Freezing and Boiling Point Changes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Equation of State for Benzene for Temperatures from the Melting Line up to 725 K with Pressures up to 500 Mpa†
High Temperatures-High Pressures, Vol. 41, pp. 81–97 ©2012 Old City Publishing, Inc. Reprints available directly from the publisher Published by license under the OCP Science imprint, Photocopying permitted by license only a member of the Old City Publishing Group Equation of state for benzene for temperatures from the melting line up to 725 K with pressures up to 500 MPa† MONIKA THOL ,1,2,* ERIC W. Lemm ON 2 AND ROLAND SPAN 1 1Thermodynamics, Ruhr-University Bochum, Universitaetsstrasse 150, 44801 Bochum, Germany 2National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA Received: December 23, 2010. Accepted: April 17, 2011. An equation of state (EOS) is presented for the thermodynamic properties of benzene that is valid from the triple point temperature (278.674 K) to 725 K with pressures up to 500 MPa. The equation is expressed in terms of the Helmholtz energy as a function of temperature and density. This for- mulation can be used for the calculation of all thermodynamic properties. Comparisons to experimental data are given to establish the accuracy of the EOS. The approximate uncertainties (k = 2) of properties calculated with the new equation are 0.1% below T = 350 K and 0.2% above T = 350 K for vapor pressure and liquid density, 1% for saturated vapor density, 0.1% for density up to T = 350 K and p = 100 MPa, 0.1 – 0.5% in density above T = 350 K, 1% for the isobaric and saturated heat capaci- ties, and 0.5% in speed of sound. Deviations in the critical region are higher for all properties except vapor pressure. -
Determination of the Identity of an Unknown Liquid Group # My Name the Date My Period Partner #1 Name Partner #2 Name
Determination of the Identity of an unknown liquid Group # My Name The date My period Partner #1 name Partner #2 name Purpose: The purpose of this lab is to determine the identity of an unknown liquid by measuring its density, melting point, boiling point, and solubility in both water and alcohol, and then comparing the results to the values for known substances. Procedure: 1) Density determination Obtain a 10mL sample of the unknown liquid using a graduated cylinder Determine the mass of the 10mL sample Save the sample for further use 2) Melting point determination Set up an ice bath using a 600mL beaker Obtain a ~5mL sample of the unknown liquid in a clean dry test tube Place a thermometer in the test tube with the sample Place the test tube in the ice water bath Watch for signs of crystallization, noting the temperature of the sample when it occurs Save the sample for further use 3) Boiling point determination Set up a hot water bath using a 250mL beaker Begin heating the water in the beaker Obtain a ~10mL sample of the unknown in a clean, dry test tube Add a boiling stone to the test tube with the unknown Open the computer interface software, using a graph and digit display Place the temperature sensor in the test tube so it is in the unknown liquid Record the temperature of the sample in the test tube using the computer interface Watch for signs of boiling, noting the temperature of the unknown Dispose of the sample in the assigned waste container 4) Solubility determination Obtain two small (~1mL) samples of the unknown in two small test tubes Add an equal amount of deionized into one of the samples Add an equal amount of ethanol into the other Mix both samples thoroughly Compare the samples for solubility Dispose of the samples in the assigned waste container Observations: The unknown is a clear, colorless liquid. -
The Basics of Vapor-Liquid Equilibrium (Or Why the Tripoli L2 Tech Question #30 Is Wrong)
The Basics of Vapor-Liquid Equilibrium (Or why the Tripoli L2 tech question #30 is wrong) A question on the Tripoli L2 exam has the wrong answer? Yes, it does. What is this errant question? 30.Above what temperature does pressurized nitrous oxide change to a gas? a. 97°F b. 75°F c. 37°F The correct answer is: d. all of the above. The answer that is considered correct, however, is: a. 97ºF. This is the critical temperature above which N2O is neither a gas nor a liquid; it is a supercritical fluid. To understand what this means and why the correct answer is “all of the above” you have to know a little about the behavior of liquids and gases. Most people know that water boils at 212ºF. Most people also know that when you’re, for instance, boiling an egg in the mountains, you have to boil it longer to fully cook it. The reason for this has to do with the vapor pressure of water. Every liquid wants to vaporize to some extent. The measure of this tendency is known as the vapor pressure and varies as a function of temperature. When the vapor pressure of a liquid reaches the pressure above it, it boils. Until then, it evaporates until the fraction of vapor in the mixture above it is equal to the ratio of the vapor pressure to the total pressure. At that point it is said to be in equilibrium and no further liquid will evaporate. The vapor pressure of water at 212ºF is 14.696 psi – the atmospheric pressure at sea level. -
Liquid-Vapor Equilibrium in a Binary System
