Tia/Eia-568-B.1-2001

Total Page:16

File Type:pdf, Size:1020Kb

Load more

ANSI/TIA/EIA-568-B.1-2001 Approved: April 12, 2001 TIA/EIA STANDARD B.1 - 568 - Commercial Building TIA/EIA Telecommunications Cabling Standard Part 1: General Requirements TIA/EIA-568-B.1 (Revision of TIA/EIA-568-A) MAY 2001 TELECOMMUNICATIONS INDUSTRY ASSOCIATION The Telecommunications Industry Association represents the communications sector of NOTICE TIA/EIA Engineering Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of TIA/EIA from manufacturing or selling products not conforming to such Standards and Publications, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than TIA/EIA members, whether the standard is to be used either domestically or internationally. Standards and Publications are adopted by TIA/EIA in accordance with the American National Standards Institute (ANSI) patent policy. By such action, TIA/EIA does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the Standard or Publication. This Standard does not purport to address all safety problems associated with its use or all applicable regulatory requirements. It is the responsibility of the user of this Standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations before its use. (From Standards Proposal Nos.4425-B, 4425-B-1 and 4425-B-2, formulated under the cognizance of the TIA TR-42 Committee on User Premises Telecommunications Infrastructure.) Published by ÓTELECOMMUNICATIONS INDUSTRY ASSOCIATION 2001 Standards and Technology Department 2500 Wilson Boulevard Arlington, VA 22201 PRICE: Please refer to current Catalog of EIA ELECTRONIC INDUSTRIES ALLIANCE STANDARDS and ENGINEERING PUBLICATIONS or call Global Engineering Documents, USA and Canada (1-800-854-7179) International (303-397-7956) All rights reserved Printed in U.S.A. PLEASE! DON'T VIOLATE THE LAW! This document is copyrighted by the TIA and may not be reproduced without permission. Organizations may obtain permission to reproduce a limited number of copies through entering into a license agreement. For information, contact: Global Engineering Documents 15 Inverness Way East Englewood, CO 80112-5704 or call U.S.A. and Canada 1-800-854-7179, International (303) 397-7956 TIA/EIA-568-B.1 Commercial Building Telecommunications Cabling Standard; Part 1: General Requirements Table of Contents FOREWORD ........................................................................................................................... vi 1 INTRODUCTION .............................................................................................................. 1 1.1 Purpose ..........................................................................................................................1 1.2 Specification of criteria......................................................................................................1 1.3 Metric equivalents of US customary units ...........................................................................1 1.4 Life of this Standard..........................................................................................................1 1.5 Telecommunications cabling system structure....................................................................2 2 Scope................................................................................................................................. 4 2.1 Normative references ........................................................................................................4 3 DEFINITION OF TERMS, ACRONYMS AND ABBREVIATIONS, AND UNITS OF MEASURE ................................................................................................................................ 6 3.1 General ...........................................................................................................................6 3.2 Definition of terms ............................................................................................................6 3.3 Acronyms and abbreviations............................................................................................11 3.4 Units of measure............................................................................................................12 4 HORIZONTAL CABLING................................................................................................ 14 4.1 General .........................................................................................................................14 4.2 Topology .......................................................................................................................14 4.3 Horizontal distances .......................................................................................................15 4.4 Recognized cables .........................................................................................................16 4.5 Choosing types of cabling ...............................................................................................16 4.6 Grounding considerations................................................................................................17 5 BACKBONE CABLING................................................................................................... 18 5.1 General .........................................................................................................................18 5.2 Topology .......................................................................................................................18 5.2.1 Star topology ..........................................................................................................18 5.2.2 Accommodation of non-star configurations .................................................................19 5.2.3 Cabling directly between telecommunications rooms ..................................................19 5.3 Recognized cables .........................................................................................................20 5.4 Choosing media .............................................................................................................20 5.5 Backbone cabling distances............................................................................................21 5.5.1 Intra and interbuilding distances ................................................................................21 i TIA/EIA-568-B.1 5.5.2 Main cross-connect to entrance facility......................................................................22 5.5.3 Cross-connections...................................................................................................23 5.5.4 Cabling to telecommunications equipment .................................................................23 5.6 Grounding and bonding considerations .............................................................................23 6 WORK AREA................................................................................................................... 24 6.1 General .........................................................................................................................24 6.2 Telecommunications outlet/connector ..............................................................................24 6.2.1 100-Ohm balanced twisted-pair telecommunications outlet/connector...........................24 6.2.2 Optical fiber telecommunications outlet connector ......................................................25 6.3 Work area cords ............................................................................................................25 6.4 Open office cabling.........................................................................................................26 6.4.1 Multi-user telecommunications outlet assembly .........................................................26 6.4.1.1 Application planning..........................................................................................26 6.4.1.2 Installation practices .........................................................................................26 6.4.1.3 Administration ..................................................................................................27 6.4.1.4 Maximum lengths for copper cabling...................................................................27 6.4.1.5 Horizontal distances of optical fiber links (long work area cables)..........................28 6.4.2 Consolidation point ..................................................................................................28 6.4.2.1 Application planning..........................................................................................28 6.4.2.2 Installation practices .........................................................................................29 6.4.2.3 Administration ..................................................................................................29 7 TELECOMMUNICATIONS ROOMS............................................................................. 30 7.1 General .........................................................................................................................30
Recommended publications
  • How to Choose the Right Cable Category

