Mushroom Integrated Pest Management

Total Page:16

File Type:pdf, Size:1020Kb

Mushroom Integrated Pest Management P ENNSYLVANIA Mushroom Integrated Pest Management H andbook The PA IPM Program is a collaboration between the Pennsylvania Department of Agriculture and The Pennsylvania State University College of Agricultural aimed at promoting Sciences Integrated Pest Management in both agricultural and nonagricultural settings. This publication was developed by the PA IPM program with the cooperation of the American Mushroom Institute. Table of Contents Introduction 4 I. Theory of Integrated Pest II. Integrated Pest Manage- P. Coles Management 5 ment in Mushroom Production 20 A. History, Definitions, and the Economic Threshold 6 A. Specific Control Techniques S. Fleischer 1. Exclusion 21 B. Pesticides and Resistance in P. Coles IPM 13 S. Fleischer 2. Cultural Control 27 P. Coles/W. Barber 3. Biological Control 33 D. Rinker 4. Chemical Control 37 P. Coles B. Pesticide Safety 43 S. Whitney C. Pest Species Biology and Control 1. Arthropod Pests 47 C. Keil 2. Fungal Pathogens 52 P. Coles/W. Barber 3. Weed and Indicator Molds 61 D. Beyer 4. Bacterial Diseases 75 P. Wuest 5. Nematodes 78 P. Coles 6. Virus Disease 85 P. Romaine Introduction In this handbook we have addressed the Mushroom growing lends itself natu- Other features of mushroom production most important pest organisms with the rally to IPM. It is one of the few forms make IPM a necessity, not an option. potential to reduce mushroom yield and of agriculture in which the crop is With production measured in pounds quality. The handbook is intended for grown inside climate-controlled per square foot rather than in bushels or growers, as well as researchers, as both buildings. This offers two advantages tons per acre, mushroom growing is an educational tool and a reference not available to most other crops. First, very dense farming. If a pest gets into a manual. Recommendations presented control of the internal environment of room, it can spread rapidly because of here are not intended to bind growers in the growing room provides an impor- the large amount of food available their decision-making processes. Rather, tant weapon against many pests. within a relatively small space. In they should serve as a guide for develop- Temperature and humidity manipula- addition, many pests cannot be con- ing effective Integrated Pest Manage- tions, for instance, are two of many trolled using chemical pesticides, either ment (IPM) programs. Each grower cultural options available in mushroom because there are no products labeled should develop specific operating pest control with IPM. Second, since for mushroom use, or because materials procedures and checklists specifically the crop is grown indoors, pests can be don’t even exist for a specific type of tailored for individual use. In addition, excluded. This control measure is pest organism. Increased regulations are as technology is always changing, this unavailable to farmers of field crops, driving up the cost of producing new handbook will be updated periodically. who have little control over pest pesticides, making it difficult or invasion. An effective IPM program impossible for chemical manufacturers The handbook is divided into two parts, takes advantage of these particular to invest in a minor-use crop like covering the theory of IPM and the characteristics of mushroom growing. mushrooms. Usually, we are forced to practical aspects of IPM in mushroom rely on pesticides developed for other growing. The theory section defines commodities. An IPM program that IPM and gives it historical perspective. excludes pests and takes advantage of It also explains the concepts of pest the ability to manipulate the growing management and types of control, and environment not only is a more effective the importance of understanding pest means of pest control but also allows life cycles and biology. The section on limited dependency on chemical IPM in mushroom growing describes pesticides. how unique features of mushroom crops can be used effectively in IPM, and how These features make the IPM approach the theory of IPM can be applied the most effective and economical effectively. means of long-term sustainable pest control. Anyone trying to control pests without IPM eventually will end up at the mercy of those arthropods and mushroom diseases. We hope this manual will help you avoid that fate. 4 I. Theory of Integrated Pest Management 5 A. History, Definitions, and the Economic Threshold Shelby J. Fleischer These efforts at supervised control Integrated pest manage- History, Definitions, and declined rapidly when DDT and other the Economic Threshold new insecticides came into use. By the ment is the [information- late 1940s, over 90 percent of acreage Vernon M. Stern was working for the was treated with new materials, calcium based] selection, integra- Westside Alfalfa Pest Control Associa- arsenate fell into disuse, and the Pest tion in the San Joaquin Valley, Califor- Control Associations disappeared. The