Mouse Tmem150a Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Tmem150a Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Tmem150a Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Tmem150a conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tmem150a gene (NCBI Reference Sequence: NM_144916 ; Ensembl: ENSMUSG00000055912 ) is located on Mouse chromosome 6. 8 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 8 (Transcript: ENSMUST00000069695). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Tmem150a gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-180D9 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 100% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 586 bp, and the size of intron 2 for 3'-loxP site insertion: 409 bp. The size of effective cKO region: ~519 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 4 5 6 8 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Homology arm Exon of mouse Tmem150a cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(6973bp) | A(22.59% 1575) | C(27.79% 1938) | T(24.31% 1695) | G(25.31% 1765) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr6 + 72352999 72355998 3000 browser details YourSeq 60 814 981 3000 94.3% chr17 + 67871036 67871282 247 browser details YourSeq 49 797 846 3000 100.0% chr13 - 52314281 52314338 58 browser details YourSeq 44 715 990 3000 94.2% chr11 - 87043485 87043761 277 browser details YourSeq 41 808 861 3000 78.6% chr1 + 127696904 127696945 42 browser details YourSeq 40 717 763 3000 95.6% chr17 + 88966729 88966797 69 browser details YourSeq 36 645 744 3000 87.5% chr11 - 53522474 53522571 98 browser details YourSeq 35 710 748 3000 94.9% chr8 + 117861946 117861984 39 browser details YourSeq 33 710 744 3000 97.2% chr1 - 185430239 185430273 35 browser details YourSeq 33 717 752 3000 97.3% chr11 + 118322440 118322477 38 browser details YourSeq 32 964 1007 3000 88.9% chr11 - 50657950 50657992 43 browser details YourSeq 30 710 743 3000 94.2% chr17 + 46055038 46055071 34 browser details YourSeq 28 717 744 3000 100.0% chr3 - 152403479 152403506 28 browser details YourSeq 28 710 741 3000 93.8% chr2 - 170113820 170113851 32 browser details YourSeq 27 963 989 3000 100.0% chr2 - 170189980 170190006 27 browser details YourSeq 27 963 1004 3000 83.9% chr10 - 99309630 99309669 40 browser details YourSeq 27 718 744 3000 100.0% chr3 + 90473210 90473236 27 browser details YourSeq 27 718 744 3000 100.0% chr2 + 31526251 31526277 27 browser details YourSeq 27 717 743 3000 100.0% chr10 + 61565396 61565422 27 browser details YourSeq 26 965 990 3000 100.0% chr8 - 45608691 45608716 26 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr6 + 72356518 72359517 3000 browser details YourSeq 46 882 931 3000 98.0% chr11 + 53814253 53814716 464 browser details YourSeq 39 2414 2461 3000 95.5% chr18 + 76041576 76041653 78 browser details YourSeq 38 882 931 3000 83.7% chr3 - 90520826 90520874 49 browser details YourSeq 37 881 931 3000 86.3% chr3 + 19290119 19290169 51 browser details YourSeq 36 868 931 3000 95.0% chr7 + 123083057 123083130 74 browser details YourSeq 36 895 982 3000 81.3% chr1 + 119576491 119576576 86 browser details YourSeq 35 881 931 3000 84.4% chr6 + 87450051 87450101 51 browser details YourSeq 34 898 931 3000 100.0% chrX + 53365807 53365840 34 browser details YourSeq 31 881 920 3000 94.5% chr13 + 49293697 49293736 40 browser details YourSeq 30 881 931 3000 96.9% chr8 + 3210160 3210211 52 browser details YourSeq 30 881 925 3000 88.3% chr11 + 32271541 32271584 44 browser details YourSeq 30 881 931 3000 90.7% chr10 + 69148444 69148493 50 browser details YourSeq 29 900 930 3000 96.8% chr8 - 115128861 115128891 31 browser details YourSeq 29 901 931 3000 96.8% chr7 + 65468456 65468486 31 browser details YourSeq 25 430 461 3000 96.3% chr3 - 136533653 136533686 34 browser details YourSeq 25 905 931 3000 96.3% chr19 - 46389691 46389717 27 browser details YourSeq 24 904 931 3000 92.9% chr11 + 12689249 12689276 28 browser details YourSeq 23 903 933 3000 87.1% chr1 + 157176956 157176986 31 browser details YourSeq 20 900 931 3000 81.3% chr2 + 84713700 84713731 32 Note: The 3000 bp section downstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Tmem150a transmembrane protein 150A [ Mus musculus (house mouse) ] Gene ID: 232086, updated on 12-Aug-2019 Gene summary Official Symbol Tmem150a provided by MGI Official Full Name transmembrane protein 150A provided by MGI Primary source MGI:MGI:2385244 See related Ensembl:ENSMUSG00000055912 Gene type protein coding RefSeq status PROVISIONAL Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Tmem150; BC014685 Expression Broad expression in placenta adult (RPKM 123.6), liver adult (RPKM 91.9) and 23 other tissues See more Orthologs human all Genomic context Location: 6; 6 C1 See Tmem150a in Genome Data Viewer Exon count: 8 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 6 NC_000072.6 (72355483..72359762) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 6 NC_000072.5 (72305477..72309756) Chromosome 6 - NC_000072.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 5 transcripts Gene: Tmem150a ENSMUSG00000055912 Description transmembrane protein 150A [Source:MGI Symbol;Acc:MGI:2385244] Gene Synonyms Tmem150 Location Chromosome 6: 72,355,447-72,359,762 forward strand. GRCm38:CM000999.2 View alleles of this gene on alternative sequences About this gene This gene has 5 transcripts (splice variants), 1 gene allele, 174 orthologues, 4 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Tmem150a- ENSMUST00000069695.8 1546 271aa ENSMUSP00000063977.2 Protein CCDS20239 Q91WN2 TSL:1 201 coding GENCODE basic APPRIS P1 Tmem150a- ENSMUST00000132243.2 1478 168aa ENSMUSP00000138445.1 Protein - S4R204 TSL:5 202 coding GENCODE basic Tmem150a- ENSMUST00000206531.1 544 174aa ENSMUSP00000145673.1 Protein - A0A0U1RNR4 CDS 3' 204 coding incomplete TSL:5 Tmem150a- ENSMUST00000206064.1 540 120aa ENSMUSP00000146268.1 Protein - A0A0U1RQ67 CDS 3' 203 coding incomplete TSL:5 Tmem150a- ENSMUST00000206821.1 551 No - lncRNA - - TSL:5 205 protein Page 6 of 8 https://www.alphaknockout.com 24.32 kb Forward strand 72.350Mb 72.355Mb 72.360Mb 72.365Mb Genes (Comprehensive set... 0610030E20Rik-204 >retained intron Tmem150a-202 >protein coding 0610030E20Rik-203 >retained intron Tmem150a-201 >protein coding 0610030E20Rik-201 >protein coding Tmem150a-203 >protein coding 0610030E20Rik-202 >retained intron Tmem150a-205 >lncRNA Tmem150a-204 >protein coding Contigs AC116115.11 > Genes < Gm45051-201lncRNA < Rnf181-201protein coding < Vamp5-203protein coding (Comprehensive set... < Rnf181-202protein coding < Vamp5-202protein coding < Rnf181-214retained intron < Vamp5-201protein coding < Rnf181-204nonsense mediated decay < Rnf181-207protein coding < Rnf181-212protein coding < Rnf181-210nonsense mediated decay < Rnf181-206nonsense mediated decay < Rnf181-205nonsense mediated decay < Rnf181-203protein coding < Rnf181-211nonsense mediated decay < Rnf181-209retained intron < Rnf181-208retained intron < Rnf181-213retained intron Regulatory Build 72.350Mb 72.355Mb 72.360Mb 72.365Mb Reverse strand 24.32 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000069695 4.32 kb Forward strand Tmem150a-201 >protein coding ENSMUSP00000063... Transmembrane heli... Low complexity (Seg) Pfam Frag1/DRAM/Sfk1 PANTHER PTHR21324 Transmembrane protein 150A All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 40 80 120 160 200 271 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • Antibodies Products
    Chapter 2 : Gentaur Products List • Human Signal peptidase complex catalytic subunit • Human Sjoegren syndrome nuclear autoantigen 1 SSNA1 • Human Small proline rich protein 2A SPRR2A ELISA kit SEC11A SEC11A ELISA kit SpeciesHuman ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex catalytic subunit • Human Sjoegren syndrome scleroderma autoantigen 1 • Human Small proline rich protein 2B SPRR2B ELISA kit SEC11C SEC11C ELISA kit SpeciesHuman SSSCA1 ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 1 SPCS1 ELISA • Human Ski oncogene SKI ELISA kit SpeciesHuman • Human Small proline rich protein 2D SPRR2D ELISA kit kit SpeciesHuman • Human Ski like protein SKIL ELISA kit SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 2 SPCS2 ELISA • Human Skin specific protein 32 C1orf68 ELISA kit • Human Small proline rich protein 2E SPRR2E ELISA kit kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptidase complex subunit 3 SPCS3 ELISA • Human SLAIN motif containing protein 1 SLAIN1 ELISA kit • Human Small proline rich protein 2F SPRR2F ELISA kit kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptide CUB and EGF like domain • Human SLAIN motif containing protein 2 SLAIN2 ELISA kit • Human Small proline rich protein 2G SPRR2G ELISA kit containing protein 2 SCUBE2 ELISA kit SpeciesHuman SpeciesHuman SpeciesHuman • Human Signal peptide CUB and EGF like domain • Human SLAM family member 5 CD84 ELISA kit • Human Small proline rich protein 3 SPRR3 ELISA kit containing protein
