Dizionario Di Astronomia Di Discipline E Tecniche Correlate

Total Page:16

File Type:pdf, Size:1020Kb

Dizionario Di Astronomia Di Discipline E Tecniche Correlate Heinrich F. Fleck Dizionario di Astronomia di discipline e tecniche correlate © Heinrich F. Fleck – Marzo MMIX Tutti i diritti riservati Presentazione uesto dizionario, pur avendo un’ambiziosa pretesa enciclopedica, è impostato in modo affatto diverso da altri presenti sul mercato librario o in rete, dal momento che le varie voci compaiono spesso nella veste di brevi articoli, ed il linguaggio si discosta da quello tecnico standardizzato dei dizionari, non alieno – a volte – da considerazioni personali, sempre Q comunque evidenziate e d’immediato riconoscimento. Le ragioni sono essenzialmente due. Innanzi tutto l’accondiscendenza ad un proprio modo di essere e pensare che solo nell’espri- mersi così ritiene di essere sufficientemente genuino ed esplicativo; secondariamente l’intenzione di attrarre il lettore con uno stile non asettico che gli trasmetta nella forma espositiva un poco di passione per questa scienza. Quanto al contenuto formale (librario ed elettronico) del lavoro, mi rendo ampiamente conto che un’opera simile avrebbe avuto maggiore rappresentatività e maggiore diritto di cittadinanza solo sino a una ventina fa, e come il dominio del web riduca notevolmente ed automaticamente il suo valore intrinseco, quale che esso realmente sia, dal momento che la stessa (e spesso più ampia) aggiornata messe di informazioni è reperibile con un click. Tuttavia, per quella provenienza von welt von gestern ancora in gran parte presente in me, ho inteso comunque provare a portare a compimento una realizzazione che da più di trent’anni costituiva un desiderio inespresso, e vorrei osservare che per quanto l’opera sia destinata ad esser superata in un breve volgere di tempo, essa ambisce a riempire un vuoto non più colmato nel nostro Paese dopo la pubblicazione nel 1960 della Piccola enciclopedia astronomica ad opera di G. Horn-D’Arturo e P. Tempesti. Nell’ottica di fornire la maggiore completezza sugli argomenti collegati comunque all’astronomia ed alla sua storia, nel Dizionario si trovano trattate molte voci che non compaiono in alcun testo a medesima vocazione. In questo senso, nella consapevolezza che la rinascita della scienza nel Seicento e nel Settecento è avvenuta in concomitanza – quantomeno – alla rilettura di fonti elleniche ed ellenistiche per secoli dimenticate, ritenendo che in quelle epoche si è determinata la saldatura fra due mondi, molto spazio è stato dedicato a figure dell’astronomia antica greca e del periodo ellenistico in specie, risultando di conseguenza discusse anche figure, come quella di Archimede ad esempio, il cui contributo astronomico, secondo quanto ci è giunto, non è davvero la parte più rilevante del pensiero scientifico: anche attraverso queste personalità, fondamentali nell’evoluzione della scienza, ho inteso rappresentare il progresso dell’astronomia. Ugualmente buona parte è stata dedicata alla storia della scienza. Si troveranno anche cenni relativi alla navigazione astronomica, alla tecnica di costruzione degli strumenti, alla loro lavorazione, con l’intento di fornire in questo caso più che una guida, una base di partenza per l’approfondimento delle singole tematiche. Un’ultima nota: è ovvio che questo lavoro non possiede alcuna pretesa di originalità. Dal punto di vista contenutistico esso è soltanto espressione di approfondire la conoscenza della materia, una sorta di Appunti di astronomia redatti in ordine alfabetico. Crediti Questo lavoro non sarebbe mai stato possibile senza la continua assistenza scientifica e tecnica fornitami nel puro consueto spirito di liberalità (e non circoscritta al solo ambito informatico) dal Prof. Claudio Beccari del Politecnico di Torino, che lavorando su un mio rudimentale preambolo in LATEX ha dapprima reimpostato, quindi scritto ex-novo, basandosi su scrbook, la nuova classe dictionarySCR, predisponendo il codice sorgente secondo le impostazioni iniziali introdotte, implementandolo con continue routines che hanno dato al documento finale un aspetto professionale. All’amico Prof. C. Beccari i miei più sentiti ringraziamenti. Copertine: Meno di sei secoli dividono