    How to Choose the Right Cable Category

    How to Choose the Right Cable Category Why do I need a different category of cable? Not too long ago, when local area networks were being designed, each work area outlet typically consisted of one Category 3 circuit for voice and one Category 5e circuit for data. Category 3 cables consisted of four loosely twisted pairs of copper conductor under an overall jacket and were tested to 16 megahertz. Category 5e cables, on the other hand, had its four pairs more tightly twisted than the Category 3 and were tested up to 100 megahertz. The design allowed for voice on one circuit and data on the other. As network equipment data rates increased and more network devices were finding their way onto the network, this design quickly became obsolete. Companies wisely began installing all Category 5e circuits with often three or more circuits per work area outlet. Often, all circuits, including voice, were fed off of patch panels. This design allowed information technology managers to use any circuit as either a voice or a data circuit. Overbuilding the system upfront, though it added costs to the original project, ultimately saved money since future cable additions or cable upgrades would cost significantly more after construction than during the original construction phase. By installing all Category 5e cables, they knew their infrastructure would accommodate all their network needs for a number of years and that they would be ready for the next generation of network technology coming down the road. Though a Category 5e cable infrastructure will safely accommodate the widely used 10 and 100 megabit-per-second (Mbits/sec) Ethernet protocols, 10Base-T and 100Base-T respectively, it may not satisfy the needs of the higher performing Ethernet protocol, gigabit Ethernet (1000 Mbits/sec), also referred to as 1000Base-T.
  • 1) What Is the Name of an Ethernet Cable That Contains Two

    1) What Is the Name of an Ethernet Cable That Contains Two

    1) What is the name of an Ethernet cable that contains two electrical conductors ? A coaxial cable 2) What are the names of the two common conditions that degrade the signals on c opper-based cables? Crosstal and attenuation 3) Which topology requires the use of terminators? Bus 4) Which of the following topologies is implemented only logically, not physical ly? Ring 5) How many wire pairs are actually used on a typical UTP Ethernet network? Two 6) What is the name of the process of building a frame around network layer info rmation? Data encapsulation 7) Which of the connectors on a network interface adapter transmits data in para llel? The System bus connector 8) Which two of the following hardware resources do network interface adapters a lways require? I/O port address and IRQ 9) What is the name of the process by which a network interface adapter determin es when it should transmit its data over the network? Media Access Control 10) Which bus type is preferred for a NIC that will be connected to a Fast Ether net network? PCI 11) A passive hub does not do which of the following? Transmit management information using SNMP 12) To connect two Ethernet hubs together, you must do which of the following? Connect the uplink port in one hub to a standard port on the other 13) Which term describes a port in a Token Ring MAU that is not part of the ring ? Intelligent 14) A hub that functions as a repeater inhibits the effect of____________? Attenuation 15) You can use which of the following to connect two Ethernet computers togethe r using UTP
  • Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern

    Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern

    Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model.
  • Modeling and Estimation of Crosstalk Across a Channel with Multiple, Non-Parallel Coupling and Crossings of Multiple Aggressors in Practical PCBS

    Modeling and Estimation of Crosstalk Across a Channel with Multiple, Non-Parallel Coupling and Crossings of Multiple Aggressors in Practical PCBS

