Color and Color Models

Total Page:16

File Type:pdf, Size:1020Kb

Color and Color Models Einführung in Visual Computing 186.822 Color and Color Models Werner Purgathofer Color problem specification light and perception colilorime try device color systems color ordering systems color symbolism Werner Purgathofer 1 1 Color - Why Do We Care? Computer Graphics is all about the generation and the manipulation of color images proper understanding and handling of color is necessary at every step Werner Purgathofer 2 What is Light? “light” = narrow frequency band of electromagnetic spectrum red border: 380 THz ≈ 780 nm violet border: 780 THz ≈ 380 nm visible radio radio d TV rared raviolet rays icrowaves f t t M M - - M M ……n n F a in A m ul X wavelength 1016 1014 1012 1010 108 106 104 102 100 10-2 (nm) 102 104 106 108 1010 1012 1014 1016 1018 1020 frequency (Hz) Werner Purgathofer 3 2 Light - An Electromagnetic Wave light is electromagnetic energy monochrome light can be described either by freqqyuency f or waveleng th c = f (c = speed of light) E t shorter wavelength equals higher frequency red 700 nm violet 400 nm Werner Purgathofer 4 Light – Spectrum normally, a ray of light contains many different waves with individual frequencies the associated distribution of wavelength intensities per wavelength is referred to as the spectrum of a given ray or light source Werner Purgathofer 5 3 Dominant Wavelength | Frequency energy white light energy greenish light ED wave- E wave- length W length 400 nm 700 nm dominant wavelength dominant wavelength | frequency (hue, color) brightness (area under the curve) E ...dominant energy density purity ED EW D EW...white light energy density ED Werner Purgathofer 6 The Human Eye cornea aqueous [Hornhaut] retina contains [Augenkammer] iris [Regen- rods: b/w bogen- cones: color lens haut] vitreous humor [Glaskörper] optical axis visual axis rods optic disc [Papille] fovea cones retina [Netzhaut] nerve macula lutea [gelber Fleck] Werner Purgathofer 7 4 The Human Eye 3 types of cones different fraction of wavelength absorbed light sensitivities: 16% 8% red 4% green 2% 1% blue λ 400 440 480 520 560 600 640 680 Werner Purgathofer 8 Color Blindness red/green blindness red & green cones too similar fraction of absorbed light 16% 8% 4% 2% 1% λ 400 440 480 520 560 600 640 680 Werner Purgathofer 9 5 Color Blindness red/green blindness red & green cones too similar fraction of blue blindness absorbed light 16% no blue cones 8% 4% other 2% 1% cones missing λ cones too similar 400 440 480 520 560 600 640 680 Werner Purgathofer 10 Color Blindness Tests 5 = normal 2 = red/green weak nothing = red/green blind nothing = normal Werner Purgathofer 11 6 Color Blindness Tests 8 = normal 8 = red/green blind 3 = red/green weak 12 = blue/yellow blind nothing = r/g blind 182 = normal Werner Purgathofer 12 Color Spaces (CS) Color Metric Spaces (CIE XYZ, L*a*b*) used to measure absolute values and differences - roots in colorimetry Device Color Spaces (RGB, CMY, CMYK) used in conjunction with device Color Ordering Spaces (HSV, HLS) used to find colors according to some criterion the distinction between them is somewhat obscured by the prevalence of multi-purpose RGB in computer graphics Werner Purgathofer 13 7 What is our Goal? to be able to quantify color in a meaningful, expressive, consistent and reproducible way. problem: color is a perceived quantity, not a direct, physical observable Werner Purgathofer 14 Color - A Visual Sensation light nerve object eye brain stimulus signal electromagnetic color rays sensation realm of direct realm of psychology observables Werner Purgathofer 15 8 Colorimetry CM is the branch of color science concerned with numerically specifying the color of a physically defined visual stimulus in such manner that stimuli with the same specification look alike under the same viewing conditions stimuli that look alike have the same specifica tion the numbers used are continuous functions of the physical parameters Werner Purgathofer 16 Colorimetry Properties Colorimetry only considers the visual discriminability of physical beams of radiation fthfor the purposes o f ClColor ime try a „col“ilor“ is an equivalence class of mutually indiscriminable beams colors in this sense cannot be said to be “red”, “green” or any other “color name” discriminability is decided before the brain - Colorimetry is not psychology Werner Purgathofer 17 9 Color Matching Experiments observers had to match monochromatic test lights by combining 3 fixed primaries test green test