Color Theory What Is Color? Color Spectra Color Spectra

Total Page:16

File Type:pdf, Size:1020Kb

Color Theory What Is Color? Color Spectra Color Spectra 4/29/2009 Color Theory What is color? ‣ Interaction of light and eye-brain ‣ What is color? system ‣ How do we perceive it? ‣ Light: electromagnetic phenomenon ‣ How do we describe and match colors? • Discerned by different wavelength ‣ Color spaces Color Spectra Color Spectra Pure colors - single wavelength Sample lights: How do we perceive them? 1 4/29/2009 Human Visual System Tristimulus Theory of Color Rods Important principle: - black & white receptors Any color spectra is perceived by sensors with 3 different - peripheral vision response frequencies! -sensitive Cones Tristimulus theory of color: - 3 type tuned to different Color is inherently a three-dimensional space frequencies - 3 cones have different Metamers: sensitivities If two colors produce the same tristimulus values, then they -central vision are visually indistinguishable - less sensitive Spectral Response of Human Visual System Color Spectra Sample lights: How to describe them numerically? 2 4/29/2009 Color Spectra Dominant Wavelength Important principle: ‣ Stating the numbers Anyyp color spectra is p erceived as: - Dominant wavelength (hue) - a single dominant wavelength - its hue - Luminance - mixed with a certain amount of white light (saturation) (total power) - of a certain intensity or brightness - Saturation (purity) Luminance and Saturation RGB color description ‣ Luminance (L) = (D-A)B + AW ‣ Use three primary color (r,g,b) ‣ Saturation = (D-A)B/L * 100% - C(⎣) = r(⎣)R + g(⎣)G + b(⎣)B - White lig ht: D = A , i .e., S at . = 0 negative!! g(⎣) r(⎣) b(⎣) 3 4/29/2009 RGB Primary Colors RGB Color Space CMY Color Model CMY <-> RGB ‣ C: Cyan; M: Magenta; Y: Yellow ‣ Subtractive primaries - Cyan, Magenta, and C 1 R Yellow are the compliment of Red, Green Blue M = 1 - G ‣ Specified by what is being removed from white Y 1 B ‣ Example: Cyan color = (1,0,0) means red is removed; CMY: (1,1,0) -> red and green is removed => what color? ‣ Sometimes CMYK - K: Black 4 4/29/2009 CIE Primary “Colors” CIE Primary Colors ‣ (X,Y,Z) - Not real colors ‣ The combination coefficients are positive ‣ PlPerceptual space C(⎣) = x(⎣)X + y(⎣)Y + z(⎣)Z CIE Chromaticity Chart CIE Gamut - The range of colors that can be produced on a device Green CRT Gamut Red Project to xy plane Blue 5 4/29/2009 Color Spaces HLS Color Space ‣ CIE model is a good color reference ‣ Not necessarily the most natural one ‣ Many other color spaces are used - RGB - HLS - CMY - HSV - YIQ - ... HLS Color Space (2) 6.
Recommended publications
  • Pale Intrusions Into Blue: the Development of a Color Hannah Rose Mendoza
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 Pale Intrusions into Blue: The Development of a Color Hannah Rose Mendoza Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY SCHOOL OF VISUAL ARTS AND DANCE PALE INTRUSIONS INTO BLUE: THE DEVELOPMENT OF A COLOR By HANNAH ROSE MENDOZA A Thesis submitted to the Department of Interior Design in partial fulfillment of the requirements for the degree of Master of Fine Arts Degree Awarded: Fall Semester, 2004 The members of the Committee approve the thesis of Hannah Rose Mendoza defended on October 21, 2004. _________________________ Lisa Waxman Professor Directing Thesis _________________________ Peter Munton Committee Member _________________________ Ricardo Navarro Committee Member Approved: ______________________________________ Eric Wiedegreen, Chair, Department of Interior Design ______________________________________ Sally Mcrorie, Dean, School of Visual Arts & Dance The Office of Graduate Studies has verified and approved the above named committee members. ii To Pepe, te amo y gracias. iii ACKNOWLEDGMENTS I want to express my gratitude to Lisa Waxman for her unflagging enthusiasm and sharp attention to detail. I also wish to thank the other members of my committee, Peter Munton and Rick Navarro for taking the time to read my thesis and offer a very helpful critique. I want to acknowledge the support received from my Mom and Dad, whose faith in me helped me get through this. Finally, I want to thank my son Jack, who despite being born as my thesis was nearing completion, saw fit to spit up on the manuscript only once.
