since there is more room above the liquid for molecules to escape into at lower pressure. The graph below illustrates this relationship using common solvents and some terpenes: Pressure vs Temperature (boiling point) Ethanol Heptane Isopropyl Alcohol B-myrcene 290.0 B-caryophyllene d-Limonene Linalool Pulegone 270.0 250.0 1,8-cineole (eucalyptol) a-pinene a-terpineol terpineol-4-ol 230.0 p-cymene 210.0 190.0 170.0 150.0 130.0 110.0 90.0 Temperature (˚C) Temperature 70.0 50.0 30.0 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 760 10.0 -10.0 -30.0 Pressure (torr) 1 Boiling Points and Vapor Pressure Background As a very general rule of thumb, the boiling point of many liquids will drop about 0.5˚C for a 10mmHg decrease in pressure when operating in the region of 760 mmHg (atmospheric pressure).
    [Show full text]
  • Introduction to Phase Diagrams*
    ASM Handbook, Volume 3, Alloy Phase Diagrams Copyright # 2016 ASM InternationalW H. Okamoto, M.E. Schlesinger and E.M. Mueller, editors All rights reserved asminternational.org Introduction to Phase Diagrams* IN MATERIALS SCIENCE, a phase is a a system with varying composition of two com- Nevertheless, phase diagrams are instrumental physically homogeneous state of matter with a ponents. While other extensive and intensive in predicting phase transformations and their given chemical composition and arrangement properties influence the phase structure, materi- resulting microstructures. True equilibrium is, of atoms. The simplest examples are the three als scientists typically hold these properties con- of course, rarely attained by metals and alloys states of matter (solid, liquid, or gas) of a pure stant for practical ease of use and interpretation. in the course of ordinary manufacture and appli- element. The solid, liquid, and gas states of a Phase diagrams are usually constructed with a cation. Rates of heating and cooling are usually pure element obviously have the same chemical constant pressure of one atmosphere. too fast, times of heat treatment too short, and composition, but each phase is obviously distinct Phase diagrams are useful graphical representa- phase changes too sluggish for the ultimate equi- physically due to differences in the bonding and tions that show the phases in equilibrium present librium state to be reached. However, any change arrangement of atoms. in the system at various specified compositions, that does occur must constitute an adjustment Some pure elements (such as iron and tita- temperatures, and pressures. It should be recog- toward equilibrium. Hence, the direction of nium) are also allotropic, which means that the nized that phase diagrams represent equilibrium change can be ascertained from the phase dia- crystal structure of the solid phase changes with conditions for an alloy, which means that very gram, and a wealth of experience is available to temperature and pressure.
    [Show full text]
  • Freezing and Boiling Point Changes
    Freezing Point and Boiling Point Changes for Solutions and Solids Lesson Plans and Labs By Ranald Bleakley Physics and Chemistry teacher Weedsport Jnr/Snr High School RET 2 Cornell Center for Materials Research Summer 2005 Freezing Point and Boiling Point Changes for Solutions and Solids Lesson Plans and Labs Summary: Major skills taught: • Predicting changes in freezing and boiling points of water, given type and quantity of solute added. • Solving word problems for changes to boiling points and freezing points of solutions based upon data supplied. • Application of theory to real samples in lab to collect and analyze data. Students will describe the importance to industry of the depression of melting points in solids such as metals and glasses. • Students will describe and discuss the evolution of glass making through the ages and its influence on social evolution. Appropriate grade and level: The following lesson plans and labs are intended for instruction of juniors or seniors enrolled in introductory chemistry and/or physics classes. It is most appropriately taught to students who have a basic understanding of the properties of matter and of solutions. Mathematical calculations are intentionally kept to a minimum in this unit and focus is placed on concepts. The overall intent of the unit is to clarify the relationship between changes to the composition of a mixture and the subsequent changes in the eutectic properties of that mixture. Theme: The lesson plans and labs contained in this unit seek to teach and illustrate the concepts associated with the eutectic of both liquid solutions, and glasses The following people have been of great assistance: Professor Louis Hand Professor of Physics.