tion, and implementation of nia, a big association of growers new materials worked well for less cost, involving 10,285 acres when it formed so Vernon M. Stern went to graduate pest control based on in 1945. The association was organized school with Ken Hagen, the first person to help decide when to apply insecti- in charge of the Westside Association, and Robert van den Bosch, who had predicted economic, eco- cides against the alfalfa butterfly. also been in charge of the Association The alfalfa butterfly was not the most for a period of time. They worked with logical and sociological serious pest in alfalfa, but at times it Professor Ray F. Smith, who had flared up and caused very serious loss. initially organized the Pest Control consequences. Alfalfa growers had materials like Associations. calcium arsenate at their disposal, and they used these materials frequently, but It was not long before another insect, at significant expense and with hard the spotted alfalfa aphid, came into the Bottrell, 1979. work. The growers formed an associa- San Joaquin Valley, and by 1955 this tion after entomologists showed that a aphid was resistant to pesticides. Smith and his students (Stern, van den Bosch, Council of Environmental parasitoid controlled the butterfly most of the time, and that growers could and Hagen) imported an exotic parasi- Quality make many fewer pesticide applications toid and studied native predatory if they could estimate how well the insects. Both the parasitoid and the parasitoid was controlling the butterfly predators were effective when not larvae early in the crop growth cycle. destroyed by pesticides. They then The association hired people to do the found insecticide materials and use fieldwork and calculations and to give patterns that were relatively selective, advice. The Westside Alfalfa Pest allowing the natural enemies to coexist Control Association called this “super- with the valuable insecticide tools. vised control.” The system was success- ful, and soon the Westley Pest Control Association and the Tracey Pest Control Association formed in other parts of California. 6 In 1959 Vernon M. Stern with his co- The concept of economic injury level is This “Integrated Control” concept, authors Smith, van den Bosch, and shown in Figure 1. (Similar figures can published in 1959, was quickly ex- Hagen, wrote a paper entitled “The be found in Stern’s paper, published panded to include all methods of Integrated Control Concept,” (Stern et about 40 years ago, and similar concepts control. Thus, the Integrated Pest al. 1959) in which they generalized were in use in cotton production almost Management concept was born at least about integrating biological controls 75 years ago.) The figure shows that the 40 years ago. The concept was not born and insecticides. To make this work, pest density is changing over time. At solely in California; similar develop- they discussed monitoring, which low densities, the costs of the damage ments were occurring in Arkansas for requires understanding of sampling and done by the pests are less than the costs cotton crops and in Canada for apples. measurement of pest density. They of control, so it does not pay for the The concept arose from a philosophy noted how pest populations fluctuate manager to add the control. At higher for which the objective is to manage a over time. By monitoring density, they densities, however, it does pay to pest population below economically argued, intervention with pesticides can control. Pest density is dynamic, and damaging levels, and in a way that is be limited. This practice limits chemical managers can make short-term predic- practical for growers, by integrating applications to those necessary times tions about what the density soon will multiple control options (see Perkins and places where other tactics are not become. Managers usually want or need 1982 for a full historical perspective). sufficient. to implement controls a short time IPM always has emphasized integration before the Economic Injury Level is of control tactics, including pesticides, So when does it become necessary to reached. The Economic Threshold is the and monitoring to help determine time intervene with pesticides? In many density at which controls are added. It is and location for pesticide application. respects, this is an economic decision. It set so that, if controls are applied and requires relating economics or commer- are effective, the Economic Injury Level cial goals of production to fluctuating is not reached. pest density. Simply defined, the time to intervene with a pesticide is when the Figure 1. Graph of economic injury level. expected gain from using the pesticide equals the costs associated with its use. Pays to Control The pest density at which the gain equals the cost is the Economic Injury Level. Thus, IPM relates pest popula- tion dynamics to commercial produc- Pest Population tion goals. Economic Injury Level Does Not Pay to Control Time 7 Today, there are many definitions of Integrated Pest Management.