    [Show full text]
  • Computational RYB Color Model and Its Applications
    IIEEJ Transactions on Image Electronics and Visual Computing Vol.5 No.2 (2017) -- Special Issue on Application-Based Image Processing Technologies -- Computational RYB Color Model and its Applications Junichi SUGITA† (Member), Tokiichiro TAKAHASHI†† (Member) †Tokyo Healthcare University, ††Tokyo Denki University/UEI Research <Summary> The red-yellow-blue (RYB) color model is a subtractive model based on pigment color mixing and is widely used in art education. In the RYB color model, red, yellow, and blue are defined as the primary colors. In this study, we apply this model to computers by formulating a conversion between the red-green-blue (RGB) and RYB color spaces. In addition, we present a class of compositing methods in the RYB color space. Moreover, we prescribe the appropriate uses of these compo- siting methods in different situations. By using RYB color compositing, paint-like compositing can be easily achieved. We also verified the effectiveness of our proposed method by using several experiments and demonstrated its application on the basis of RYB color compositing. Keywords: RYB, RGB, CMY(K), color model, color space, color compositing man perception system and computer displays, most com- 1. Introduction puter applications use the red-green-blue (RGB) color mod- Most people have had the experience of creating an arbi- el3); however, this model is not comprehensible for many trary color by mixing different color pigments on a palette or people who not trained in the RGB color model because of a canvas. The red-yellow-blue (RYB) color model proposed its use of additive color mixing. As shown in Fig.
    [Show full text]
  • Switchable Primaries Using Shiftable Layers of Color Filter Arrays
    Switchable Primaries Using Shiftable Layers of Color Filter Arrays Behzad Sajadi ∗ Kazuhiro Hiwadaz Atsuto Makix Ramesh Raskar{ Aditi Majumdery Toshiba Corporation Toshiba Research Europe Camera Culture Group University of California, Irvine Cambridge Laboratory MIT Media Lab RGB Camera Our Camera Ground Truth Our Camera CMY Camera RGB Camera 8.14 15.87 Dark Scene sRGB Image 17.57 21.49 ∆E Difference ∆E Bright Scene CMY Camera Our Camera (2.36, 9.26, 1.96) (8.12, 29.30, 4.93) (7.51, 22.78, 4.39) Figure 1: Left: The CMY mode of our camera provides a superior SNR over a RGB camera when capturing a dark scene (top) and the RGB mode provides superior SNR over CMY camera when capturing a lighted scene. To demonstrate this, each image is marked with its quantitative SNR on the top left. Right: The RGBCY mode of our camera provides better color fidelity than a RGB or CMY camera for colorful scene (top). The DE deviation in CIELAB space of each of these images from a ground truth (captured using SOC-730 hyperspectral camera) is encoded as grayscale images with error statistics (mean, maximum and standard deviation) provided at the bottom of each image. Note the close match between the image captured with our camera and the ground truth. Abstract ment of the primaries in the CFA) to provide an optimal solution. We present a camera with switchable primaries using shiftable lay- We investigate practical design options for shiftable layering of the ers of color filter arrays (CFAs). By layering a pair of CMY CFAs in CFAs.
    [Show full text]
  • Primary Color | 23
    BRAND Style GuiDe PriMary Color | 23 PRIMARY COLOR The primary color for Brandeis IBS is Brandeis IBS Blue, which is also the color of Brandeis University. Brandeis IBS Blue is BrandeiS iBS BLUE to be used as the prominent color in all communications. The PANTONE 294 C primary color is ideal for use in: CMYK 100 | 86 | 14 | 24 • Headlines • Large areas of text RGB 0 | 46 | 108 • Large background shapes HEX #002E6C Always use the designated color values for physical and digital Brandeis IBS communications. WEB HEX for use with white backgrounds #002E6C DO NOT use a tint of the primary color. Always use the primary color at 100% saturation. PANTONE color is used in physical applications whenever possible to reinforce the visual brand identity. CMYK designation is used for physical applications as an alternative to PANTONE (with the exception of any Microsoft Office documents, which use RGB). RGB values are used for any digital communications (excluding websites and e-communications), and all Microsoft Office documents (physical or digital). HEX values are used for any digital communications (excluding websites and e-communications). The value is an exact match to RGB. WEB HEX values are designated so websites and e-communica- tions can meet accessibility requirements. This compliance will ensure that people with disabilities can use Brandeis IBS online communications. For more about accessibility, visit http://www.brandeis.edu/acserv/disabilities/index.html. For examples of how the primary color should be applied across communications, please see pages 30-44. BRAND Style GuiDe SeCondary Color | 24 SeCondary Color The secondary color for Brandeis IBS is Brandeis IBS Teal, which is to be used strongly throughout Brandeis IBS com- BrandeiS iBS teal munications.