R+G+B 010101 goal: find the unique RGB coordinates for each stimulus Werner Purgathofer 18 Color Matching Experiments observers had to match monochromatic test lights by combining 3 fixed primaries R = 700.0 nm viewer G = 546.1 nm controls independently B = 435.8 nm variable ppyrimary sources masking viewing test screen screen source Werner Purgathofer 19 10 Tristimulus Values the values RQ, GQ and BQ test green test of a stimulus Q that fulfill R+G+B Q RQ R GQ G BQ B are called the tristimulus values of Q ihin the case o f a monochihromatic stilimulus Q, the values R, G and B are called the spectral tristimulus values Werner Purgathofer 20 Color Matching Procedure (1) test field = 700 nm-red with radiance Pref observer adjusts luminance of R (G=0, B=0) (2) test light wavelength is decreased in constant steps (radiance Pref stays the same) observer adjusts R, G, B (3) repeat for entire visible range Werner Purgathofer 350 400 450 500 550 600 650 700 nm 11 Color Matching Result !? 100 no match possible !?!? 0 350 400 450 500 550 600 650 700 nm observers want to „subtract“ red light from the match side...!? Werner Purgathofer 22 Color Matching Experiment Problem for some colors observers want to reduce red light to negative values…!? but there is no negggative light…! test green G+B est t t + + R ? 010101 Werner Purgathofer 23 12 “Negative” Light in a Color Matching Exp. if a match using only positive RGB values proved impossible, observers could simulate a subtraction of red from the match side by adding it to the test side test green +B t + R s G G te 01 010101 Werner Purgathofer 24 CIE RGB Color Matching Functions b(λ) r(λ) 100 g(λ) ? 0 350 400 450 500 550 600 650 700 nm 435.8 nm 546.1 nm 700.0 nm Werner Purgathofer 25 13 CIE XYZ problem solution: XYZ color system tristimulus system derived from RGB bd3based on 3 iiimaginary priiimaries all 3 primaries are imaginary colors Y only positive XYZ values can occur! 1931 by CIE (Commission Internationale de l’Eclairage) X Z Werner Purgathofer 26 RGB vs. XYZ negative component disappears y() is the achromatic luminance sensitivity RGB system XYZ system b(λ) r(λ) z(λ) g(λ) y(λ) x(λ) 1 0 350 400 450 500 550 600 650 700 nm 350 400 450 500 550 600 650 700 nm amounts of RGB primaries amounts of CIE primaries needed needed to display spectral colors to display spectral colors Werner Purgathofer 27 14 CIE Color Model Formulas XYZ color model C() = XX + YY + ZZ (X, Y, Z are primaries) normalized chromaticity values xyx, y X Y x y X Y Z X Y Z Y ( z = 1 –x –y ) 1 complete description of color: x, y, Y 1 X 1 Z Werner Purgathofer 28 CIE Chromaticity Diagram identifying spectral colors complementary colors determining dominant wavelength, purity comparing color gamuts spectral color positions purple line are along the boundary curve Werner Purgathofer 29 15 Properties of CIE Diagram (2) reppgresenting complementary colors on the chromaticity diagram C1 C C2 Werner Purgathofer 30 Properties of CIE Diagram (3) determining dominant wavelength Cs and purity with the chromaticity diagram Csp C1 → Cs C1 C C2 → Cp? → complement Csp C2 Cp Werner Purgathofer 31 16 Color Spaces (CS) Color Metric Spaces (CIE XYZ, L*a*b) used to measure absolute values and differences - roots in colorimetry Device Color Spaces (RGB, CMY, CMYK) used in conjunction with device Color Ordering Spaces (HSV, HLS) used to find colors according to some criterion the distinction between them is somewhat obscured by the prevalence of multi-purpose RGB in computer graphics Werner Purgathofer 32 RGB Color Model green (0,1,0) yellow primary colors (1,1,0) red, green, blue cyan white (0,1,1) (1,1,1) additive color model red black (1,0,0) (for monitors) (0,0,0) blue (0,0,1) magenta (1,0,1) C() = RR + GG + BB Werner Purgathofer 33 17 RGB Color Model Images 3 views of the RGB color cube Werner Purgathofer 34 Gamuts of RGB Monitors monitor gamuts can be very different no monitor can display all colors Werner Purgathofer 35 18 CMY Color Model magenta primary colors (0,1,0) blue (1,1,0) cyan, magenta, red black yellow (011)(0,1,1) (1,1,1) subtractive color cyan model (for white (1,0,0) hardcopy devices) yellow (0,0,0) (0,0,1) C=G+B, using C “subtracts” R green (1,0,1) C 1 R M 1 G Y 1 B Werner Purgathofer 36 CMY Color Model Images 3 views of the CMY color cube Werner Purgathofer 37 19 Gamuts of CMY(K) Printers printer gamuts can be very different no printer can display all colors Werner Purgathofer 38 Color Spaces (CS) Color Metric Spaces (CIE XYZ, L*a*b) used to measure absolute values and differences - roots in colorimetry Device Color Spaces (RGB, CMY, CMYK) used in conjunction with device Color Ordering Spaces (HSV, HLS) used to find colors according to some criterion the distinction between them is somewhat obscured by the prevalence of multi-purpose RGB in computer graphics Werner Purgathofer 39 20 Colour Ordering Systems (COS) primary aim: enable the user to intuitively choose colour values according to certain criteria choice can yield single or multiple colour values examples: HSV, HLS, Munsell, NCS, RAL Design, Coloroid