Liquid-Vapor Equilibria in Binary Systems1 Purpose The purpose of this experiment is to study a binary liquid-vapor equilibrium of chloroform and acetone. Measurements of liquid and vapor compositions will be made by refractometry. The data will be treated according to equilibrium thermodynamic considerations, which are developed in the theory section. Theory Consider a liquid-gas equilibrium involving more than one species. By definition, an ideal solution is one in which the vapor pressure of a particular component is proportional to the mole fraction of that component in the liquid phase over the entire range of mole fractions. Note that no distinction is made between solute and solvent. The proportionality constant is the vapor pressure of the pure material. Empirically it has been found that in very dilute solutions the vapor pressure of solvent (major component) is proportional to the mole fraction X of the solvent. The proportionality constant is the vapor pressure, po, of the pure solvent. This rule is called Raoult's law: o (1) psolvent = p solvent Xsolvent for Xsolvent = 1 For a truly ideal solution, this law should apply over the entire range of compositions. However, as Xsolvent decreases, a point will generally be reached where the vapor pressure no longer follows the ideal relationship. Similarly, if we consider the solute in an ideal solution, then Eq.(1) should be valid. Experimentally, it is generally found that for dilute real solutions the following relationship is obeyed: psolute=K Xsolute for Xsolute<< 1 (2) where K is a constant but not equal to the vapor pressure of pure solute. -
Pressure Vs Temperature (Boiling Point)
Boiling Points and Vapor Pressure Background Boiling Points and Vapor Pressure Background: Definitions Vapor Pressure: The equilibrium pressure of a vapor above its liquid; the pressure of the vapor resulting from the evaporation of a liquid above a sample of the liquid in a closed container. Boiling Point: The temperature at which the vapor pressure of a liquid is equal to the atmospheric (or applied) pressure. As the temperature of the liquid increases, the vapor pressure will increase, as seen below: https://www.chem.purdue.edu/gchelp/liquids/vpress.html Vapor pressure is interpreted in terms of molecules of liquid converting to the gaseous phase and escaping into the empty space above the liquid. In order for the molecules to escape, the intermolecular forces (Van der Waals, dipole- dipole, and hydrogen bonding) have to be overcome, which requires energy. This energy can come in the form of heat, aka increase in temperature. Due to this relationship between vapor pressure and temperature, the boiling point of a liquid decreases as the atmospheric pressure decreases since there is more room above the liquid for molecules to escape into at lower pressure. The graph below illustrates this relationship using common solvents and some terpenes: Pressure vs Temperature (boiling point) Ethanol Heptane Isopropyl Alcohol B-myrcene 290.0 B-caryophyllene d-Limonene Linalool Pulegone 270.0 250.0 1,8-cineole (eucalyptol) a-pinene a-terpineol terpineol-4-ol 230.0 p-cymene 210.0 190.0 170.0 150.0 130.0 110.0 90.0 Temperature (˚C) Temperature 70.0 50.0 30.0 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 760 10.0 -10.0 -30.0 Pressure (torr) 1 Boiling Points and Vapor Pressure Background As a very general rule of thumb, the boiling point of many liquids will drop about 0.5˚C for a 10mmHg decrease in pressure when operating in the region of 760 mmHg (atmospheric pressure). -
The Magic Motion
The Magic Motion www.wiggens.com Rotary Evaporators Pumps Stirrers Heating Shakers Homogenizers Incubators Gas Generators About WIGGENS Wiggens was established in 2005 with the goal delivering the best laboratory equipment and service for reliable results, since then Wiggens has been producing top-quality general laboratory equipment, our brand Wiggens stands for high quality, durability and remarkable performance. Wiggens is your general laboratory companion and provides products that can be used in all kinds of laboratory environments. The Wiggens product range entails an extensive range of magnetic stirrers, heating mantles and dry baths. Advanced infrared hot plates with integrated stirring functions for an even heat distribution among your solvents are also available, in addition Wiggens also provides overhead stirrers with diverse characteristics to perfectly match the laboratory stirring and blending requirements. A complete range of new products in 2017 including homogenizers of different magnitudes as well as a broad range of shakers, multi-purpose heaters, colony counters. incubators, ovens and shaking incubators for full temperature control. ChemVak is your brand specializing in vacuum technology offering an extensive range of vacuum pumps for all applications, including chemical-resistant diaphragm pumps and oil-free piston pumps, are complemented by vacuum filtration equipment for a wide range of different applications. In addition, water-jet aspirator pumps and bio-suction systems are part of the product range. In 2017, Wiggens launched its whole range gas generators with Vgas product band, the new Vgas product line rounds out our product solutions as a specialist in vacuum and gas related operations. ChemTron is your brand for chemical reaction solutions, Biotron for highly qualified bio-equipment and Vdose specialized in liquid handling pumps, completes the range of brands within the Wiggens family. -
