bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.300236; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Contrasting tempos of sex chromosome 2 degeneration in sticklebacks 3 4 5 Jason M. Sardell1*, Matthew P. Josephson2, Anne C. Dalziel3, 6 Catherine L. Peichel2, and Mark Kirkpatrick1 7 8 1 Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 9 2 Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland 10 3 Department of Biology, Saint Mary’s University, Halifax, NS, Canada B3H 3C3 11 * Corresponding author:
[email protected] 12 13 RUNNING TITLE: Blackspotted stickleback sex chromosomes 14 KEY WORDS: Sex chromosomes, stickleback, Gasterosteus, neo-Y chromosome, 15 recombination, fish 16 17 Revised version submitted 16 July 2020; original version submitted 3 April 2020 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.300236; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 19 20 Abstract 21 The steps of sex chromosome evolution are often thought to follow a predictable pattern and tempo, but 22 few studies have examined how the outcomes of this process differ between closely related species with 23 homologous sex chromosomes.