    [Show full text]
  • Characterisation of Isomirs in Stem Cells
    Characterisation of isomiRs in stem cells Geok Chin Tan Institute of Reproductive and Developmental Biology Department of Surgery and Cancer Faculty of Medicine Imperial College London Thesis submitted to Imperial College London for the degree of Doctor of Philosophy 1 Statement of Originality All experiments included in this thesis were performed by me unless otherwise stated in the text. 2 Copyright Statement ‘The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work’ 3 Acknowledgements I would like to thank my supervisor Dr Nicholas Dibb for giving me the opportunity to work in his lab and for all of his guidance and support throughout my PhD, without which this project would not have been possible. I am also very grateful to Dr Wei Cui for teaching me the technique of stem cell culture, her comments on my project related to stem cells and as a wonderful co-supervisor. I would like to also thank Professor Malcolm Parker for his supports and advise on academic and non-academic related subjects. Many thanks to Elcie Chan for the generation of all the stem cell libraries which forms the platform for my project. My sincere thanks also to Gunter Meister for supplying the Argonaute antibodies, Leandro Castellano for the help in the design of RNA sponges, Laki Buluwela for the pTRIPz lentiviral vector and last but not least Alywn Dart from Charlotte Bevan group for the prostate cancer cell lines.
    [Show full text]
  • Supplemental Table 1A. Differential Gene Expression Profile of Adehcd40l and Adehnull Treated Cells Vs Untreated Cells
    Supplemental Table 1a. Differential Gene Expression Profile of AdEHCD40L and AdEHNull treated cells vs Untreated Cells Fold change Regulation Fold change Regulation ([AdEHCD40L] vs ([AdEHCD40L] ([AdEHNull] vs ([AdEHNull] vs Probe Set ID [Untreated]) vs [Untreated]) [Untreated]) [Untreated]) Gene Symbol Gene Title RefSeq Transcript ID NM_001039468 /// NM_001039469 /// NM_004954 /// 203942_s_at 2.02 down 1.00 down MARK2 MAP/microtubule affinity-regulating kinase 2 NM_017490 217985_s_at 2.09 down 1.00 down BAZ1A fibroblastbromodomain growth adjacent factor receptorto zinc finger 2 (bacteria-expressed domain, 1A kinase, keratinocyte NM_013448 /// NM_182648 growth factor receptor, craniofacial dysostosis 1, Crouzon syndrome, Pfeiffer 203638_s_at 2.10 down 1.01 down FGFR2 syndrome, Jackson-Weiss syndrome) NM_000141 /// NM_022970 1570445_a_at 2.07 down 1.01 down LOC643201 hypothetical protein LOC643201 XM_001716444 /// XM_001717933 /// XM_932161 231763_at 3.05 down 1.02 down POLR3A polymerase (RNA) III (DNA directed) polypeptide A, 155kDa NM_007055 1555368_x_at 2.08 down 1.04 down ZNF479 zinc finger protein 479 NM_033273 /// XM_001714591 /// XM_001719979 241627_x_at 2.15 down 1.05 down FLJ10357 hypothetical protein FLJ10357 NM_018071 223208_at 2.17 down 1.06 down KCTD10 potassium channel tetramerisation domain containing 10 NM_031954 219923_at 2.09 down 1.07 down TRIM45 tripartite motif-containing 45 NM_025188 242772_x_at 2.03 down 1.07 down Transcribed locus 233019_at 2.19 down 1.08 down CNOT7 CCR4-NOT transcription complex, subunit 7 NM_013354
    [Show full text]
