Vertical and Latitudinal Distribution of Lottia Scabra and Lottia Conus ______

Total Page:16

File Type:pdf, Size:1020Kb

Vertical and Latitudinal Distribution of Lottia Scabra and Lottia Conus ______ VERTICAL AND LATITUDINAL DISTRIBUTION OF LOTTIA SCABRA AND LOTTIA CONUS ____________________________________ A Thesis Presented to the Faculty of California State University, Fullerton ____________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology ____________________________________ By Kimberly Marie Coombs Thesis Committee Approval: Douglas J. Eernisse, Department of Biological Science, Chair Danielle C. Zacherl, Department of Biological Science Ryan P. Walter, Department of Biological Science Fall, 2017 ABSTRACT Cryptic species can often cause problems for baseline and ecological studies as these species are not readily identified in the field. Lottia scabra and Lottia conus form a north/south cryptic species pair where they occupy the same habitat, but L. scabra is more abundant in northern California and L. conus is more abundant in at least the southern portions of southern California. Past El Nino events have resulted in prolonged anomalous warming of coastal seawater, which may be impacting the vertical and latitudinal distribution of these two species as has been documented for another north/south pair in California, L. austrodigitalis and L. digitalis. To monitor the current and potentially changing distribution of L. conus and L. scabra, quadrat sampling was performed at nine sites in California at various heights in the mid to high intertidal, collecting a subset of limpets to identify in the lab. A range refinement of L. conus has occurred with its previous documented northern limit being Point Conception to now its current northern limit being Jalama Beach, CA. A transition zone occurs from San Pedro to Jalama Beach where L. conus becomes less abundant and L. scabra becomes more abundant. With an established baseline, future studies may document whether this distribution changes in response to temperature variations from climate change or El Nino events. Susceptibility to temperature changes may make limpets good indicator species for detecting regional climate change effects in the intertidal as well as potential model species for future studies to use when observing rocky intertidal habitats. ii TABLE OF CONTENTS ABSTRACT .................................................................................................................. ii LIST OF TABLES ........................................................................................................ iv LIST OF FIGURES ...................................................................................................... v ACKNOWLEDGEMENTS .......................................................................................... vi Chapter 1. INTRODUCTION ............................................................................................... 1 2. METHODS .......................................................................................................... 10 Collection Sites .................................................................................................... 10 Identification ........................................................................................................ 11 Field Sampling ..................................................................................................... 14 Shell Length ......................................................................................................... 15 Shell Volume ....................................................................................................... 16 3. RESULTS ............................................................................................................ 17 Species Proportion and Distribution .................................................................... 17 Density ................................................................................................................. 18 Shell Length and Volume .................................................................................... 20 4. DISCUSSION ...................................................................................................... 26 APPENDICES .............................................................................................................. 43 A. LENGTH AND VOLUME RELATIONSHIP ............................................... 43 B. STUDIED SPECIMENS ................................................................................. 47 REFERENCES ............................................................................................................. 61 iii LIST OF TABLES Table Page 1. Summary of the Total Limpet Densities (# of Limpets/m2 ± SE) of L. scabra and L. conus by Zone and Site ............................................................. 20 iv LIST OF FIGURES Table Page 1. Genetic species identification PCR gel image ..................................................... 13 2. Map of collection sites with species proportions ................................................. 19 3. Lottia scabra high zone length histogram ........................................................... 22 4. Lottia scabra low zone length histogram............................................................. 23 5. Lottia conus high zone length histogram ............................................................. 24 6. Lottia scabra high zone length histogram ........................................................... 