Recommended publications
  • PAEDOGENESIS in ERISTALIS ARBUSTORUM
    PAEDOGENESIS in ERISTALIS ARBUSTORUM Bart Achterkamp, under supervision of dr. Mart M. Ottenheim, dr. Leo W. Beukeboom and prof.dr. Paul M. Brakefield Section Evolutionary Biology and Section Animal Ecology, Institute of Evolutionary and Ecological Sciences Leiden University M. Sc. Thesis 1999 PAEDOGENESIS in Eristalis arbustorum (Diptera: Syrphidae) Sum mary Paedogenesisis the reproduction by larvae or juveniles. In insects this form of reproduction is known from one beetle, several species of gall midges and possibly Erisalishoverfiies.This study aims to show paedogenesis forE. arbuslorum under controlled conditions. The first two experiments were unsuccessful. In the third experiment, a total of 1266 larvae were reared and five occasions of paedogenesis were recorded among 542 successful pupations. In all cases of paedogenesis, one larva was put in the container and two larvae or pupae were collected later. The life history consequences of this way of reproduction are discussed. "Now don't forget. Gorold .THIS time punch some holes in the lid!" 2 I cunvrt(': BiBLIOTHEEK RU GRONINGEN 30 — * i7DOAA H"'t IIIIIIIIIIIIIIIIIIIIiIIIIIIIIIIIIII 217Q70R4 D67 INTRODUCTION .4 1.1 Life history .4 1.2 Terminology 5 1.3 Bisexual or parthenogenetic reproduction9 8 1 .4 Paedogenesis in non-insect animals 8 1.4.1 Phylum Hydrozoa 8 1.4.2 Phylum Platyhelminthes 9 1.4.3 Phylum Arthropoda: Rhizocephalan barnacles 9 1.4.4 Phylum Echinodermata 9 1.4.5 Paedogenetic salamanders 10 1.5 Paedogenesis in insects 11 1.5.1 Paedogenesis in Hemiptera 11 1.5.2 Paedogenesis
    [Show full text]
  • Thesis Rests with Its Author
    University of Bath PHD Paedogenetic reproduction in Mycophila speyeri and Heteropeza pygmaea (Cecidomyiidae, Diptera) Hunt, Justine L. Award date: 1996 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 11. Oct. 2021 Paedogenetic Reproduction in Mycophila speyeri and Heteropeza pygmaea (Ceeidomyiidae, Diptera). Submitted by Justine L. Hunt for the degree of PhD. of the University of Bath, 1996. Copyright Attention is drawn to the fact that the copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.
    [Show full text]
  • A Review of the Status of Larger Brachycera Flies of Great Britain
    Natural England Commissioned Report NECR192 A review of the status of Larger Brachycera flies of Great Britain Acroceridae, Asilidae, Athericidae Bombyliidae, Rhagionidae, Scenopinidae, Stratiomyidae, Tabanidae, Therevidae, Xylomyidae. Species Status No.29 First published 30th August 2017 www.gov.uk/natural -england Foreword Natural England commission a range of reports from external contractors to provide evidence and advice to assist us in delivering our duties. The views in this report are those of the authors and do not necessarily represent those of Natural England. Background Making good decisions to conserve species This report should be cited as: should primarily be based upon an objective process of determining the degree of threat to DRAKE, C.M. 2017. A review of the status of the survival of a species. The recognised Larger Brachycera flies of Great Britain - international approach to undertaking this is by Species Status No.29. Natural England assigning the species to one of the IUCN threat Commissioned Reports, Number192. categories. This report was commissioned to update the threat status of Larger Brachycera flies last undertaken in 1991, using a more modern IUCN methodology for assessing threat. Reviews for other invertebrate groups will follow. Natural England Project Manager - David Heaver, Senior Invertebrate Specialist [email protected] Contractor - C.M Drake Keywords - Larger Brachycera flies, invertebrates, red list, IUCN, status reviews, IUCN threat categories, GB rarity status Further information This report can be downloaded from the Natural England website: www.gov.uk/government/organisations/natural-england. For information on Natural England publications contact the Natural England Enquiry Service on 0300 060 3900 or e-mail [email protected].