    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Fall 2014 Modeling and estimation of crosstalk across a channel with multiple, non-parallel coupling and crossings of multiple aggressors in practical PCBS Arun Reddy Chada Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Electrical and Computer Engineering Commons Department: Electrical and Computer Engineering Recommended Citation Chada, Arun Reddy, "Modeling and estimation of crosstalk across a channel with multiple, non-parallel coupling and crossings of multiple aggressors in practical PCBS" (2014). Doctoral Dissertations. 2338. https://scholarsmine.mst.edu/doctoral_dissertations/2338 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. MODELING AND ESTIMATION OF CROSSTALK ACROSS A CHANNEL WITH MULTIPLE, NON-PARALLEL COUPLING AND CROSSINGS OF MULTIPLE AGGRESSORS IN PRACTICAL PCBS by ARUN REDDY CHADA A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in ELECTRICAL ENGINEERING 2014 Approved Jun Fan, Advisor James L. Drewniak Daryl Beetner Richard E. Dubroff Bhyrav Mutnury 2014 ARUN REDDY CHADA All Rights Reserved iii ABSTRACT In Section 1, the focus is on alleviating the modeling challenges by breaking the overall geometry into small, unique sections and using either a Full-Wave or fast equivalent per-unit-length (Eq. PUL) resistance, inductance, conductance, capacitance (RLGC) method or a partial element equivalent circuit (PEEC) for the broadside coupled traces that cross at an angle.
  • Datacomm Products and Equipment Catalog

    Datacomm Products and Equipment Catalog

    DataComm Products and Equipment Catalog IDEAL DataComm 112060_DataComm08_COVER.indd2060_DataComm08_COVER.indd 2 11/8/08/8/08 99:41:29:41:29 AAMM The way every job should be IDEAL DataComm is dedicated to helping low voltage/datacomm professionals keep networks up and running. The system of products we have thoughtfully crafted ensures the highest-quality terminations with the ease-of-use you would expect from IDEAL. Our DataComm line includes a system solution for paired conductor, coax and fiber optic cabling. www.idealindustries.com Paired Conductor Products Wire Cutters . A-2 A Wire Strippers . .A-2 Crimp Tools . A-4 Punch Down Tools . A-5 Tool and Connector Kits . A-5 Wall Plates . A-9 Cables . .A-10 Connectors . A-10 Coaxial Termination Products Tool Selection Chart . B-2 B Wire Cutters . B-3 Wire Strippers . B-3 Crimp Tools . B-4 Compression Tools . .B-6 Connectors . B-7 Splitters . .B-8 Wall Plates . B-8 Tool and Connector Kits . B-9 BNC Coaxial Connectors . .B-12 Fiber Optic Products Wire Strippers . C-2 C Fiber Optic Accessories . C-3 Table of Contents Table Test Equipment Qualification Testers . .D-2 D Certification Testers . D-4 Hand-Held Testers . D-7 Related Products Resources . E-1 E Multi Media Installation Guide . .E-3 Technical Information . .E-12 Residential Coax Application Guide . .E-13 Index Alphabetical Index . F-1 F Catalog Number Index . F-3 For applicable GSA Contracts — contact IDEAL at 800-947-3614 New Products Mini Coax Stripper Grounding Block Q Adjustable stripper for Q Solid zinc alloy, mini coax cable nickel plated and Page B-3 chromate finished Page B-8 OmniSeal™ Pro Compression Tools Q Compression tools now offer additional features and increased connector Compression Connector compatibility Installation Kit Page B-6 Q Three tools in one handy pouch that clips easily to your belt.
  • Lan.Wiring.Jim.Trulove.Pdf

    Lan.Wiring.Jim.Trulove.Pdf

    LAN Wiring This page intentionally left blank LAN Wiring Third Edition James Trulove McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2006 by James Trulove. All rights reserved. Manufactured in the United States of America. Except as permit- ted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-148345-4 The material in this eBook also appears in the print version of this title: 0-07-145975-8. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use incor- porate training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw- hill.com or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent.
  • KNOW the LINGO – WHAT IS Category CABLE?

    KNOW the LINGO – WHAT IS Category CABLE?

    KNOW THE LINGO – WHAT IS CategoRY CABLE? By: Joseph D. Cornwall, CTS-D Technology Evangelist—Lastar, Inc. Technical lingo is a kind of shorthand that’s used to express concepts common to that specific topic or area of study. Technical lingo is important because it provides a very precise or unique “shorthand” description of a device, effect or concept. Unfortunately, if you aren’t comfortable and familiar with the lingo of a topic it can be a tall hurdle to communicate efficiently with folks who consider the jargon of their field to be “self-explanatory.” In this series of articles we’ll lift the veils of misunderstanding from the lingo of the A/V industry. WHAT IS A CAT CABLE? The concept of Category cables was first set forth by the Electronic Industries Alliance (EIA) and is now maintained by the Telecommunications Industry Association (TIA). In 1991 the TIA/EIA-568-A standard was released (now revised to TIA/EIA-568-C) in an effort to define standards for telecommunications installations. In particular, the standard worked to define elements of balanced twisted pair cabling, fiber optic cabling and coaxial cabling, along with the associated connectors. The Cat cables discussed here are of the unshielded twisted pair (UTP) variety. You can’t be in the A/V or IT industry and not have heard of Cat5e and Cat6 cables. The Cat, as you might know, is short for “Category.” The term “Category” refers to the different levels of performance in signal bandwidth, attenuation and crosstalk associated with each cable’s design.
  • Federal Communications Commission FCC 98-221 Federal