Recommended publications
  • Paquete En Python Para La Reducción De Dimensionalidad En Imágenes a Color
    Departamento De Computación Título: Paquete en Python para la reducción de dimensionalidad en imágenes a color. Autora: Liliam Fernández Cabrera. Cabrera. Tutor: M.Sc. Roberto Díaz Amador. Santa Clara, Cuba, 2018 Este documento es Propiedad Patrimonial de la Universidad Central “Marta Abreu” de Las Villas, y se encuentra depositado en los fondos de la Biblioteca Universitaria “Chiqui Gómez Lubian” subordinada a la Dirección de Información Científico Técnica de la mencionada casa de altos estudios. Se autoriza su utilización bajo la licencia siguiente: Atribución- No Comercial- Compartir Igual Para cualquier información contacte con: Dirección de Información Científico Técnica. Universidad Central “Marta Abreu” de Las Villas. Carretera a Camajuaní. Km 5½. Santa Clara. Villa Clara. Cuba. CP. 54 830 Teléfonos.: +53 01 42281503-1419 i La que suscribe Liliam Fernández Cabrera, hago constar que el trabajo titulado Paquete en Python para la redimensionalidad de imágenes a color fue realizado en la Universidad Central “Marta Abreu” de Las Villas como parte de la culminación de los estudios de la especialidad de Licenciatura en Ciencias de la Computación, autorizando a que el mismo sea utilizado por la institución, para los fines que estime conveniente, tanto de forma parcial como total y que además no podrá ser presentado en eventos ni publicado sin la autorización de la Universidad. ______________________ Firma del Autor Los abajo firmantes, certificamos que el presente trabajo ha sido realizado según acuerdos de la dirección de nuestro centro y el mismo cumple con los requisitos que debe tener un trabajo de esta envergadura referido a la temática señalada. ____________________________ ___________________________ Firma del Tutor Firma del Jefe del Laboratorio ii RESUMEN Un enfoque eficiente de las técnicas del procesamiento digital de imágenes permite dar solución a muchas problemáticas en los campos investigativos que precisan del uso de imágenes para búsquedas de información.
    [Show full text]
  • Computational Color Harmony Based on Coloroid System
    Computational Aesthetics in Graphics, Visualization and Imaging (2005) L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Editors) Computational Color Harmony based on Coloroid System László Neumanny, Antal Nemcsicsz, and Attila Neumannx yGrup de Gràfics de Girona, Universitat de Girona, and Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain zBudapest University of Technology and Economics, Hungary xInstitute of Computer Graphics and Algorithms, Vienna University of Technology, Austria [email protected], [email protected], [email protected] (a) (b) Figure 1: (a) visualization of the overall appearance of a dichromatic color set with `caleidoscope' option of the Color Plan Designer software and (b) interactive color selection of a dichromatic color set in multi-layer mode, applying rotated regular grid. Abstract This paper presents experimentally based rules and methods for the creation of harmonic color sets. First, dichro- matic rules are presented which concern the harmony relationships of two hues. For an arbitrarily given hue pair, we define the just harmonic saturation values, resulting in minimally harmonic color pairs. These values express the fuzzy border between harmony and disharmony regions using a single scalar. Second, the value of harmony is defined corresponding to the contrast of lightness, i.e. the difference of perceptual lightness values. Third, we formulate the harmony value of the saturation contrast, depending on hue and lightness. The results of these investigations form a basis for a unified, coherent dichromatic harmony formula as well as for analysis of polychromatic color harmony. Introduced color harmony rules are based on Coloroid, which is one of the 5 6 main color-order systems and − furthermore it is an aesthetically uniform continuous color space.