25 7. California sea surface temperature in April ......................................................... 34 8. California sea surface temperature in September ................................................ 34 9. Average California aerial temperatures ............................................................... 35 v ACKNOWLEDGEMENTS I would like to thank Douglas Eernisse for accepting me into his lab and supporting me on this project, Danielle Zacherl and Ryan Walter for their support and being on my committee, Christina Burdi for designing the species-specific primers, and the rest of the Eernisse lab for their continued support. I would also like to thank Douglas and Susan Coombs who not only made it possible for me to attain a graduate degree, but who continue to support me on my path as a researcher. I greatly appreciate the funds from a National Science Foundation grant DEB-1355230 to Douglas Eernisse, California State University Fullerton Department of Biological Science, and the Western Society of Malacologists provided in order to conduct this research. vi 1 CHAPTER 1 INTRODUCTION Cryptic species, which are difficult to distinguish based upon morphological characteristics, often require genetic testing for accurate identification (Knowlton 1993; Rocha-Olivares et al. 2004). Cryptic species pose a significant problem for baseline and ecological studies as well as monitoring species diversity and enforcing species conservation and management practices (Knowlton 1993; Sagarin et al. 1999; Geller 1999; Hewitt and Martin 2001; Rocha-Olivares et al. 2004; Wares and Castaneda 2005; Bickford 2006; Burdi 2015). For instance, habitats heavily impacted by pollutants may result in changes in species populations as a result of differences in species pollution tolerance level. Several cryptic species are known to inhabit polluted environments; therefore, if changes result in reductions of a cryptic species that has yet to be accurately identified as a separate species, such reductions might be incorrectly characterized as genotypic selection by researchers or conservation managers, when in fact it would be a loss in genetic diversity that could have larger detrimental impacts for that environment (Rocha-Olivares et al. 2004). Being unable to accurately identify cryptic species inhibits the ability to study them and their habitats, conserve them, and potentially use them as indicator species for environmental change (Bickford 2006). Environmental change, such as increases in temperature due to climate change, El Nino events, and habitat degradation, can result in shifts in cryptic species distributions, 2 especially those that have similar ranges or occupy the same habitat, potentially making these species excellent indicator species. For example, Chthamalus fissus, a cryptic barnacle species with C. dalli, experienced a northward range expansion along the coast of California in response to increased seawater temperature (Barry et al. 1995; Wares and Castaneda 2005). This expansion may cause these cryptic species to be good indicators of environmental change in the rocky intertidal, especially if the southern species, C. fissus, continues to expand its range northward due to increases in temperature and if there is a correlated reduction in the southward range of C. dalli. Shifts in cryptic species distributions in response to environmental change could further impact any ecological interactions between them, especially if cryptic species compete for similar resources in their environment. For instance, Mytilus galloprovincialis, a cryptic mussel species with M. trossulus, competes with M. trossulus for similar resources in their environment along the coast of California. Due to this competition, M. galloprovincialis outcompeted M. trossulus at many sites where they co-occur resulting in a decline of the population of M. trossulus (Geller 1999). Thus, cryptic species in competition with one another could result in a reduction or even a loss of a species at a particular site or area within a site, leading perhaps to negative cascading effects for that environment (Harger
Recommended publications
  • Black Oystercatcher Diet and Provisioning 2014 Annual Report
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Black Oystercatcher Chick Diet and Provisioning 2014 Annual Report Natural Resource Data Series NPS/KEFJ/NRDS—2015/749 ON THIS PAGE Nest camera captures a black oystercatcher provisioning chick on Natoa Island. Photograph Courtesy: NPS/Kenai Fjords National Park ON THE COVER Black oystercatchers at nest in Aialik Bay, Kenai Fjords National Park Photograph by: NPS/Katie Thoresen Black Oystercatcher Diet and Provisioning 2014 Annual Report Natural Resource Data Series NPS/KEFJ/NRDS—2015/749 Sam Stark1, Brian Robinson2 and Laura M. Phillips1 1National Park Service Kenai Fjords National Park PO Box 1727 Seward, AK 99664 2 University of Alaska, Fairbanks Department of Biology and Wildlife PO Box 756100 Fairbanks, AK 99775 January 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Appendix 1 Table A1
    OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S.
    [Show full text]
  • Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
    Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs.
    [Show full text]
  • BIO 313 ANIMAL ECOLOGY Corrected
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment).
    [Show full text]
  • JMS 70 1 031-041 Eyh003 FINAL
    PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north­ eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo­ logical events and the fossil record to determine a reference date.