    [Show full text]
  • Visualizing the Novel Clinton Mullins Connecticut College, [email protected]
    Connecticut College Digital Commons @ Connecticut College Computer Science Honors Papers Computer Science Department 2013 Visualizing the Novel Clinton Mullins Connecticut College, [email protected] Follow this and additional works at: http://digitalcommons.conncoll.edu/comscihp Part of the Computer Sciences Commons Recommended Citation Mullins, Clinton, "Visualizing the Novel" (2013). Computer Science Honors Papers. 4. http://digitalcommons.conncoll.edu/comscihp/4 This Honors Paper is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut College. It has been accepted for inclusion in Computer Science Honors Papers by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. Visualizing Novelthe kiss me please Thesis and code written by Clint Mullins with Professor Bridget Baird as the project's faculty advisor. 1. Data Visualization Discussion of data visualization. 2. Visualizing the Novel Introduction to our problem and execution overview. 3. Related Works Technologies and libraries used for the project. .1 Semantic Meaning .2 Parsing Text .3 Topic Modeling .4 Other Visualizations 4. Methods Specific algorithms and execution details. .1 Gunning FOG Index .2 Character Extraction .3 Character Shaping .4 Gender Detection .5 Related Word Extraction .6 Moments / Emotion Spectrum / DISCO 5. The Visual Our visual model from conception to completion. .1 Concept Process .2 Current Visual Model .3 Java2D .4 Generalizing the Visual Model 6. Results Judging output on known texts. .1 Text One – Eternally .2 Text Two – Love is Better the Second Time Around .3 How Successful is This? 7.
    [Show full text]
  • PRIMARY-CONSISTENT SOFT-DECISION COLOR DEMOSAIC for DIGITAL CAMERAS (Patent Pending)
    PRIMARY-CONSISTENT SOFT-DECISION COLOR DEMOSAIC FOR DIGITAL CAMERAS (Patent Pending) Xiaolin Wu and Ning Zhang Department of Electrical and Computer Engineering McMaster University Hamilton, Ontario L8S 4M2 [email protected] ABSTRACT Another drawback of the existing color demosaic algorithms is that they interpolate missing color components at a Bayer color mosaic sampling scheme is widely used in digital pixel independently of the color interpolations at neighboring cameras. Given the resolution of CCD sensor arrays, the image pixels. The interpolation decision is made on a hypothesis on quality of digital cameras using Bayer sampling mosaic largely the local gradient direction. But these algorithms do not validate depends on the performance of the color demosaic process. A the underlying hypothesis after the color interpolation is done. common and serious weakness shared by all existing color The verification of the hypothesis is difficult if the pixels are demosaic algorithms is an inconsistency of sample treated individually. To overcome this drawback we introduce a interpolations in different primary color components, which is new notion of soft-decision color demosaic. At each pixel, the culprit for the most objectionable color artifacts. To cure the instead of forcing a decision on the gradient with insufficient problem we propose a primary-consistent color demosaic information to guide the interpolation, we make multiple algorithm. The performance of this algorithm is further hypotheses and interpolate missing color components for each enhanced by a soft-decision sample interpolation scheme. of the hypotheses. Then we examine the interpolation results Experiments demonstrate that the proposed framework of under different hypotheses in a window of the pixel in question, primary-consistent soft-decision color demosaic can and choose the one whose underlying hypothesis agrees with the significantly improve the image quality of digital cameras.