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Nematodes As Biocontrol Agents This Page Intentionally Left Blank Nematodes As Biocontrol Agents
    Nematodes as Biocontrol Agents This page intentionally left blank Nematodes as Biocontrol Agents Edited by Parwinder S. Grewal Department of Entomology Ohio State University, Wooster, Ohio USA Ralf-Udo Ehlers Department of Biotechnology and Biological Control Institute for Phytopathology Christian-Albrechts-University Kiel, Raisdorf Germany David I. Shapiro-Ilan United States Department of Agriculture Agriculture Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, Georgia USA CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: þ44 (0)1491 832111 Tel: þ1 617 395 4056 Fax: þ44 (0)1491 833508 Fax: þ1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Web site: www.cabi-publishing.org ßCAB International 2005. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mech- anically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Nematodes as biocontrol agents / edited by Parwinder S. Grewal, Ralf- Udo Ehlers, David I. Shapiro-Ilan. p. cm. Includes bibliographical references and index. ISBN 0-85199-017-7 (alk. paper) 1. Nematoda as biological pest control agents. I. Grewal, Parwinder S. II. Ehlers, Ralf-Udo. III. Shaprio-Ilan, David I. SB976.N46N46 2005 632’.96–dc22 2004030022 ISBN 0 85199 0177 Typeset by SPI Publisher Services, Pondicherry, India Printed and bound in the UK by Biddles Ltd., King’s Lynn This volume is dedicated to Dr Harry K.
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION . WASHINGTON, D.C. Volume 121 1967 Number 3569 SOLDIER FLY LARVAE IN AMERICA NORTH OF MEXICO ' By Max W. McFadden ^ The Stratiomyidae or soldier flies are represented in America north of Mexico by approximately 237 species distributed through 37 genera. Prior to this study, larvae have been described for only 21 species representmg 15 genera. In addition to the lack of adequate descriptions and keys, classification has seldom been attempted and a phylogenetic treatment of the larvae has never been presented. The present study has been undertaken with several goals in mind: to rear and describe (1) as many species as possible; (2) to redescribe all previously described larvae of North American species; and (3), on the basis of larval characters, to attempt to define various taxo- nomic units and show phylogenetic relationships withm the family and between it and other closely related familes. Any attempt to establish subfamilial and generic lunits must be regarded as tentative. This is especially true in the present study since larvae of so many species of Stratiomyidae remain unknown. Undoubtably, as more species are reared, changes mil have to be made in keys and definitions of taxa. The keys have been prepared chiefly for identification of last mstar larvae. If earher mstars are known, they either have been 1 Modified from a Ph. D. dissertation submitted to the University of Alberta E(hnonton, Canada. ' 2 Entomology Research Division, U.S. Dept. Agriculture, Tobacco Insects Investigations, P.O. Box 1011, Oxford, N.C. 27565. : 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol.