gli osservatori astronomici mostrati in prima e quarta di copertina: i resti del cerchio meridiano nell’osservatorio di Ulugh-Begh (1394 - 1449) a Maragha, odierno Iran ed uno dei quattro telescopi dell’ESO a La Silla, Cile, che attiva con il fascio laser una stella artificiale per calibrare l’ottica adattiva. I II Guida alla consultazione Queste le impostazioni sintattiche e grafico-simboliche adottate nella compilazione del dizionario. Lemmi I lemmi sono scritti in neretto con la lettera iniziale minuscola ad eccezione dei nomi propri di persone, stelle, pianeti (Terra compresa). In quest’ultimo caso, si troverà scritto «Terra» se ci si riferisce al nostro pianeta, ma «terra» se il riferimento è, ad esempio, alla forza di gravità al suolo o «sole» se si parla di un sole medio. Sono scritti con l’iniziale maiuscola i nomi propri di «cose» (cioè: di oggetti) siano essi pianeti, stelle, asteroidi,. Sono stati egualmente considerati nomi propri di cose i vocaboli che non esprimono una caratteristica indefinita o generica, bensì puntuale come, ad esempio i nomi dei mesi. Sono scritti in minuscolo i nomi generici che indicano più specie, come «telescopio», o più possibili campi di ricerca come «fotometria», «spettroscopia», ecc. Nomi propri che indicano una specifica configurazione come «cassegrain», «nasmyth», sono scritti in minuscolo in quanto trattati come forme aggettivate di un nome (: telescopio). I nomi propri di persone compaiono sempre con il cognome. La grafia adottata è (in genere), quella originale, discostandosene raramente per adattare talvolta il nome straniero alla scrittura consuetudinaria italiana. Così, i nomi di studiosi del mondo greco e romano e del rinascimento, da tempo italianizzati, sono citati secondo la più conosciuta dizione italiana: «Vitruvio», «Apollonio», «Regiomontano»,. ugualmente per i nomi di astronomi: «Posidonio» e non Posidonius, «Keplero» e non Kepler, «Copernico» e non Kopperlingk. Ugualmente i nomi dei pianeti compaiono secondo il nome italiano. I nomi propri di persone composti da un suffisso, es.: «Antonio de Dominis», «James van Allen», compaiono sotto la lettera del cognome senza tener conto del suffisso: «Dominis Antonio de», «Allen James van». I lemmi relativi a nomi che presentano la prima lettera contraddistinta da segni di di pronuncia come «Ångström» o «Öpik» compaiono sotto le relative lettere alfabetiche “A” ed “O” senza considerare l’accentazione. Astronomi arabi ed ebrei, come ad esempio «Ishak ben Said», compaiono con il primo nome «Ishak». Quando il nome proprio della persona individua anche o un corpo celeste o una determinata località su un corpo celeste, ad esempio un cratere, viene utilizzata la denominazione ufficiale latina: «Archimedes, cratere»: in questi casi i relativi lemmi seguono sempre la trattazione del nome. Parola guida nell’ordinamento alfabetico è considerato il sostantivo o aggettivo che rappresenta l’illustrazione della singola voce, così le «tavole alfonsine», ad esempio, compaiono sotto la lettera «A» nella scrittura «alfonsine, tavole». Quando il lemma è composto di più parole è trattato a fini d’ordinamento alfabetico come un’unica parola. I lemmi composti da una lettera iniziale e seguiti da un sostantivo, come ad es.: «A ring» sono trattati come fossero una sola parola. I lemmi le cui iniziali sono formate da un dittongo, ad esempio «aequatorium», sono riportati secondo la scrittura e non secondo la pronuncia (equatorium). I lavori, quando citati, sono riportati con la lettera iniziale della prima parola del titolo senza tener conto di un eventuale articolo, ad esempio: «Arenario» (e non l’Arenario), ma «De Architectura», «De motu». La datazione epocale a.C. è segnata quando il personaggio è vissuto in quell’era e riportata solo una volta ad inizio del lemma; le datazioni epocali d.C. non sono indicate in quanto supposte, ad eccezione dei casi in cui in un singolo lemma si trovino alternativamente datazioni epocali a.C. e d.C.. Struttura e articolazione dei lemmi Trattazioni articolate, come la voce «calendario» ad esempio, sono individuate da un indice locale, le cui singole voci sono indicate dal simbolo : la singola voce è ripetuta ad inizio di trattazione dell’argomento. Ulteriori articolazioni sono