    [Show full text]
  • Color and False-Color Films for Aerial Photography
    Color and False-Color Films for Aerial Photography RATFE G. TARKINGTON and ALLAN L. SOREM Research Laboratories, Eastman Kodak Company Rochester, N. Y. ABSTRACT: Color reproduction by the photographic process using three primary colors is discussed, and the 11se of these photographic and optical principles for false-color reproduction is explained. The characteristics of two new aerial films-Kodak Ektachrome Aero Film (Process E-3) and a false-color type, Kodak Ektachrome Infrared Aero Film (Process E-3)-are compared with those of the older products they replace. The new films have higher speed, im­ proved definition, and less granularity. OPULAR processes of color photography are KODAK EKTACHROME AERO FILM (PROCESS E-3) P based upon the facts that (1) the colors perceived by the human eye can be produced BLUE SENSITIVE YELLOW POSITIVE IMAGE by mixtures of only three suitably chosen =====::::==l=====~=~=~~[M~ colors called primaries; (2) photographic GREEN SENSITIVE MAGENTA POSITIVE IMAGE emulsions can be made to respond selectively REO SENSITIVE CYAN POSITIVE IMAGE to each of these three colors; and (3) chemical reactions exist which can produce three in­ dividual colorants, each capable of absorbing FIG. 1. Schematic representation of a essentially only one of the chosen primary multilayer color film. colors. Although theory imposes no single unique set of three primary colors, in prac­ in a scene, but the results obtained with tice the colors chosen are those produced by modern color photographic materials are re­ light from successive thirds of the visible markably realistic representations of the spectrum: red, green, and blue. When these original scene.
    [Show full text]
  • 12. Optical Data Storage
    12. Optical data storage 12.1 Theory of color RGB additive color model B B Blue Magenta (0.6, 0.2, 1) (0,0,1) (1,0,1) Gray shades Cyan (g,g,g) (0,1,1) White (1,1,1) (0.6, 1, 0.7) R R Black Red (0,0,0) (1,0,0) G Green (0,1,0) (1, 0.7, 0.1) Yellow (1,1,0) G The RGB color model converts the additive color mixing system into a digital system, in which any color is represented by a point in a color tridimensional space and thus by a three coordinates vector. The coordinates are composed of the respective proportions of the primary light colors (Red, Green, Blue). The RGB model is often used by software as it requires no conversion in order to display colors on a computer screen. 169 CMY subtractive color model Y Y Yellow Green (0, 0.3, 0.9) (0,0,1) (1,0,1) Gray shades Red (g,g,g) (0,1,1) Black (1,1,1) C (0.4, 0, 0.3) C White Cyan (0,0,0) (1,0,0) M Magenta (0,1,0) (0.4, 0.8, 0) Blue (1,1,0) M The CMY color model corresponds to the subtractive color mixing system. The coordinates of a point in this color space are composed of the respective proportions of the primary filter colors (Cyan, Magenta, Yellow). The CMY model is used whenever a colored document is printed. The conversion RGB and CMY models can be written as follows: For the orange point, for example: 170 HSV color model V Green Yellow 120° 60° (37°, 0.9, 1) White H 1.0 S Cyan Red 180° 0° V Blue Magenta 240° 300° Hue is given in polar coordinate.
    [Show full text]
  • 14. Color Mapping
    14. Color Mapping Jacobs University Visualization and Computer Graphics Lab Recall: RGB color model Jacobs University Visualization and Computer Graphics Lab Data Analytics 691 CMY color model • The CMY color model is related to the RGB color model. •Itsbasecolorsare –cyan(C) –magenta(M) –yellow(Y) • They are arranged in a 3D Cartesian coordinate system. • The scheme is subtractive. Jacobs University Visualization and Computer Graphics Lab Data Analytics 692 Subtractive color scheme • CMY color model is subtractive, i.e., adding colors makes the resulting color darker. • Application: color printers. • As it only works perfectly in theory, typically a black cartridge is added in practice (CMYK color model). Jacobs University Visualization and Computer Graphics Lab Data Analytics 693 CMY color cube • All colors c that can be generated are represented by the unit cube in the 3D Cartesian coordinate system. magenta blue red black grey white cyan yellow green Jacobs University Visualization and Computer Graphics Lab Data Analytics 694 CMY color cube Jacobs University Visualization and Computer Graphics Lab Data Analytics 695 CMY color model Jacobs University Visualization and Computer Graphics Lab Data Analytics 696 CMYK color model Jacobs University Visualization and Computer Graphics Lab Data Analytics 697 Conversion • RGB -> CMY: • CMY -> RGB: Jacobs University Visualization and Computer Graphics Lab Data Analytics 698 Conversion • CMY -> CMYK: • CMYK -> CMY: Jacobs University Visualization and Computer Graphics Lab Data Analytics 699 HSV color model • While RGB and CMY color models have their application in hardware implementations, the HSV color model is based on properties of human perception. • Its application is for human interfaces. Jacobs University Visualization and Computer Graphics Lab Data Analytics 700 HSV color model The HSV color model also consists of 3 channels: • H: When perceiving a color, we perceive the dominant wavelength.