Methods for the Determination of the Normal Boiling Point of a High
Metalworking Fluids & VOC, Today and Tomorrow A Joint Symposium by SCAQMD & ILMA South Coast Air Quality Management District Diamond Bar, CA, USA March 8, 2012 Understanding & Determining the Normal Boiling Point of a High Boiling Liquid Presentation Outline • Relationship of Vapor Pressure to Temperature • Examples of VP/T Curves • Calculation of Airborne Vapor Concentration • Binary Systems • Relative Volatility as a function of Temperature • GC Data and Volatility • Everything Needs a Correlation • Conclusions Vapor Pressure Models (pure vapor over pure liquid) Correlative: • Clapeyron: Log(P) = A/T + B • Antoine: Log(P) = A/(T-C) + B • Riedel: LogP = A/T + B + Clog(T) + DTE Predictive: • ACD Group Additive Methods • Riedel: LogP = A/T + B + Clog(T) + DTE Coefficients defined, Reduced T = T/Tc • Variations: Frost-Kalkwarf-Thodos, etc. Two Parameters: Log(P) = A/T + B Vaporization as an CH OH(l) CH OH(g) activated process 3 3 G = -RTln(K) = -RTln(P) K = [CH3OH(g)]/[CH3OH(l)] G = H - TS [CH3OH(g)] = partial P ln(P) = -G/RT [CH3OH(l)] = 1 (pure liquid) ln(P) = -H/RT+ S/R K = P S/R = B ln(P) = ln(K) H/R = -A Vapor pressure Measurement: Direct versus Distillation • Direct vapor pressure measurement (e.g., isoteniscope) requires pure material while distillation based determination can employ a middle cut with a relatively high purity. Distillation allows for extrapolation and/or interpolation of data to approximate VP. • Direct vapor pressure measurement requires multiple freeze-thaw cycles to remove atmospheric gases while distillation (especially atmospheric distillation) purges atmospheric gases as part of the process. • Direct measurement OK for “volatile materials” (normal BP < 100 oC) but involved for “high boilers” (normal BP > 100 oC). -
Liquid Equilibrium Measurements in Binary Polar Systems
DIPLOMA THESIS VAPOR – LIQUID EQUILIBRIUM MEASUREMENTS IN BINARY POLAR SYSTEMS Supervisors: Univ. Prof. Dipl.-Ing. Dr. Anton Friedl Associate Prof. Epaminondas Voutsas Antonia Ilia Vienna 2016 Acknowledgements First of all I wish to thank Doctor Walter Wukovits for his guidance through the whole project, great assistance and valuable suggestions for my work. I have completed this thesis with his patience, persistence and encouragement. Secondly, I would like to thank Professor Anton Friedl for giving me the opportunity to work in TU Wien and collaborate with him and his group for this project. I am thankful for his trust from the beginning until the end and his support during all this period. Also, I wish to thank for his readiness to help and support Professor Epaminondas Voutsas, who gave me the opportunity to carry out this thesis in TU Wien, and his valuable suggestions and recommendations all along the experimental work and calculations. Additionally, I would like to thank everybody at the office and laboratory at TU Wien for their comprehension and selfless help for everything I needed. Furthermore, I wish to thank Mersiha Gozid and all the students of Chemical Engineering Summer School for their contribution of data, notices, questions and solutions during my experimental work. And finally, I would like to thank my family and friends for their endless support and for the inspiration and encouragement to pursue my goals and dreams. Abstract An experimental study was conducted in order to investigate the vapor – liquid equilibrium of binary mixtures of Ethanol – Butan-2-ol, Methanol – Ethanol, Methanol – Butan-2-ol, Ethanol – Water, Methanol – Water, Acetone – Ethanol and Acetone – Butan-2-ol at ambient pressure using the dynamic apparatus Labodest VLE 602. -
Lab Equipment Do More with OHAUS
Lab Equipment Do More With OHAUS Contents Centrifuges Frontier™ Series ...........................................................................................................................1 Rotors & Accessories .................................................................................................................6 Open Air Shakers Light Duty Orbital Shakers ....................................................................................................25 Extreme Environment Shakers ............................................................................................26 Heavy Duty Orbital Shakers ..................................................................................................27 Rocking & Waving Shakers ....................................................................................................30 Reciprocating Shakers ............................................................................................................32 Incubating & Incubating Cooling Shakers Cooling Thermal Shakers .......................................................................................................33 Light Duty Orbital Shakers ....................................................................................................36 Cooling Orbital Shakers .........................................................................................................37 Rocking & Waving Shakers ....................................................................................................40 Shakers Accessories -