    [Show full text]
  • Annotated Checklist of the Gall Midges from the Netherlands, Belgium and Luxembourg (Diptera: Cecidomyiidae) Hans Roskam & Sébastien Carbonnelle
    annotated checklist of the gall midges from the netherlands, belgium and luxembourg (diptera: cecidomyiidae) Hans Roskam & Sébastien Carbonnelle The gall midges are one of the most important groups of gall makers. Emerging larvae produce stimuli and the host plant responds by producing galls, fascinating structures which provide food and shelter for the developing larvae. Most gall inducing midges are host specific: they are only able to induce galls in a few, often related, plant species. A few species have different feeding modes: among them are saprophagous, fungivorous and predaceous species and some are used in biocontrol. We recorded 416 species in the whole area; 366 species are recorded from the Netherlands, 270 species from Belgium and 96 species from Luxembourg. importance, in the 8th volume in the series by introduction Barnes (1946-1969) and published eleven papers Over more than a century M.W. Beijerinck (1851- (1957-1999) on gall midges new for the Dutch 1931), J.C.H. de Meijere (1866-1947) and W.M. fauna, and, last but not least, was responsible for Docters van Leeuwen (1880-1960) wrote impor- the cecidomyiids in the Checklist of the Diptera tant papers about plant galls in the Netherlands. of the Netherlands by Beuk (2002). Nijveldt’s Dutch checklists of Diptera started with Bennet collection of microscope slides, more than 5,600 & van Olivier (1825, with all species placed in specimens, 4,300 of Dutch origin, mainly collected Tipula). Checklists of cecidomyiids were started by, by himself, but also by De Meijere and Van der e.g., Van der Wulp (1859, 18 spp.), Van der Wulp Wulp during the second half of the 19th, and first & De Meijere (1898, 63 spp.) and De Meijere half of the 20th century, and also included in the (1939), with many supplements (e.g., De Meijere Naturalis collection, is a second main reference 1946).
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Biology and Morphometry of Megaselia Halterata, an Important Insect Pest of Mushrooms
    Bulletin of Insectology 65 (1): 1-8, 2012 ISSN 1721-8861 Biology and morphometry of Megaselia halterata, an important insect pest of mushrooms 1 2 3 Mariusz LEWANDOWSKI , Marcin KOZAK , Agnieszka SZNYK-BASAŁYGA 1Department of Applied Entomology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland 2Department of Quantitative Methods in Economy, Faculty of Economics University of Information Technology and Management in Rzeszow, Rzeszow, Poland 3Department of Zoology, Chair of Biology of the Animal Enviroment, Warsaw University of Life Sciences - SGGW, Warsaw, Poland Abstract This paper aims to provide insights into knowledge on morphology, biology and development of Megaselia halterata (Wood), one of the most common insect pests of mushroom houses. We focus on such traits as body length and weight and width of pseu- docephalon, and show how these traits differ in subsequent development stages as well as across time. The development time of a generation, from egg to adult, lasted 16-19 days at 24 °C; for larval stage this time lasted 12-14 days. Mean weight of particular stages ranged from 0.003 mg for eggs up to 0.492 mg for pupae, while mean length from 0.35 mm for eggs to 2.73 mm for 3rd instar larvae. During larval development, mean body weight increased about 48 times and mean body length three times. Measurements of pseudocephalon of larvae showed that between the successive instars it increased approxi- mately 1.4 times. Using the statistical technique inverse prediction, we develop formulae for estimation of larvae development time based on mean body weight and length of larvae found in a sample taken from a mushroom house, on which basis one can decide whether the infection occurred in the mushroom house or during compost production.