    [Show full text]
  • Xoimi AMERICAN COXCIIOLOGY
    S31ITnS0NIAN MISCEllANEOUS COLLECTIOXS. BIBLIOGIIAPHY XOimi AMERICAN COXCIIOLOGY TREVIOUS TO THE YEAR 18G0. PREPARED FOR THE SMITHSONIAN INSTITUTION BY . W. G. BINNEY. PART II. FOKEIGN AUTHORS. WASHINGTON: SMITHSONIAN INSTITUTION. JUNE, 1864. : ADYERTISEMENT, The first part of the Bibliography of American Conchology, prepared for the Smithsonian Institution by Mr. Binuey, was published in March, 1863, and embraced the references to de- scriptions of shells by American authors. The second part of the same work is herewith presented to the public, and relates to species of North American shells referred to by European authors. In foreign works binomial authors alone have been quoted, and no species mentioned which is not referred to North America or some specified locality of it. The third part (in an advanced stage of preparation) will in- clude the General Index of Authors, the Index of Generic and Specific names, and a History of American Conchology, together with any additional references belonging to Part I and II, that may be met with. JOSEPH HENRY, Secretary S. I. Washington, June, 1864. (" ) PHILADELPHIA COLLINS, PRINTER. CO]^TENTS. Advertisement ii 4 PART II.—FOREIGN AUTHORS. Titles of Works and Articles published by Foreign Authors . 1 Appendix II to Part I, Section A 271 Appendix III to Part I, Section C 281 287 Appendix IV .......... • Index of Authors in Part II 295 Errata ' 306 (iii ) PART II. FOEEIGN AUTHORS. ( V ) BIBLIOGRxVPHY NOETH AMERICAN CONCHOLOGY. PART II. Pllipps.—A Voyage towards the North Pole, &c. : by CON- STANTiNE John Phipps. Loudou, ITTJc. Pa. BIBLIOGRAPHY OF [part II. FaliricillS.—Fauna Grcenlandica—systematice sistens ani- malia GrcEulandite occidentalis liactenus iudagata, &c., secun dum proprias observatioues Othonis Fabricii.
    [Show full text]
  • Joseph Heller a Natural History Illustrator: Tuvia Kurz
    Joseph Heller Sea Snails A natural history Illustrator: Tuvia Kurz Sea Snails Joseph Heller Sea Snails A natural history Illustrator: Tuvia Kurz Joseph Heller Evolution, Systematics and Ecology The Hebrew University of Jerusalem Jerusalem , Israel ISBN 978-3-319-15451-0 ISBN 978-3-319-15452-7 (eBook) DOI 10.1007/978-3-319-15452-7 Library of Congress Control Number: 2015941284 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Contents Part I A Background 1 What Is a Mollusc? ................................................................................
    [Show full text]
  • Seashore Beaty Box #007) Adaptations Lesson Plan and Specimen Information
    Table of Contents (Seashore Beaty Box #007) Adaptations lesson plan and specimen information ..................................................................... 27 Welcome to the Seashore Beaty Box (007)! .................................................................................. 28 Theme ................................................................................................................................................... 28 How can I integrate the Beaty Box into my curriculum? .......................................................... 28 Curriculum Links to the Adaptations Lesson Plan ......................................................................... 29 Science Curriculum (K-9) ................................................................................................................ 29 Science Curriculum (10-12 Drafts 2017) ...................................................................................... 30 Photos: Unpacking Your Beaty Box .................................................................................................... 31 Tray 1: ..................................................................................................................................................... 31 Tray 2: .................................................................................................................................................... 31 Tray 3: ..................................................................................................................................................
    [Show full text]
  • The Behavioral Ecology and Territoriality of the Owl Limpet, Lottia Gigantea
    THE BEHAVIORAL ECOLOGY AND TERRITORIALITY OF THE OWL LIMPET, LOTTIA GIGANTEA by STEPHANIE LYNN SCHROEDER A DISSERTATION Presented to the Department of Biology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy March 2011 DISSERTATION APPROVAL PAGE Student: Stephanie Lynn Schroeder Title: The Behavioral Ecology and Territoriality of the Owl Limpet, Lottia gigantea This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Biology by: Barbara (“Bitty”) Roy Chairperson Alan Shanks Advisor Craig Young Member Mark Hixon Member Frances White Outside Member and Richard Linton Vice President for Research and Graduate Studies/Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded March 2011 ii © 2011 Stephanie Lynn Schroeder iii DISSERTATION ABSTRACT Stephanie Lynn Schroeder Doctor of Philosophy Department of Biology March 2011 Title: The Behavioral Ecology and Territoriality of the Owl Limpet, Lottia gigantea Approved: _______________________________________________ Dr. Alan Shanks Territoriality, defined as an animal or group of animals defending an area, is thought to have evolved as a means to acquire limited resources such as food, nest sites, or mates. Most studies of territoriality have focused on vertebrates, which have large territories and even larger home ranges. While there are many models used to examine territories and territorial interactions, testing the models is limited by the logistics of working with the typical model organisms, vertebrates, and their large territories. An ideal organism for the experimental examination of territoriality would exhibit clear territorial behavior in the field and laboratory, would be easy to maintain in the laboratory, defend a small territory, and have movements and social interactions that were easily followed.