    [Show full text]
  • Verfahren Zur Farbanpassung F ¨Ur Electronic Publishing-Systeme
    Verfahren zur Farbanpassung f ¨ur Electronic Publishing-Systeme Von dem Fachbereich Elektrotechnik und Informationstechnik der Universit¨atHannover zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Dipl.-Ing. Wolfgang W¨olker geb. am 7. Juli 1957, in Herford 1999 Referent: Prof. Dr.-Ing. C.-E. Liedtke Korreferent: Prof. Dr.-Ing. K. Jobmann Tag der Promotion: 18.01.1999 Kurzfassung Zuk ¨unftigePublikationssysteme ben¨otigenleistungsstarke Verfahren zur Farb- bildbearbeitung, um den hohen Durchsatz insbesondere der elektronischen Me- dien bew¨altigenzu k¨onnen. Dieser Beitrag beschreibt ein System f ¨urdie automatisierte Farbmanipulation von Einzelbildern. Die derzeit vorwiegend manuell ausgef ¨uhrtenAktionen wer- den durch hochsprachliche Vorgaben ersetzt, die vom System interpretiert und ausgef ¨uhrtwerden. Basierend auf einem hier vorgeschlagenen Grundwortschatz zur Farbmanipulation sind Modifikationen und Erweiterungen des Wortschat- zes durch neue abstrakte Begriffe m¨oglich.Die Kombination mehrerer bekannter Begriffe zu einem neuen abstrakten Begriff f ¨uhrtdabei zu funktionserweitern- den, komplexen Aktionen. Dar ¨uberhinaus pr¨agendiese Erg¨anzungenden in- dividuellen Wortschatz des jeweiligen Anwenders. Durch die hochsprachliche Schnittstelle findet eine Entkopplung der Benutzervorgaben von der technischen Umsetzung statt. Die farbverarbeitenden Methoden lassen sich so im Hinblick auf die verwendeten Farbmodelle optimieren. Statt der bisher ¨ublichenmedien- und ger¨atetechnischbedingten Farbmodelle kann nun z.B. das visuell adaptierte CIE(1976)-L*a*b*-Modell genutzt werden. Die damit m¨oglichenfarbverarbeiten- den Methoden erlauben umfangreiche und wirksame Eingriffe in die Farbdar- stellung des Bildes. Zielsetzung des Verfahrens ist es, unter Verwendung der vorgeschlagenen Be- nutzerschnittstelle, die teilweise wenig anschauliche Parametrisierung bestimm- ter Farbmodelle, durch einen hochsprachlichen Zugang zu ersetzen, der den An- wender bei der Farbbearbeitung unterst ¨utztund den Experten entlastet.
    [Show full text]
  • ARC Laboratory Handbook. Vol. 5 Colour: Specification and Measurement
    Andrea Urland CONSERVATION OF ARCHITECTURAL HERITAGE, OFARCHITECTURALHERITAGE, CONSERVATION Colour Specification andmeasurement HISTORIC STRUCTURESANDMATERIALS UNESCO ICCROM WHC VOLUME ARC 5 /99 LABORATCOROY HLANODBOUOKR The ICCROM ARC Laboratory Handbook is intended to assist professionals working in the field of conserva- tion of architectural heritage and historic structures. It has been prepared mainly for architects and engineers, but may also be relevant for conservator-restorers or archaeologists. It aims to: - offer an overview of each problem area combined with laboratory practicals and case studies; - describe some of the most widely used practices and illustrate the various approaches to the analysis of materials and their deterioration; - facilitate interdisciplinary teamwork among scientists and other professionals involved in the conservation process. The Handbook has evolved from lecture and laboratory handouts that have been developed for the ICCROM training programmes. It has been devised within the framework of the current courses, principally the International Refresher Course on Conservation of Architectural Heritage and Historic Structures (ARC). The general layout of each volume is as follows: introductory information, explanations of scientific termi- nology, the most common problems met, types of analysis, laboratory tests, case studies and bibliography. The concept behind the Handbook is modular and it has been purposely structured as a series of independent volumes to allow: - authors to periodically update the