indicate dal simbolo ed articolazioni ancora ulteriori dal simbolo •: quest’ultima solo non è indicizzata. «Titoli», «titoletti» e «titolini» sono scritti in corsivo per una rapida identificazione. Per uno specifico argomento spesso si è scelto di trattare tematiche correlati (vedi sempre lemma «calendario»), altre volte come nel lemma «montatura» si sono discusse le problematiche principali quali i tipi di montatura, rinviando per altre (cella, specchio,. ) ad altri lemmi data la specificità degli argomenti. Il documento è provvisto di numerosi rinvî ai vari nomi citati evidenziati nella versione ipertestuale in diverso colore per un link immediato. I rinvî preceduti dal simbolo → indicano che l’approfondimento alla voce indicata è considerato necessario per gli argomenti discussi nel lemma. Egualmente il simbolo −! è impiegato per indicare una serie di voci d’approfondimento cui si fa riferimento. Pur essendo i lemmi in riferimento evidenziati con diverso colore (versione ipertestuale), i simboli sono presenti per evidenziare il rinvio in caso di stampa del documento in bianco e nero. All’interno di un lemma l’evidenziazione fatta la prima volta non è (generalmente) più ripetuta. In alcuni lemmi sono riportati in fondo pagina note.
Recommended publications
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Guy Davenport's Literary Primitivism
    National Library Bibliothèque nationale 1+1 of Canada du Canada Acquisitions and Direction des acquisitions el Bibliographie Services Branch des services bibliographiques 395 Wcllnglon Slreel 395. rue Wellington Ottawa. Onl.lfIQ Ollowo (Onlorio) KIA ON4 K1AON4 NOTICE AVIS The quality of this microform is La qualité de cette microforme heavily dependent upon the dépend grandement de la qualité quality of the original thesis de la thèse soumise au submitted for microfilming. microfilmage. Nous avons tout Every effort has been made to fait pour assurer une qualité ensure the highest quality of supérieure de reproduction. reproduction possible. If pages are missing, contact the S'il manque des pages, veuillez university which granted the communiquer avec l'université degree. qui a conféré le grade. Some pages may have indistinct La qualité d'impression de print especially if the original certaines pages peut laisser à pages were typed with a poor désirer, surtout si les pages typewriter ribbon or if the originales ont été university sent us an inferior dactylographiées à l'aide d'un photocopy. ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure. Reproduction in full or in part of La reproduction, même partielle, this microform is governed by de cette microforme est soumise the Canadian Copyright Act, à la Loi canadienne sur le droit R.S.C. 1970, c. C-30, and d'auteur, SRC 1970, c. C-30, et subsequent amendments. ses amendements subséquents. Canada '. GUY DAVENPORT'S LITERARY PRIMITIVISM séan A. Q'Reilly
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Feature of the Month – January 2016 Galilaei
    A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2016 GALILAEI Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA October 26, 2015 03:32-03:58 UT, 15 cm refl, 170x, seeing 8-9/10 I sketched this crater and vicinity on the evening of Oct. 25/26, 2015 after the moon hid ZC 109. This was about 32 hours before full. Galilaei is a modest but very crisp crater in far western Oceanus Procellarum. It appears very symmetrical, but there is a faint strip of shadow protruding from its southern end. Galilaei A is the very similar but smaller crater north of Galilaei. The bright spot to the south is labeled Galilaei D on the Lunar Quadrant map. A tiny bit of shadow was glimpsed in this spot indicating a craterlet. Two more moderately bright spots are east of Galilaei. The western one of this pair showed a bit of shadow, much like Galilaei D, but the other one did not. Galilaei B is the shadow-filled crater to the west. This shadowing gave this crater a ring shape. This ring was thicker on its west side. Galilaei H is the small pit just west of B. A wide, low ridge extends to the southwest from Galilaei B, and a crisper peak is south of H. Galilaei B must be more recent than its attendant ridge since the crater's exterior shadow falls upon the ridge.