  • Mouse Tmem150a Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Tmem150a Knockout Project (CRISPR/Cas9) Objective: To create a Tmem150a knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tmem150a gene (NCBI Reference Sequence: NM_144916.3 ; Ensembl: ENSMUSG00000055912 ) is located on Mouse chromosome 6. 8 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 8 (Transcript: ENSMUST00000069695). Exon 3~5 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 3 starts from about 8.12% of the coding region. Exon 3~5 covers 24.97% of the coding region. The size of effective KO region: ~1295 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 4 5 8 Legends Exon of mouse Tmem150a Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 409 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 291 bp section downstream of Exon 5 is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • Catenin Signaling in the Liver Petr Protiva,1,2,* Jingjing Gong,1,* Bharath Sreekumar,2 Richard Torres,3 Xuchen Zhang,2 Glenn S
    ORIGINAL RESEARCH Pigment Epithelium-Derived Factor (PEDF) Inhibits Wnt/b-catenin Signaling in the Liver Petr Protiva,1,2,* Jingjing Gong,1,* Bharath Sreekumar,2 Richard Torres,3 Xuchen Zhang,2 Glenn S. Belinsky,1 Mona Cornwell,4 Susan E. Crawford,4 Yasuko Iwakiri,1 and Chuhan Chung1,2 1Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; 2VA CT Healthcare System, West Haven, Connecticut; 3Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut; 4Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri SUMMARY Keywords: Extracellular Matrix; PEDF; Wnt/b-Catenin. The absence of pigment epithelium-derived factor (PEDF) in epatocellular carcinoma (HCC) is a major cause of hepatocellular carcinoma (HCC) enhances Wnt/b-catenin cancer-related deaths worldwide.1 Genomic signaling. Genomic profiling of PEDF knockout livers corre- H fi fi “ ” lates with gene expression signatures of human HCC asso- pro ling has classi ed HCC based on molecular signatures ciated with aberrant Wnt/b-catenin signaling. PEDF is an that correlate with biological characteristics and clinical 2,3 fi endogenous inhibitor of Wnt/b-catenin signaling. outcomes. One nding from these studies is the role of the extracellular matrix (ECM) in determining tumor behav- – ior.4 6 For instance, modulators of the ECM can activate b BACKGROUND & AIMS: Pigment epithelium-derived factor developmental pathways such as Wnt/ -catenin signaling, fi (PEDF) is a secretory protein that inhibits multiple tumor types. thereby connecting liver brosis to a signaling pathway that 3 PEDF inhibits the Wnt coreceptor, low-density lipoprotein drives hepatocarcinogenesis.
    [Show full text]
  • Mycobacterium Tuberculosis Induced Transcription in Macrophages: the Role of TPL2/ERK Signalling in the Negative Regulation of T
    Mycobacterium tuberculosis induced transcription in macrophages: the role of TPL2/ERK signalling in the negative regulation of type I interferon production and implications for control of tuberculosis John Benson Ewbank August 2012 Division of Immunoregulation MRC National Institute for Medical Research The Ridgeway, Mill Hill London NW7 1AA Submitted to University College London for the Degree of Doctor of Philosophy I, John Benson Ewbank, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis Abstract Abstract Mycobacterium tuberculosis is an important global cause of mortality and morbidity. The major host cell of Mycobacterium tuberculosis is the macrophage, and Mycobacterium tuberculosis is able to subvert the macrophage response in order to survive and replicate. The majority of infected individuals mount an immune response capable of controlling Mycobacterium tuberculosis infection. This requires the cytokines IL-12, TNFα, IL-1 and IFNγ, which promote eradication or control of infection. However, other immune factors, including IL-10 and type I IFN, can inhibit this protective response. In this study we have used microarray analysis to study the temporal response of macrophages to Mycobacterium tuberculosis infection, in an unbiased fashion. In response to Mycobacterium tuberculosis infection, macrophages produced cytokines and chemokines, upregulated genes involved with major histocompatability class I antigen presentation, activated both pro- and anti-apoptotic genes and downregulated many genes involved in cell-division and metabolism. We also observed the early induction of genes regulated by the extracellular-regulated kinase (ERK) MAP kinase pathway, and the upregulation of genes known to be induced by type I IFN, leading us to further investigate the role of these pathways in the macrophage response to Mycobacterium tuberculosis.