    [Show full text]
  • Color Harmony: Experimental and Computational Modeling
    Color harmony : experimental and computational modeling Christel Chamaret To cite this version: Christel Chamaret. Color harmony : experimental and computational modeling. Image Processing [eess.IV]. Université Rennes 1, 2016. English. NNT : 2016REN1S015. tel-01382750 HAL Id: tel-01382750 https://tel.archives-ouvertes.fr/tel-01382750 Submitted on 17 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNEE´ 2016 THESE` / UNIVERSITE´ DE RENNES 1 sous le sceau de l'Universit´eBretagne Loire pour le grade de DOCTEUR DE L'UNIVERSITE´ DE RENNES 1 Mention : Informatique Ecole doctorale Matisse pr´esent´eepar Christel Chamaret pr´epar´ee`al'IRISA (Institut de recherches en informatique et syst`emesal´eatoires) et Technicolor Th`esesoutenue `aRennes Color Harmony: le 28 Avril 2016 experimental and devant le jury compos´ede : Pr Alain Tr´emeau Professeur, Universit´ede Saint-Etienne / rapporteur computational Dr Vincent Courboulay Ma^ıtre de conf´erences HDR, Universit´e de La modeling. Rochelle / rapporteur Pr Patrick Le Callet Professeur, Universit´ede Nantes / examinateur Dr Frederic Devinck Ma^ıtrede conf´erencesHDR, Universit´ede Rennes 2 / examinateur Pr Luce Morin Professeur, INSA Rennes / examinateur Dr Olivier Le Meur Ma^ıtrede conf´erencesHDR, Universit´ede Rennes 1 / directeur de th`ese Abstract While the consumption of digital media exploded in the last decade, consequent improvements happened in the area of medical imaging, leading to a better understanding of vision mechanisms.
    [Show full text]
  • 12. Optical Data Storage
    12. Optical data storage 12.1 Theory of color RGB additive color model B B Blue Magenta (0.6, 0.2, 1) (0,0,1) (1,0,1) Gray shades Cyan (g,g,g) (0,1,1) White (1,1,1) (0.6, 1, 0.7) R R Black Red (0,0,0) (1,0,0) G Green (0,1,0) (1, 0.7, 0.1) Yellow (1,1,0) G The RGB color model converts the additive color mixing system into a digital system, in which any color is represented by a point in a color tridimensional space and thus by a three coordinates vector. The coordinates are composed of the respective proportions of the primary light colors (Red, Green, Blue). The RGB model is often used by software as it requires no conversion in order to display colors on a computer screen. 169 CMY subtractive color model Y Y Yellow Green (0, 0.3, 0.9) (0,0,1) (1,0,1) Gray shades Red (g,g,g) (0,1,1) Black (1,1,1) C (0.4, 0, 0.3) C White Cyan (0,0,0) (1,0,0) M Magenta (0,1,0) (0.4, 0.8, 0) Blue (1,1,0) M The CMY color model corresponds to the subtractive color mixing system. The coordinates of a point in this color space are composed of the respective proportions of the primary filter colors (Cyan, Magenta, Yellow). The CMY model is used whenever a colored document is printed. The conversion RGB and CMY models can be written as follows: For the orange point, for example: 170 HSV color model V Green Yellow 120° 60° (37°, 0.9, 1) White H 1.0 S Cyan Red 180° 0° V Blue Magenta 240° 300° Hue is given in polar coordinate.