    Federal Communications Commission FCC 98-221 Federal

    Federal Communications Commission FCC 98-221 Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) 1998 Biennial Regulatory Review -- ) Modifications to Signal Power ) Limitations Contained in Part 68 ) CC Docket No. 98-163 of the Commission's Rules ) ) ) ) ) NOTICE OF PROPOSED RULEMAKING Adopted: September 8, 1998 Released: September 16, 1998 Comment Date: 30 days from date of publication in the Federal Register Reply Comment Date: 45 days from date of publication in the Federal Register By the Commission: Commissioner Furchtgott-Roth issuing a separate statement. I. INTRODUCTION 1. In this proceeding, we seek to make it possible for customers to download data from the Internet more quickly. Our proposal, if adopted, could somewhat improve the transmission rates experienced by persons using high speed digital information products, such as 56 kilobits per second (kbps) modems, to download data from the Internet. Currently, our rules limiting the amount of signal power that can be transmitted over telephone lines prohibit such products from operating at their full potential. We believe these signal power limitations can be relaxed without causing interference or other technical problems. Therefore, we propose to relax the signal power limitations contained in Part 68 of our rules and explore the benefits and harms, if any, that may result from this change. This change would allow Pulse Code Modulation (PCM) modems, which are used by Internet Service Providers (ISPs) and other online information service providers to transmit data to consumers, to operate at higher signal powers. This modification will allow ISPs and other online information service providers to transmit data at moderately higher speeds to end-users.
  • Zerox Algorithms with Free Crosstalk in Optical Multistage Interconnection Network

    Zerox Algorithms with Free Crosstalk in Optical Multistage Interconnection Network

    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 4, No. 2, 2013 ZeroX Algorithms with Free crosstalk in Optical Multistage Interconnection Network M.A.Al-Shabi Department of Information Technology, College of Computer, Qassim University, KSA. Abstract— Multistage interconnection networks (MINs) have is on the time dilation approach to solve the optical crosstalk been proposed as interconnecting structures in various types of problem in the omega networks, a class of self-routable communication applications ranging from parallel systems, networks, which is topologically equivalent to the baseline, switching architectures, to multicore systems and advances. butterfly, cube networks et[10]. The time dilation approach Optical technologies have drawn the interest for optical solves the crosstalk problem by ensuring that only one signal is implementation in MINs to achieve high bandwidth capacity at allowed to pass through each switching element at a given time the rate of terabits per second. Crosstalk is the major problem in the network [11][12]. Typical MINs consist of N inputs, N with optical interconnections; it not only degrades the outputs and n stages with n=log N. Each stage is numbered performance of network but also disturbs the path of from 0 to (n-1), from left to right and has N/2 Switching communication signals. To avoid crosstalk in Optical MINs many Elements (SE). Each SE has two inputs and two outputs algorithms have been proposed by many researchers and some of the researchers suppose some solution to improve Zero connected in a certain pattern. Algorithm. This paper will be illustrated that is no any crosstalk The critical challenges with optical multistage appears in Zero based algorithms (ZeroX, ZeroY and ZeroXY) in interconnections are optical loss, path dependent loss and using refine and unique case functions.
  • Twisted-Pair Cable • UTP—Unshielded Twisted-Pair • STP—Shielded Twisted-Pair