    [Show full text]
  • Enriched Genes FLX07
    enriched genes FLX07 Entrez Symbols Name TermID TermDesc 24950 MGC156498,S5AR 1,Srd5a1 steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1) GO:0003865 3-oxo-5-alpha-steroid 4-dehydrogenase activity 361191 Nsun2,RGD1311954 NOL1/NOP2/Sun domain family, member 2 GO:0003865 3-oxo-5-alpha-steroid 4-dehydrogenase activity 305291 RGD1308828,S5AR 3,Srd5a3 steroid 5 alpha-reductase 3 GO:0003865 3-oxo-5-alpha-steroid 4-dehydrogenase activity 311569 Acas2,Acss2 acyl-CoA synthetase short-chain family member 2 GO:0003987 acetate-CoA ligase activity 296259 Acas2l,Acss1 acyl-CoA synthetase short-chain family member 1 GO:0003987 acetate-CoA ligase activity 25288 ACS,Acas,Acsl1,COAA,Facl2 acyl-CoA synthetase long-chain family member 1 GO:0003987 acetate-CoA ligase activity 114024 Acs3,Acsl3,Facl3 acyl-CoA synthetase long-chain family member 3 GO:0003987 acetate-CoA ligase activity 299002 G2e3,RGD1310263 G2/M-phase specific E3 ubiquitin ligase GO:0016881 acid-amino acid ligase activity 361866 Hace1 HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 GO:0016881 acid-amino acid ligase activity 316395 Hecw2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 309758 Herc4 hect domain and RLD 4 GO:0016881 acid-amino acid ligase activity 361815 MGC116114,Rnf8 ring finger protein 8 GO:0016881 acid-amino acid ligase activity 298576 Mul1,RGD1309944 mitochondrial ubiquitin ligase activator of NFKB 1 GO:0016881 acid-amino acid ligase activity
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/100868 Please be advised that this information was generated on 2017-12-06 and may be subject to change. Deciphering cellular responses to pathogens using genomics data Iziah Edwin Sama Deciphering cellular responses to pathogens using genomics data This research was performed at the Centre for Molecular and Biomolecular Informatics (CMBI), Nijmegen Centre of Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands. Funding: This work was supported by the VIRGO consortium, an Innovative Cluster approved by the Netherlands Genomics Initiative and partially funded by the Dutch Government (BSIK 03012), The Netherlands. ISBN 978-90-9027062-3 © 2012 Iziah Edwin Sama All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, by print or otherwise, without permission in writing from the author Front Cover Image: A metaphorical illustration of the complexity in a host cell (the field), wherein fundamental moieties like proteins interact with each other (the network) in response to various pathogenic stimuli triggering respective cellular responses (the sub-fields demarcated by different line colors). The background is a picture of an indoors multi-sports field .The network is a protein-protein interaction network (HsapiensPPI of chapter 3) in which nodes represent proteins and edges between nodes indicate physical association. (Concept by Iziah Edwin Sama) Cover design and lay-out: In Zicht Grafisch Ontwerp, Arnhem Printed by: Ipskamp Drukkers, Enschede II Deciphering cellular responses to pathogens using genomics data Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof.