    [Show full text]
  • Design and Color
    Resource Center for RCCTA CareerTech Advancement https://www.okcareertech.org/educators/resource-center Design and Color Copyright 2019 Oklahoma Department of Career and Technology Education Resource Center for CareerTech Advancement All rights reserved. Printed in the United States of America by the Oklahoma Department of Career and Technology Education, Stillwater, OK 74074-4364 PHOTO CREDITS: Thinkstock® and Getty Images® Permission granted to download and print this publication for non-commercial use in a classroom or training setting. https://www.okcareertech.org/educators/resource-center - 2 Design and Color Objective Sheet Specific After completing this unit, the student should be able to: Objectives 1. Match terms related to principles of design and color to their definitions. 2. List functions of design. 3. List types of publication design. 4. Select the components of printed communication. 5. Arrange in order the steps in the design process. 6. Discuss factors to consider when applying principles of document design. 7. List the two basic types of art and sources for each type. 8. Match color descriptions to their definitions. 9. Select true statements concerning pointers on using color. 10. Complete statements concerning color theory. 11. Complete statements concerning color harmonies. 12. Distinguish among computer color models. 13. Select true statements concerning the basic categories of color printing. 14. Select true statements concerning the Pantone Matching System. Design and Color- 3 Design and Color Information Sheet
    [Show full text]
  • Prepared by Dr.P.Sumathi COLOR MODELS
    UNIT V: Colour models and colour applications – properties of light – standard primaries and the chromaticity diagram – xyz colour model – CIE chromaticity diagram – RGB colour model – YIQ, CMY, HSV colour models, conversion between HSV and RGB models, HLS colour model, colour selection and applications. TEXT BOOK 1. Donald Hearn and Pauline Baker, “Computer Graphics”, Prentice Hall of India, 2001. Prepared by Dr.P.Sumathi COLOR MODELS Color Model is a method for explaining the properties or behavior of color within some particular context. No single color model can explain all aspects of color, so we make use of different models to help describe the different perceived characteristics of color. 15-1. PROPERTIES OF LIGHT Light is a narrow frequency band within the electromagnetic system. Other frequency bands within this spectrum are called radio waves, micro waves, infrared waves and x-rays. The below figure shows the frequency ranges for some of the electromagnetic bands. Each frequency value within the visible band corresponds to a distinct color. The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. Spectral colors range from the reds through orange and yellow at the low-frequency end to greens, blues and violet at the high end. Since light is an electromagnetic wave, the various colors are described in terms of either the frequency for the wave length λ of the wave. The wavelength and frequency of the monochromatic wave is inversely proportional to each other, with the proportionality constants as the speed of light C where C = λ f.
    [Show full text]
  • CS8092-Computer Graphics and Multimedia Notes
    UNIT I ILLUMINATION AND COLOUR MODELS Light sources – basic illumination models – halftone patterns and dithering techniques; Properties of light – Standard primaries and chromaticity diagram; Intuitive colour concepts – RGB colour model – YIQ colour model – CMY colour model – HSV colour model – HLS colour model; Colour selection. Color Models Color Model is a method for explaining the properties or behavior of color within some particular context. No single color model can explain all aspects of color, so we make use of different models to help describe the different perceived characteristics of color. Properties of Light Light is a narrow frequency band within the electromagnetic system. Other frequency bands within this spectrum are called radio waves, micro waves, infrared waves and x-rays. The below fig shows the frequency ranges for some of the electromagnetic bands. Each frequency value within the visible band corresponds to a distinct color. 4 At the low frequency end is a red color (4.3*10 Hz) and the highest frequency is a violet color 14 (7.5 *10 Hz) Spectral colors range from the reds through orange and yellow at the low frequency end to greens, blues and violet at the high end. Since light is an electro magnetic wave, the various colors are described in terms of either the frequency for the wave length λ of the wave. The wave length ad frequency of the monochromatic wave are inversely proportional to each other, with the proportionality constants as the speed of light C where C = λ f A light source such as the sun or a light bulb emits all frequencies within the visible range to produce white light.
    [Show full text]