    Twisted-Pair Cable • UTP—Unshielded Twisted-Pair • STP—Shielded Twisted-Pair

    The NIC must match the Address/Data Bus of the computer. ISA PCI 55 Installing the NIC in the computer. • NIC installed inside the computer. • Normally plugs into a bus slot. • Some are built right into the motherboard. • Plug-in boards must be configured correctly. 56 NIC Configuration Methods • Plug-and-Play • EEPROM • Jumper pins 57 Preparing to Install the NIC • Ensure there is an open bus slot. • Ensure the adapter is compatible. • Ensure there are system resources available. • Ensure all installation items are available. • Ensure all software is available. 58 Installing the NIC Hardware • Configure the NIC to available resources. • Use a ground strap. • Remove cover from the computer. • Remove rear panel slot cover plate. • Remove card from its antistatic bag and immediately plug it into motherboard. • Secure card slot cover plate to computer.59 Installing the NIC Software • Loading the device driver used by the NIC. • Loading any utilities supplied with the NIC. 60 NIC Device Driver • Supports communication between the NIC and OS. • Automatically installed and configured if both NIC and OS support PnP. • In other cases, driver loaded from floppy or CD supplied with NIC. 61 A more recent device driver may be available at the website of the NIC manufacturer. 62 Troubleshooting the NIC • Is NIC talking to the motherboard? • Is the NIC working internally? • Is the NIC communicating with the external network? 63 LEDs Link Activity 64 Twisted-Pair Cable • UTP—Unshielded Twisted-Pair • STP—Shielded Twisted-Pair 65 Twisted-Pair Cable Foil Foil Shield Wire Shield Braid Shield STP UTP STP 66 10BaseT Ethernet uses Unshielded Twisted Pair (UTP) cable.
  • WP Demystifyingcble B 5/19/11 9:49 AM Page 2

    WP Demystifyingcble B 5/19/11 9:49 AM Page 2

    WP_DeMystifyingCble_F (US)_WP_DeMystifyingCble_B 5/19/11 9:49 AM Page 2 FROM 5e TO 7A De-Mystifying Cabling Specifications – From 5e to 7A tructured cabling standards specify generic installation and design topologies that are characterized by a S“category” or “class” of transmission performance. These cabling standards are subsequently referenced in applications standards, developed by committees such as IEEE and ATM, as a minimum level of performance necessary to ensure application operation. There are many advantages to be realized by specifying standards-compliant structured cabling. These include the assurance of applications operation, the flexibility of cable and connectivity choices that are backward compatible and interoperable, and a structured cabling design and topology that is universally recognized by cabling professionals responsible for managing cabling additions, upgrades, and changes. CONNECTING THE WORLD TO A HIGHER STANDARD WWW. SIEMON. COM WP_DeMystifyingCble_F (US)_WP_DeMystifyingCble_B 5/19/11 9:49 AM Page 3 FROM 5e TO 7A The Telecommunications Industry Association (TIA) and International Standard for Organization (ISO) commit- tees are the leaders in the development of structured cabling standards. Committee members work hand-in-hand with applications development committees to ensure that new grades of cabling will support the latest innovations in signal transmission technology. TIA Standards are often specified by North American end-users, while ISO Standards are more commonly referred to in the global marketplace. In addition to TIA and ISO, there are often regional cabling standards groups such as JSA/JSI (Japanese Standards Association), CSA (Canadian Standards Association), and CENELEC (European Committee for Electrotechnical Standardization) developing local specifications. These regional cabling standards groups contribute actively to their country’s ISO technical advisory committees and the contents of their Standards are usually very much in harmony with TIA and ISO requirements.
  • Certified Data Cabling Installer (DCI) Competency Requirements

    Certified Data Cabling Installer (DCI) Competency Requirements

    Certified Data Cabling Installer (DCI) Competency Requirements Data Cabling Installers (DCI) are expected to obtain knowledge of basic concepts of copper cabling installation and service, which are then applicable to all the functions required to safely and competently install communications cabling and low voltage premises cabling. Network cabling has many options now and is being used for many applications in addition to data. Copper cabling is also combined with other media applications to create these networks. Once a DCI has acquired these skills, abilities and knowledge and with minimal training, the DCI should be able to enter employment in the telecommunications cabling field. Data Cabling Installers must be knowledgeable and have abilities in the following technical areas: 1.0 SAFETY 1.1 Describe the various forms of personal protective equipment (PPE) that data cabling technicians have at their disposal 1.2 Explain the safety best practices associated with the work area 1.3 Provide an overview of emergency response information and techniques for the workplace that can be found in Material Safety Data Sheets (MSDS or SDS) described in the Hazard Communication Standard (HCS) (29 CFR 1910.1200(g)), revised in 2012, and detailed in Appendix D of 29 CFR 1910.1200 2.0 BASIC ELECTRICITY 2.1 Describe the relationships between voltage, current, resistance and power 2.2 Identify components called resistors and also non-component types of resistance in cabling technology 2.3 Use Ohm’s law to calculate power usage and power losses in cabling