    [Show full text]
  • 1 Imipramine Treatment and Resiliency Exhibit Similar
    Imipramine Treatment and Resiliency Exhibit Similar Chromatin Regulation in the Mouse Nucleus Accumbens in Depression Models Wilkinson et al. Supplemental Material 1. Supplemental Methods 2. Supplemental References for Tables 3. Supplemental Tables S1 – S24 SUPPLEMENTAL TABLE S1: Genes Demonstrating Increased Repressive DimethylK9/K27-H3 Methylation in the Social Defeat Model (p<0.001) SUPPLEMENTAL TABLE S2: Genes Demonstrating Decreased Repressive DimethylK9/K27-H3 Methylation in the Social Defeat Model (p<0.001) SUPPLEMENTAL TABLE S3: Genes Demonstrating Increased Repressive DimethylK9/K27-H3 Methylation in the Social Isolation Model (p<0.001) SUPPLEMENTAL TABLE S4: Genes Demonstrating Decreased Repressive DimethylK9/K27-H3 Methylation in the Social Isolation Model (p<0.001) SUPPLEMENTAL TABLE S5: Genes Demonstrating Common Altered Repressive DimethylK9/K27-H3 Methylation in the Social Defeat and Social Isolation Models (p<0.001) SUPPLEMENTAL TABLE S6: Genes Demonstrating Increased Repressive DimethylK9/K27-H3 Methylation in the Social Defeat and Social Isolation Models (p<0.001) SUPPLEMENTAL TABLE S7: Genes Demonstrating Decreased Repressive DimethylK9/K27-H3 Methylation in the Social Defeat and Social Isolation Models (p<0.001) SUPPLEMENTAL TABLE S8: Genes Demonstrating Increased Phospho-CREB Binding in the Social Defeat Model (p<0.001) SUPPLEMENTAL TABLE S9: Genes Demonstrating Decreased Phospho-CREB Binding in the Social Defeat Model (p<0.001) SUPPLEMENTAL TABLE S10: Genes Demonstrating Increased Phospho-CREB Binding in the Social
    [Show full text]
  • Impact of MLL5 Expression on Decitabine Efficacy and DNA Methylation in Acute Myeloid Leukemia
    Acute Myeloid Leukemia SUPPLEMENTARY APPENDIX Impact of MLL5 expression on decitabine efficacy and DNA methylation in acute myeloid leukemia Haiyang Yun,1 Frederik Damm,2 Damian Yap,3,4 Adrian Schwarzer,5 Anuhar Chaturvedi,1 Nidhi Jyotsana,1 Michael Lübbert,6 Lars Bullinger,7 Konstanze Döhner,7 Robert Geffers,8 Samuel Aparicio,3,4 R. Keith Humphries,9,10 Arnold Ganser,1 and Michael Heuser1 1Department of Hematology, Hemostasis, Oncology and Stem cell Transplantation, Hannover Medical School, Germany; 2Department of Hematology, Oncology, and Tumor Immunology, Charité, Berlin, Germany; 3Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada; 4Department of Pathology and Laboratory Medi- cine, University of British Columbia, Vancouver, BC, Canada; 5Institute of Experimental Hematology, Hannover Medical School, Germany; 6Division of Hematology and Oncology, University of Freiburg Medical Center, Germany; 7Department of Internal Medicine III, University Hospital of Ulm, Germany; 8Department of Cell Biology and Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany; 9Terry Fox Laboratory, British Columbia Cancer Agency, Vancou- ver, BC, Canada; and 10Department of Medicine, University of British Columbia, Vancouver, BC, Canada ©2014 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2013.101386 *These authors contributed equally to this work. †These authors contributed equally to this work. Manuscript received on November 19, 2013. Manuscript accepted on May 23, 2014. Correspondence: [email protected] Impact of MLL5 expression on decitabine efficacy and DNA methylation in acute myeloid leukemia Haiyang Yun1, Frederik Damm2, Damian Yap3,4, Adrian Schwarzer5, Anuhar Chaturvedi1, Nidhi Jyotsana1, Michael Lübbert6, Lars Bullinger7, Konstanze Döhner7, Robert Geffers8, Samuel Aparicio3,4, R.
    [Show full text]
  • Tracking Profiles of Genomic Instability in Spontaneous Transformation and Tumorigenesis Lesley Lawrenson Wayne State University
    Wayne State University Wayne State University Dissertations 1-1-2010 Tracking profiles of genomic instability in spontaneous transformation and tumorigenesis Lesley Lawrenson Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Part of the Bioinformatics Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Lawrenson, Lesley, "Tracking profiles of genomic instability in spontaneous transformation and tumorigenesis" (2010). Wayne State University Dissertations. Paper 492. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. TRACKING PROFILES OF GENOMIC INSTABILITY IN SPONTANEOUS TRANSFORMATION AND TUMORIGENESIS by LESLEY EILEEN LAWRENSON DISSERTATION Submitted to the Graduate School of Wayne State University Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2010 MAJOR: MOLECULAR MEDICINE AND GENETICS Approved by: Advisor Date © COPYRIGHT BY LESLEY LAWRENSON 2010 All Rights Reserved DEDICATION This work is dedicated to my husband, family, friends, mentors, and colleagues with deepest gratitude for their guidance and support. ii ACKNOWLEDGEMENTS The submission of this dissertation brings to an end a wonderful period in which I was a graduate student in Molecular Medicine and Genetics at Wayne State University School of Medicine. Along this path, my mentors, friends and family have helped me grow in sharing with me the many joyous moments as well as the challenges presented throughout the development of this work. I am forever indebted to those who encouraged me to continue to pursue my education.
    [Show full text]