Inventory of Tidepool and Estuarine Fishes in Acadia National Park

Total Page:16

File Type:pdf, Size:1020Kb

Inventory of Tidepool and Estuarine Fishes in Acadia National Park INVENTORY OF TIDEPOOL AND ESTUARINE FISHES IN ACADIA NATIONAL PARK Edited by Linda J. Kling and Adrian Jordaan School of Marines Sciences University of Maine Orono, Maine 04469 Report to the National Park Service Acadia National Park February 2008 EXECUTIVE SUMMARY Acadia National Park (ANP) is part of the Northeast Temperate Network (NETN) of the National Park Service’s Inventory and Monitoring Program. Inventory and monitoring activities supported by the NETN are becoming increasingly important for setting and meeting long-term management goals. Detailed inventories of fishes of estuaries and intertidal areas of ANP are very limited, necessitating the collection of information within these habitats. The objectives of this project were to inventory fish species found in (1) tidepools and (2) estuaries at locations adjacent to park lands on Mount Desert Island and the Schoodic Peninsula over different seasons. The inventories were not intended to be part of a long-term monitoring effort. Rather, the objective was to sample as many diverse habitats as possible in the intertidal and estuarine zones to maximize the resultant species list. Beyond these original objectives, we evaluated the data for spatial and temporal patterns and trends as well as relationships with other biological and physical characteristics of the tidepools and estuaries. For the tidepool survey, eighteen intertidal sections with multiple pools were inventoried. The majority of the tidepool sampling took place in 2001 but a few tidepools were revisited during the spring/summer period of 2002 and 2003. Each tidepool was visited once during late spring (Period 1: June 6 – June 26), twice during the summer (Period 2: July 3 – August 2 and Period 3: August 3 – September 18) and once during early fall (Period 4: September 29 – October 21). Physical characteristics of the tidepools were recorded along with the presence of other biological organisms like algae and invertebrates. Fish were collected, identified, counted, and measured for length. The number of tidepools containing fish did not vary much among sample periods. Twelve species of fish were identified in the tidepools. Initially, the dominant species were pollock, gunnels, and lumpfish. Pollock numbers decreased quickly and none were seen during either of the last two sampling periods. Gunnel numbers were relatively stable for the first two periods; however, their relative contribution to the catch declined during the second period due to an increased number of lumpfish caught during this period. Lumpfish were caught in 12 of the tidepools during the second sample period, suggesting a widespread occurrence. Nine tidepools contained lumpfish in the third sample period. A doubling in the number of gunnels in the third period and an increase in the number of mummichogs followed the influx of young of year (YOY) lumpfish. Gunnels were found in 13 tidepools during the third sample period. Large numbers of stickleback fry (three, four and nine-spine) and YOY mummichog were also documented to be abundant through the early summer in shallow estuarine mudflat pools and salt pannes. The mummichogs’ abundance is solely attributable to one site; the only tidepool to ever contain mummichogs. Atlantic sea snails increased in numbers over the course of the season and were most abundant in the last period. The short-horned sculpin also became relatively more numerous than the other species, largely due to the declining total number of fish captured. i We examined microhabitat variables (algal and grass abundance, invertebrate abundance and physical variables) associated with the presence, absence and abundance of tidepool fishes using principal component analysis (PCA), a multivariate statistical technique. Two important trends were apparent from the principal component analyses of tidepool fish data. First, fish presence and abundance became more predictable over the course of the season. Second, in all the sample periods there was a clear trend in the groupings of fish species. There were three primary types of tidepools, those where: (1) fish were absent, (2) mummichogs and fourspine sticklebacks were present, and (3) all other fish were present. Tidepools that were lacking in algal species, were also lacking in invertebrates and fish species. The separation of mummichogs and fourspine sticklebacks from all other fish species was largely controlled by the presence of the two different tidepool habitats around ANP: rocky ledges and mudflats. The two grouping of fish were clearly separated along these lines and there appears to be little overlap. The important physical parameters were always associated with vertical position relative to tide height, with the marine environment decreasing the temperature and increasing the salinity and the terrestrial environment increasing the temperature and decreasing salinity. For example, higher low tides resulted in reduced temperatures and increased salinities because of an greater marine influence. Whereas conditions in the high intertidal zone, being more influenced by the terrestrial environment, are likely to be more variable, with wet periods producing cooler and less saline conditions and dry periods producing warmer and more saline conditions. Salinity decreased during the year of this study. Early in the year, the physical characteristics of the tidepools were correlated with lower trophic level algal and invertebrate communities. Later in the season, the relationships between physical variables and