    [Show full text]
  • 14. Color Mapping
    14. Color Mapping Jacobs University Visualization and Computer Graphics Lab Recall: RGB color model Jacobs University Visualization and Computer Graphics Lab Data Analytics 691 CMY color model • The CMY color model is related to the RGB color model. •Itsbasecolorsare –cyan(C) –magenta(M) –yellow(Y) • They are arranged in a 3D Cartesian coordinate system. • The scheme is subtractive. Jacobs University Visualization and Computer Graphics Lab Data Analytics 692 Subtractive color scheme • CMY color model is subtractive, i.e., adding colors makes the resulting color darker. • Application: color printers. • As it only works perfectly in theory, typically a black cartridge is added in practice (CMYK color model). Jacobs University Visualization and Computer Graphics Lab Data Analytics 693 CMY color cube • All colors c that can be generated are represented by the unit cube in the 3D Cartesian coordinate system. magenta blue red black grey white cyan yellow green Jacobs University Visualization and Computer Graphics Lab Data Analytics 694 CMY color cube Jacobs University Visualization and Computer Graphics Lab Data Analytics 695 CMY color model Jacobs University Visualization and Computer Graphics Lab Data Analytics 696 CMYK color model Jacobs University Visualization and Computer Graphics Lab Data Analytics 697 Conversion • RGB -> CMY: • CMY -> RGB: Jacobs University Visualization and Computer Graphics Lab Data Analytics 698 Conversion • CMY -> CMYK: • CMYK -> CMY: Jacobs University Visualization and Computer Graphics Lab Data Analytics 699 HSV color model • While RGB and CMY color models have their application in hardware implementations, the HSV color model is based on properties of human perception. • Its application is for human interfaces. Jacobs University Visualization and Computer Graphics Lab Data Analytics 700 HSV color model The HSV color model also consists of 3 channels: • H: When perceiving a color, we perceive the dominant wavelength.
    [Show full text]
  • Prepared by Dr.P.Sumathi COLOR MODELS
    UNIT V: Colour models and colour applications – properties of light – standard primaries and the chromaticity diagram – xyz colour model – CIE chromaticity diagram – RGB colour model – YIQ, CMY, HSV colour models, conversion between HSV and RGB models, HLS colour model, colour selection and applications. TEXT BOOK 1. Donald Hearn and Pauline Baker, “Computer Graphics”, Prentice Hall of India, 2001. Prepared by Dr.P.Sumathi COLOR MODELS Color Model is a method for explaining the properties or behavior of color within some particular context. No single color model can explain all aspects of color, so we make use of different models to help describe the different perceived characteristics of color. 15-1. PROPERTIES OF LIGHT Light is a narrow frequency band within the electromagnetic system. Other frequency bands within this spectrum are called radio waves, micro waves, infrared waves and x-rays. The below figure shows the frequency ranges for some of the electromagnetic bands. Each frequency value within the visible band corresponds to a distinct color. The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. Spectral colors range from the reds through orange and yellow at the low-frequency end to greens, blues and violet at the high end. Since light is an electromagnetic wave, the various colors are described in terms of either the frequency for the wave length λ of the wave. The wavelength and frequency of the monochromatic wave is inversely proportional to each other, with the proportionality constants as the speed of light C where C = λ f.
    [Show full text]
  • CS8092-Computer Graphics and Multimedia Notes
    UNIT I ILLUMINATION AND COLOUR MODELS Light sources – basic illumination models – halftone patterns and dithering techniques; Properties of light – Standard primaries and chromaticity diagram; Intuitive colour concepts – RGB colour model – YIQ colour model – CMY colour model – HSV colour model – HLS colour model; Colour selection. Color Models Color Model is a method for explaining the properties or behavior of color within some particular context. No single color model can explain all aspects of color, so we make use of different models to help describe the different perceived characteristics of color. Properties of Light Light is a narrow frequency band within the electromagnetic system. Other frequency bands within this spectrum are called radio waves, micro waves, infrared waves and x-rays. The below fig shows the frequency ranges for some of the electromagnetic bands. Each frequency value within the visible band corresponds to a distinct color. 4 At the low frequency end is a red color (4.3*10 Hz) and the highest frequency is a violet color 14 (7.5 *10 Hz) Spectral colors range from the reds through orange and yellow at the low frequency end to greens, blues and violet at the high end. Since light is an electro magnetic wave, the various colors are described in terms of either the frequency for the wave length λ of the wave. The wave length ad frequency of the monochromatic wave are inversely proportional to each other, with the proportionality constants as the speed of light C where C = λ f A light source such as the sun or a light bulb emits all frequencies within the visible range to produce white light.