Vapor-Liquid Equilibrium Data and Other Physical Properties of the Ternary System Ethanol, Glycerine, and Water
University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 1936 Vapor-liquid equilibrium data and other physical properties of the ternary system ethanol, glycerine, and water Charles H. Watkins 1913-2004 University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Chemical Engineering Commons Recommended Citation Watkins, Charles H. 1913-2004, "Vapor-liquid equilibrium data and other physical properties of the ternary system ethanol, glycerine, and water" (1936). Electronic Theses and Dissertations. Paper 1940. https://doi.org/10.18297/etd/1940 This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. l •1'1k- UNIVESSITY OF LOUISVILLE VAPOR-LIQUID EQUILIBRImr. DATA AND " OTHER PHYSICAL PROPERTIES OF THE TERNARY SYSTEM ETHANOL, GLYCERINE, AND WATER A Dissertation Submitted to the Faculty Of the Graduate School of the University of Louisville In Partial Fulfillment of the Requirements for the Degree Of Master of Science In Chemical Engineering Department of Chemical Engineering :By c CP.ARLES H. WATK INS 1936 i - J TABLE OF CONTENTS Chapter I Introduotlon-------------------2 II Theoretloal--------------------5 III Apparatue ~ Prooedure----------12 IV Experlnental Mater1ale--~----~---~~-~--~-~~~22 Preparation of Samplee---------22 BpecIflc Reats-----------------30 ~oI11n~ Polnts-----------------34 Vapor rressure-----------------37 Latent Heats-------------------51 Vapor-LiquId EquI1Ibrlum-------53 Freez1ne Points----------------62 V Concluclone--------------------67 VI RIbl1ography-------------------69 J .____ ~~ ___________. -
Procedures Manual
PROCEDURES MANUAL Created: 02/1992 Revised: 06/1992, 11/1993, 06/1994, 10/1994, 10/1996, 10/1999, 10/2000, 06/2007, 05/2008, 11/2008, 06/2009, 06/2010, 07/2011, 06/2012, 11/2012, 06/2013, 06/2014, 06/2015, 06/2016, 06/2017 1 EBAA Procedures Manual –June 2017 TABLE OF CONTENTS A1.000 Introduction and Purpose ..................................................................................................................... 4 B1.000 Active Membership and Accreditation .................................................................................................. 5 C2.000 Training, Certification, and Continuing Education of Personnel Performing Tasks Overseen and/or Regulated by the EBAA, FDA, and Other State/Federal Agencies .................................................... 6 C3.000 Facilities ................................................................................................................................................. 8 C3.100 Eye Bank Laboratory ............................................................................................................... 8 C3.200 Equipment, Maintenance and Cleaning .................................................................................. 9 C3.300 Instruments, Cleaning and Maintenance ............................................................................. 13 C3.400 Procedures Manual ............................................................................................................... 15 C3.600 Infection Control and Personnel Safety .............................................................................. -
Effluent-Monitoring Procedures: Basic Laboratory Skills. Student
I 1 ' DOCU 4ENT. RESUME 0 ED-147 193 SF 023 381 AUTHOR Engel,. William II;.; And Others TITLE Effluent - Monitoring Procedures: Basic Laboratory Skillt. Student NiTtrence tanual., ,INSTITUTJO Environmental ProtectiOrt Agency; Washington, D.C. : Office of Water Programs. REPORT NO EPA-430-1-77-011 PUB DATE' Oct 77 , 40 NOTE 182p.: forrelated documents; see SE 023 177-34'3 EDRS pRicp 111.40.83 C-$10.03 Plus Postage. DESCRIRTORS 0 Chemistry; Enviionmental Edlicrition; *Instructional:- paterials; *Laboratory Equipment; *Laboratory ,Techniques; Microbiology; *Pollution; Tost Secondary 'Education; Skill Development; *Water Pollution Control IDENTIFIERS *Waste hater Treatment ABSTRACT . This%is one of several shoit-ter courseq developed to'assist in the training of waste water treatment plant operational personnel in the tests, measurements,. and report trepairation required for compliance with their NPDES Permits. This Student Reference Manual provides a review of basid mathematics as it applies to the chemical laboratory, The uge of equipment and solution preparation are- stressed. Additionally, a nodule on basic micrObiologicai, techniques is included. EaCh lesson outlines ,a specific objective, description of the aealysis, and the applicatility,of the procedure. Included in this document, are materials related to determining dissolved oxygen, ph, fecal coliform, water flow, suspended 'solid's, and Chlorine., (CS) IL . .. * Documents acquired by.ERIC include many informal unpuillithed * * materials not available from other sources. ERIC sates evety effort *. * to' obtain the liest,popy available. Nivertheleseeitems of marginal''' * * reproducibility are ofteh encountered and'thit affectt the quality * * of the micOfiche and hardco6 reproductions ERIC lakes available *. * via tht ERIC Docnment Reproduction Service (EDRS). ups is not '*; * responsible for the quality of the original, doeument:Reproductions * * supirplied by EDRS.