    [Show full text]
  • Princeton/Stanford Working Papers in Classics
    Princeton/Stanford Working Papers in Classics Coin quality, coin quantity, and coin value in early China and the Roman world Version 2.0 September 2010 Walter Scheidel Stanford University Abstract: In ancient China, early bronze ‘tool money’ came to be replaced by round bronze coins that were supplemented by uncoined gold and silver bullion, whereas in the Greco-Roman world, precious-metal coins dominated from the beginnings of coinage. Chinese currency is often interpreted in ‘nominalist’ terms, and although a ‘metallist’ perspective used be common among students of Greco-Roman coinage, putatively fiduciary elements of the Roman currency system are now receiving growing attention. I argue that both the intrinsic properties of coins and the volume of the money supply were the principal determinants of coin value and that fiduciary aspects must not be overrated. These principles apply regardless of whether precious-metal or base-metal currencies were dominant. © Walter Scheidel. [email protected] How was the valuation of ancient coins related to their quality and quantity? How did ancient economies respond to coin debasement and to sharp increases in the money supply relative to the number of goods and transactions? I argue that the same answer – that the result was a devaluation of the coinage in real terms, most commonly leading to price increases – applies to two ostensibly quite different monetary systems, those of early China and the Roman Empire. Coinage in Western and Eastern Eurasia In which ways did these systems differ? 1 In Western Eurasia coinage arose in the form of oblong and later round coins in the Greco-Lydian Aegean, made of electron and then mostly silver, perhaps as early as the late seventh century BCE.
    [Show full text]
  • Annual Report 2017
    Koninklijke Sterrenwacht van België Observatoire royal de Belgique Royal Observatory of Belgium Jaarverslag 2017 Rapport Annuel 2017 Annual Report 2017 Cover illustration: Above: One billion star map of our galaxy created with the optical telescope of the satellite Gaia (Credit: ESA/Gaia/DPAC). Below: Three armillary spheres designed by Jérôme de Lalande in 1775. Left: the spherical sphere; in the centre: the geocentric model of our solar system (with the Earth in the centre); right: the heliocentric model of our solar system (with the Sun in the centre). Royal Observatory of Belgium - Annual Report 2017 2 De activiteiten beschreven in dit verslag werden ondersteund door Les activités décrites dans ce rapport ont été soutenues par The activities described in this report were supported by De POD Wetenschapsbeleid De Nationale Loterij Le SPP Politique Scientifique La Loterie Nationale The Belgian Science Policy The National Lottery Het Europees Ruimtevaartagentschap De Europese Gemeenschap L’Agence Spatiale Européenne La Communauté Européenne The European Space Agency The European Community Het Fonds voor Wetenschappelijk Onderzoek – Le Fonds de la Recherche Scientifique Vlaanderen Royal Observatory of Belgium - Annual Report 2017 3 Table of contents Preface .................................................................................................................................................... 6 Reference Systems and Planetology ......................................................................................................
    [Show full text]
  • Sky and Telescope
    SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history.
    [Show full text]
  • Gresham's Law - Wikipedia, the Free Encyclopedia
    Gresham's law - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Gresham's_Law Help us provide free content to the world by donating today! Gresham's law From Wikipedia, the free encyclopedia (Redirected from Gresham's Law) Gresham's law is commonly stated: "Bad money drives out good." Gresham's law applies specifically when there are two forms of commodity money in circulation which are forced, by the application of legal-tender laws, to be respected as having the same face value in the marketplace. Gresham's law is named after Sir Thomas Gresham (1519 – 1579), an English financier in Tudor times. Contents 1 Definitions 1.1 "Good money" 1.2 "Bad money" 2 Theory 3 History of the concept 3.1 Origin of the name 4 The law in reverse 5 The law in other fields 6 See also 7 Notes 8 References 9 External links Definitions The terms "good" and "bad" money are used in a technical non-literal sense, and with regard to exchange values imposed by legal-tender legislation, as follows: "Good money" Good money is money that shows little difference between its exchange value and its commodity value. In the original discussions of Gresham's law, money was conceived of entirely as metallic coins, so the commodity value was the market value of the coined bullion of which the coins were made. An example is the US dollar, which was equal to 1/20.67 ounce (1.5048 g) of gold until 1934 — and carried an exchange value (at those fixed rates) roughly equal to its coined-gold market value.