    [Show full text]
  • Methods for the Determination of the Normal Boiling Point of a High
    Metalworking Fluids & VOC, Today and Tomorrow A Joint Symposium by SCAQMD & ILMA South Coast Air Quality Management District Diamond Bar, CA, USA March 8, 2012 Understanding & Determining the Normal Boiling Point of a High Boiling Liquid Presentation Outline • Relationship of Vapor Pressure to Temperature • Examples of VP/T Curves • Calculation of Airborne Vapor Concentration • Binary Systems • Relative Volatility as a function of Temperature • GC Data and Volatility • Everything Needs a Correlation • Conclusions Vapor Pressure Models (pure vapor over pure liquid) Correlative: • Clapeyron: Log(P) = A/T + B • Antoine: Log(P) = A/(T-C) + B • Riedel: LogP = A/T + B + Clog(T) + DTE Predictive: • ACD Group Additive Methods • Riedel: LogP = A/T + B + Clog(T) + DTE Coefficients defined, Reduced T = T/Tc • Variations: Frost-Kalkwarf-Thodos, etc. Two Parameters: Log(P) = A/T + B Vaporization as an CH OH(l) CH OH(g) activated process 3 3 G = -RTln(K) = -RTln(P) K = [CH3OH(g)]/[CH3OH(l)] G = H - TS [CH3OH(g)] = partial P ln(P) = -G/RT [CH3OH(l)] = 1 (pure liquid) ln(P) = -H/RT+ S/R K = P S/R = B ln(P) = ln(K) H/R = -A Vapor pressure Measurement: Direct versus Distillation • Direct vapor pressure measurement (e.g., isoteniscope) requires pure material while distillation based determination can employ a middle cut with a relatively high purity. Distillation allows for extrapolation and/or interpolation of data to approximate VP. • Direct vapor pressure measurement requires multiple freeze-thaw cycles to remove atmospheric gases while distillation (especially atmospheric distillation) purges atmospheric gases as part of the process. • Direct measurement OK for “volatile materials” (normal BP < 100 oC) but involved for “high boilers” (normal BP > 100 oC).
    [Show full text]
  • Liquid Equilibrium Measurements in Binary Polar Systems
    DIPLOMA THESIS VAPOR – LIQUID EQUILIBRIUM MEASUREMENTS IN BINARY POLAR SYSTEMS Supervisors: Univ. Prof. Dipl.-Ing. Dr. Anton Friedl Associate Prof. Epaminondas Voutsas Antonia Ilia Vienna 2016 Acknowledgements First of all I wish to thank Doctor Walter Wukovits for his guidance through the whole project, great assistance and valuable suggestions for my work. I have completed this thesis with his patience, persistence and encouragement. Secondly, I would like to thank Professor Anton Friedl for giving me the opportunity to work in TU Wien and collaborate with him and his group for this project. I am thankful for his trust from the beginning until the end and his support during all this period. Also, I wish to thank for his readiness to help and support Professor Epaminondas Voutsas, who gave me the opportunity to carry out this thesis in TU Wien, and his valuable suggestions and recommendations all along the experimental work and calculations. Additionally, I would like to thank everybody at the office and laboratory at TU Wien for their comprehension and selfless help for everything I needed. Furthermore, I wish to thank Mersiha Gozid and all the students of Chemical Engineering Summer School for their contribution of data, notices, questions and solutions during my experimental work. And finally, I would like to thank my family and friends for their endless support and for the inspiration and encouragement to pursue my goals and dreams. Abstract An experimental study was conducted in order to investigate the vapor – liquid equilibrium of binary mixtures of Ethanol – Butan-2-ol, Methanol – Ethanol, Methanol – Butan-2-ol, Ethanol – Water, Methanol – Water, Acetone – Ethanol and Acetone – Butan-2-ol at ambient pressure using the dynamic apparatus Labodest VLE 602.
    [Show full text]
  • Vapor-Liquid Equilibrium Data and Other Physical Properties of the Ternary System Ethanol, Glycerine, and Water
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 1936 Vapor-liquid equilibrium data and other physical properties of the ternary system ethanol, glycerine, and water Charles H. Watkins 1913-2004 University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Chemical Engineering Commons Recommended Citation Watkins, Charles H. 1913-2004, "Vapor-liquid equilibrium data and other physical properties of the ternary system ethanol, glycerine, and water" (1936). Electronic Theses and Dissertations. Paper 1940. https://doi.org/10.18297/etd/1940 This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. l •1'1k- UNIVESSITY OF LOUISVILLE VAPOR-LIQUID EQUILIBRImr. DATA AND " OTHER PHYSICAL PROPERTIES OF THE TERNARY SYSTEM ETHANOL, GLYCERINE, AND WATER A Dissertation Submitted to the Faculty Of the Graduate School of the University of Louisville In Partial Fulfillment of the Requirements for the Degree Of Master of Science In Chemical Engineering Department of Chemical Engineering :By c CP.ARLES H. WATK INS 1936 i - J TABLE OF CONTENTS Chapter I Introduotlon-------------------2 II Theoretloal--------------------5 III Apparatue ~ Prooedure----------12 IV Experlnental Mater1ale--~----~---~~-~--~-~~~22 Preparation of Samplee---------22 BpecIflc Reats-----------------30 ~oI11n~ Polnts-----------------34 Vapor rressure-----------------37 Latent Heats-------------------51 Vapor-LiquId EquI1Ibrlum-------53 Freez1ne Points----------------62 V Concluclone--------------------67 VI RIbl1ography-------------------69 J .____ ~~ ___________.
    [Show full text]