    [Show full text]
  • Download Book of Abstracts
    SPONSORED BY: International Colour Association The Color Science Association of Japan IN COOPERATION WITH: Ministry of Foreign Affairs Ministry of Education, Science, Sports and Culture Ministry of Construction Agency of Industrial Science and Technology, MITI Kyoto Prefectural Government Kyoto Municipal Government SUPPORTED BY: Architectural Institute of Japan The Illuminating Institute of Japan The Institute of Electrical Engineers of Japan The Institute of Electronics and Communication Engineers of Japan The Institute of Imaging Electronics Engineers of Japan The Institute of Television Engineers of Japan Japan Ergonomics Research Society Japanese Institute of Landscape Architecture Japanese Ophthalmological Society The Japanese Psychological Association The Japanese Psychonomic Society Japanese Society for the Science of Design The Japanese Society of Printing Science and Technology Japan Society for Interior Studies The Japan Society of Image Arts and Sciences The Japan Society of Home Economics Optical Society of Japan The Society of Fiber Science and Technology, Japan The Society of Photographic Science and Technology of Japan Japan National Tourist Organization This International Scientific Congress, which is held with participants from both home and abroad is jointly supported by The Ministry of Education, Science, Sports and Culture who provided a Grant-in-Aid for Publication of Scientific Research Results and a Grant-in-Aid for Scientific Research for the fiscal year 1996. TABLE OF CONTENTS-------.... CONGRESS INFORMATION ·
    [Show full text]
  • ISSN 1848-6339 (Online)
    A. Glowacz i dr. Otkrivanje kratkih spojeva istosmjernog motora primjenom termografskih slika, binarizacije i K-NN klasifikatora ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20150924194102 DETECTION OF SHORT-CIRCUITS OF DC MOTOR USING THERMOGRAPHIC IMAGES, BINARIZATION AND K-NN CLASSIFIER Adam Glowacz, Andrzej Glowacz, Zygfryd Glowacz Original scientific paper Many fault diagnostic methods have been developed in recent years. One of them is thermography. It is a safe and non-invasive method of diagnostic. Fault diagnostic method of incipient states of Direct Current motor was described in the article. Thermographic images of the commutator of Direct Current motor were used in an analysis. Two kinds of thermographic images were analysed: thermographic image of commutator of healthy DC motor, thermographic image of commutator of DC motor with shorted rotor coils. The analysis was carried out for image processing methods such as: extraction of magenta colour, binarization, sum of vertical pixels and sum of all pixels in the image. Classification was conducted for K-Nearest Neighbour classifier. The results of analysis show that the proposed method is efficient. It can be also used for diagnostic purposes in industrial plants. Keywords: diagnostics; DC motor; K-NN classifier; maintenance; thermographic images Otkrivanje kratkih spojeva istosmjernog motora primjenom termografskih slika, binarizacije i K-NN klasifikatora Izvorni znanstveni članak Zadnjih je godina otkriveno mnogo metoda za otkrivanje greške. Jedna od njih je termografija, sigurna i neinvazivna metoda. U radu se opisuje otkrivanje početnog stanja greške u istosmjernom motoru. Analizirane su termografske slike ispravljača istosmjernog motora. Analizirane su dvije vrste termografskih slika: termografska slika ispravljača ispravnog istosmjernog motora i termografska slika ispravljača istosmjernog motora s pregorjelim zavojnicama rotora.
    [Show full text]
  • Copyrighted Material
    Contents About the Authors xv Series Preface xvii Preface xix Acknowledgements xxi 1 Colour Vision 1 1.1 Introduction . 1 1.2 Thespectrum................................. 1 1.3 Constructionoftheeye............................ 3 1.4 The retinal receptors . 4 1.5 Spectral sensitivities of the retinal receptors . 5 1.6 Visualsignaltransmission.......................... 8 1.7 Basicperceptualattributesofcolour..................... 9 1.8 Colourconstancy............................... 10 1.9 Relative perceptual attributes of colours . 11 1.10 Defectivecolourvision............................ 13 1.11 Colour pseudo-stereopsis . 15 References....................................... 16 GeneralReferences.................................. 17 2 Spectral Weighting Functions 19 2.1 Introduction . 19 2.2 Scotopic spectral luminous efficiency . 19 2.3 PhotopicCOPYRIGHTED spectral luminous efficiency . .MATERIAL . 21 2.4 Colour-matchingfunctions.......................... 26 2.5 TransformationfromR,G,BtoX,Y,Z .................. 32 2.6 CIEcolour-matchingfunctions........................ 33 2.7 Metamerism.................................. 38 2.8 Spectral luminous efficiency functions for photopic vision . 39 References....................................... 40 GeneralReferences.................................. 40 viii CONTENTS 3 Relations between Colour Stimuli 41 3.1 Introduction . 41 3.2 TheYtristimulusvalue............................ 41 3.3 Chromaticity................................. 42 3.4 Dominantwavelengthandexcitationpurity................. 44 3.5 Colourmixturesonchromaticitydiagrams................
    [Show full text]