    [Show full text]
  • From the Middle Miocene of Paratethys
    Acta Geologica Polonica, Vol. 57 (2007), No. 3, pp. 343-376 Minute patellogastropods (Mollusca, Lottiidae) from the Middle Miocene of Paratethys OLGA ANISTRATENKO1, 3 & VITALIY ANISTRATENKO2, 3 1Institute of Geological Sciences of National Academy of Sciences of the Ukraine, O. Gontchara Str., 55-b, UA-01601, Kiev, Ukraine 2I. I. Schmalhausen Institute of Zoology of National Academy of Sciences of the Ukraine, B. Khmelnitsky Str., 15, UA-01601, Kiev, Ukraine 3Institute of Geological Sciences of Polish Academy of Sciences, Geological Museum, Senacka Str., 1, PL-32-002, Kraków, Poland. E-mails: [email protected], [email protected] ABSTRACT: ANISTRATENKO O. & ANISTRATENKO, V. 2007. Minute patellogastropods (Mollusca, Lottiidae) from the Middle Miocene of Paratethys. Acta Geologica Polonica, 57 (3), 343-376. Warszawa. The protoconch and teleoconch morphology of lottiid patellogastropods that inhabited the Central and Eastern Paratethys in the Badenian and Sarmatian are described and illustrated. Eleven species belong- ing to the genera Tectura, Blinia, Flexitectura and Squamitectura are considered as valid: Tectura laeviga- ta (EICHWALD, 1830), T. compressiuscula (EICHWALD, 1830), T. zboroviensis FRIEDBERG, 1928, T. incogni- ta FRIEDBERG, 1928, Blinia angulata (D’ORBIGNY, 1844), B. pseudolaevigata (SINZOV, 1892), B. reussi (SINZOV, 1892), B. sinzovi (KOLESNIKOV, 1935), Flexitectura subcostata (SINZOV, 1892), F. tenuissima (SINZOV, 1892), and Squamitectura squamata (O. ANISTRATENKO, 2001). The type material of species introduced by W. FRIEDBERG (1928) is revised and lectotypes are designated for T. zboroviensis and T. incognita. The taxonomic status and position of this group of species is discussed. Data on palaeogeo- graphic and stratigraphic distribution, variability and the relationships of Middle Miocene Lottiidae GRAY, 1840 are presented.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Version of the Manuscript
    Accepted Manuscript Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary charac- teristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia, Claudio A. González-Wevar, Elie Poulin, Leyla Cardenas PII: S1055-7903(17)30583-3 DOI: https://doi.org/10.1016/j.ympev.2018.10.036 Reference: YMPEV 6324 To appear in: Molecular Phylogenetics and Evolution Received Date: 15 August 2017 Revised Date: 23 July 2018 Accepted Date: 30 October 2018 Please cite this article as: Gaitán-Espitia, J.D., González-Wevar, C.A., Poulin, E., Cardenas, L., Antarctic and sub- Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda, Molecular Phylogenetics and Evolution (2018), doi: https://doi.org/10.1016/j.ympev.2018.10.036 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Version: 23-07-2018 SHORT COMMUNICATION Running head: mitogenomes Nacella limpets Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia1,2,3*; Claudio A. González-Wevar4,5; Elie Poulin5 & Leyla Cardenas3 1 The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China 2 CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart 7001, TAS, Australia.
    [Show full text]