    [Show full text]
  • Résumés Des Communications Et Posters Présentés Lors Du Xviiie Symposium International De La Société Européenne Des Nématologistes
    Résumés des communications et posters présentés lors du XVIIIe Symposium International de la Société Européenne des Nématologistes. Antibes,. France, 7-12 septembre' 1986. Abrantes, 1. M. de O. & Santos, M. S. N. de A. - Egg Alphey, T. J. & Phillips, M. S. - Integrated control of the production bv Meloidogyne arenaria on two host plants. potato cyst nimatode Globoderapallida using low rates of A Portuguese population of Meloidogyne arenaria (Neal, nematicide and partial resistors. 1889) Chitwood, 1949 race 2 was maintained on tomato cv. Rutgers in thegreenhouse. The objective of Our investigation At the present time there are no potato genotypes which was to determine the egg production by M. arenaria on two have absolute resistance to the potato cyst nematode (PCN), host plants using two procedures. In Our experiments tomato Globodera pallida. Partial resistance to G. pallida has been bred into cultivars of potato from Solanum vemei cv. Rutgers and balsam (Impatiens walleriana Hooketfil.) corn-mercial seedlings were inoculated withO00 5 eggs per plant.The plants and S. tuberosum ssp. andigena CPC 2802. Field experiments ! were harvested 60 days after inoculation and the eggs were havebeen undertaken to study the interactionbetween nematicide and partial resistance with respect to control of * separated from roots by the following two procedures: 1) eggs were collected by dissolving gelatinous matrices in a NaOCl PCN and potato yield. In this study potato genotypes with solution at a concentration of either 0.525 %,1.05 %,1.31 %, partial resistance derived from S. vemei were grown on land 1.75 % or 2.62 %;2) eggs were extracted comminuting the infested with G.
    [Show full text]
  • Download From
    Information Sheet on Ramsar Wetlands (RIS) – 2009-2014 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY Dr. Sálim Javed Manager, Terrestrial Assessment & Conservation Environment Agency – Abu Dhabi Designation date Site Reference Number PO Box 45553, Abu Dhabi, UAE Tel: +971-2-6934711 Mob: +971-50-6166405 Fax: +971-2-4997282 E-mail: [email protected] Dr. Shaikha Al Dhaheri Executive Director, Terrestrial and Marine Biodiversity Sector Environment Agency – Abu Dhabi PO Box 45553, Abu Dhabi, UAE Tel: +971-2-6934545 Mob: +971-50- Fax: +971-2-4997282 E-mail: [email protected] Mr.
    [Show full text]
  • Checklist of Sapro-Mycophagous Cecidomyiids (Diptera: Cecidomyiidae) from Korea
    Entomological Research Bulletin 33(2): 115-117 (2017) Insect diversity Checklist of Sapro-mycophagous Cecidomyiids (Diptera: Cecidomyiidae) from Korea Daseul Ham and Yeon Jae Bae* Department of Environmental Science and Ecological Engineering, Graduate School, Korea University, Seoul, Korea *Correspondence Abstract Yeon Jae Bae, Division of Environmental Science and Ecological Engineering, A revised checklist of the Korean sapro-mycophagous cecidomyiids is provided. College of Life Sciences and Biotechnology, Anaretella defecta (Winnertz), Lestremia cinerea Macquart, Lestremia leucophaea Korea University, 145 Anam-ro, Seongbuk- (Meigen), Coccopsilis marginata (Meijere), Divellepidosis rotundata (Yukawa), gu, Seoul 02841, Republic of Korea E-mail: [email protected] Divellepidosis separata (Yukawa), and Stomatocolpodia decussata (Yukawa) are added to the Korean sapro-mycophagous cecidomyiid fauna and Peromyia spinosa Received 10 November 2017 Jaschhof is moved to the subfamily Micromyinae from Lestremiinae. Accepted 15 November 2017 Key words: checklist, Korean sapro-mycophagous cecidomyiids Introduction based on previous taxonomic studies and checklists of Kore- an sapro-mycophagous cecidomyiids (ESK & KSAE 1994, Members of the gall midge family Cecidomyiidae are tiny Lee & Kim 2003, Paek et al. 2010, Shin et al. 2011, Ham & and fragile midges, ranging 0.5-3 mm in body length, rare- Bae 2016a, 2016b). Twelve species of Korean sapro-myco- ly larger than 8 mm (Oosterbroek & Hurkmans 2006). They phagous cecidomyiids belonging to 8 genera and 3 subfam- can be divided into three groups, phytophagous, predaceous, ilies are listed in this study. Further taxonomic studies are and sapro-mycophagous gall midges, based on feeding hab- needed not only to add Korean sapro-mycophagous cecido- its of larvae (Yukawa 1971, Harris 2004a).
    [Show full text]