    [Show full text]
  • 10Great Features for Moon Watchers
    Sinus Aestuum is a lava pond hemming the Imbrium debris. Mare Orientale is another of the Moon’s large impact basins, Beginning observing On its eastern edge, dark volcanic material erupted explosively and possibly the youngest. Lunar scientists think it formed 170 along a rille. Although this region at first appears featureless, million years after Mare Imbrium. And although “Mare Orien- observe it at several different lunar phases and you’ll see the tale” translates to “Eastern Sea,” in 1961, the International dark area grow more apparent as the Sun climbs higher. Astronomical Union changed the way astronomers denote great features for Occupying a region below and a bit left of the Moon’s dead lunar directions. The result is that Mare Orientale now sits on center, Mare Nubium lies far from many lunar showpiece sites. the Moon’s western limb. From Earth we never see most of it. Look for it as the dark region above magnificent Tycho Crater. When you observe the Cauchy Domes, you’ll be looking at Yet this small region, where lava plains meet highlands, con- shield volcanoes that erupted from lunar vents. The lava cooled Moon watchers tains a variety of interesting geologic features — impact craters, slowly, so it had a chance to spread and form gentle slopes. 10Our natural satellite offers plenty of targets you can spot through any size telescope. lava-flooded plains, tectonic faulting, and debris from distant In a geologic sense, our Moon is now quiet. The only events by Michael E. Bakich impacts — that are great for telescopic exploring.
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]
  • Maria Bieniek MIKOŁAJ KOPERNIK W ŚWIADOMOŚCI UCZNIÓW OLSZTYŃSKICH SZKÓŁ PODSTAWOWYCH I GIMNAZJÓW WYNIKI BADAŃ SONDA
    Maria Bieniek MIKOŁAJ KOPERNIK W ŚWIADOMOŚCI UCZNIÓW OLSZTYŃSKICH SZKÓŁ PODSTAWOWYCH I GIMNAZJÓW WYNIKI BADAŃ SONDAŻOWYCH Słowa kluczowe: Kopernik, sondaż/ankieta, uczniowie, szkoła podstawowa, gimnazjum Schlüsselwörter: Kopernikus, Umfrage/Fragebogen, Schüler, Grundschule, Gymnasium Keywords: Copernicus, survey/questionnaire, students, primary school, high school 1. Wprowadzenie Niewiele postaci w naszej historii zyskało tak wielką popularność, jak Mi- kołaj Kopernik. Nazwisko astronoma, jednego z najwybitniejszych uczonych w dziejach świata, jest powszechnie znane. Już w szkole podstawowej uczeń po- trafi wyrecytować powiedzenie: ,,Wstrzymał Słońce, ruszył Ziemię, polskie go wydało plemię”, stanowiące pochwałę zasług Kopernika. Nie wszyscy pamiętają, że ów popularny dwuwiersz różni się nieco od wersji pierwotnej tej miniatury poetyckiej, a jej autorem jest Jan Nepomucen Kamiński (1777–1855), założyciel teatru polskiego we Lwowie, aktor, reżyser, autor i tłumacz sztuk teatralnych1. W roku 2013 przypadały trzy rocznice związane z życiem Kopernika: 540 urodzin astronoma, 470 rocznica śmierci Kopernika, tyleż samo lat upłynęło od wydania drukiem dzieła O obrotach sfer niebieskich. Była to więc dobra okazja do przyjrzenia się bogatej spuściźnie Mikołaja Kopernika i przypomnienia sylwet- ki propagatora teorii heliocentrycznej. Dla mieszkańców naszego regionu postać Kopernika ma szczególne zna- czenie. Uczony czterdzieści lat swego życia spędził na Warmii, służąc jej miesz- 1 Zob. E. Sternik, Popularny dwuwiersz o Koperniku i jego zapomniany autor, Notatki Płockie, 1973, nr 2, s. 35. Komunikaty Mazursko-Warmińskie, 2014, nr 3(285) 390 Maria Bieniek Mikołaj Kopernik w świadomości uczniów olsztyńskich szkół podstawowych i gimnazjów 391 kańcom swoimi licznymi talentami. Rezydował w Lidzbarku Warmińskim (sie- dem lat), w Olsztynie, gdzie w latach 1516–1519 i 1520–1521 pełnił obowiązki administratora majątków kapituły warmińskiej, oraz we Fromborku, w którym mieszkał (z przerwami) aż dwadzieścia dziewięć lat.
    [Show full text]