algae/invertebrate species became non- significant, and the fish species correlated significantly with the algae and invertebrate species present. This suggests a cascade from physical factors contributing to algal and invertebrate species presence early to algal and invertebrate species correlating to fish species later in the year. Strong relationship between invertebrate and fish species presence suggest an important role of early season biological characteristics of tidepools, and their physical conditions such as relative height of the tidepool to the sea level, in structuring the eventual fish community. The progression of ecological structuring with season suggests that initial conditions are important in laying the foundation for later structure amongst fish species. Anthropogenic alterations to the trophic-shifting of ecological structure, through oil spills and physical disturbance, will therefore have effects beyond the time period in which they occur. Estuarine fish were inventoried during late spring and summer of 2002 and 2003, in five estuaries within Acadia National Park. Four estuaries were located on Mount Desert Island (MDI) and one was on Schoodic Point, the mainland section of ANP to the north of MDI. Physical characteristics of the estuaries were recorded along with the ii presence of other biological organisms like algae and invertebrates. Fish were collected, identified, counted, and measured for length. The results demonstrated that the location of culverts or sills relative to the mean tide height and local topography played an important role in structuring habitat characteristics. If the local relief is low and an impoundment of water is capable of collecting significant brackish water, the result is habitat suitable for dense populations of mummichogs and sticklebacks. Higher relief surrounding an estuary will only allow for a small pool of brackish water to form. The culverts also alter natural water column properties by forcing turbulent mixing and allow for substantial heating of the water over shallow mudflats and marshes. The differences in culvert placement within the estuaries of Acadia National Park have important effects on the flora and fauna. We documented that the pools of brackish water created by culverts allowed for populations of mummichogs and sticklebacks to outnumber any other species. It is not clear to what extent the impoundments negatively impact desirable species such as salmon, trout, and anadromous river herring. Management of marine species will require a comprehensive plan that includes freshwater processes. Past management, which focused on single species and systems, neglected species that move between habitats or ecosystems. A comprehensive plan will require the adoption of a broader view that incorporates different temporal and spatial scales. This may require that Park managers interact more with local, state and federal agencies charged with management of other systems. iii DEDICATION In tribute to Dr. John R. Moring, the contributors to this project would like to dedicate this work to his memory. John was a very productive writer, scientist, and teacher. He had a broad knowledge of both marine and freshwater fishes and was very interested in stream ecology, the effects of forest practices on fish habitat, and tidepool fishes. He was a dedicated teacher who, since 1979, was the major professor for 34 graduate students. He influenced many more undergraduate students throughout his tenure at the University of Maine. More importantly, he was an inspiring colleague, advisor, and friend. His friendly and gentle demeanor and quick wit are greatly missed by all those who had the honor of interacting with him, and serve as a great lesson in how to properly collaborate and advise within the academic world. Few are capable of appropriately melding personality and profession; John was one. Many people share the following sentiment regarding John: “he was one of the good guys”. iv TABLE OF CONTENTS Executive Summary ..........................................................................................................
Recommended publications
  • Variation in Marine Threespine Stickleback (Gasterosteus Aculeatus) and Its Implications for Adaptive Divergence
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2017 Contemporary ancestor? Variation in marine threespine stickleback (Gasterosteus aculeatus) and its implications for adaptive divergence Morris, Matthew Morris, M. (2017). Contemporary ancestor? Variation in marine threespine stickleback (Gasterosteus aculeatus) and its implications for adaptive divergence (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25434 http://hdl.handle.net/11023/3910 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Contemporary ancestor? Variation in marine threespine stickleback (Gasterosteus aculeatus) and its implications for adaptive divergence by Matthew Richard John Morris A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA JUNE, 2017 © Matthew Richard John Morris 2017 Abstract Standing genetic variation (SGV) can affect the incidence and pace of adaptation and parallel evolution. The role of SGV versus de novo mutation can be tested in ancestral-derived comparisons when the “contemporary ancestor” is extant. Assumptions about SGV in these contemporary ancestors require formal testing. The threespine stickleback is an icon of adaptive divergence, with multiple freshwater forms having evolved in parallel from a presumably panmictic, evolutionarily static marine population – in part from SGV at Ectodysplasin.
    [Show full text]
  • Chapter Ii Mine Tailings Facilities
    14 TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW TOWARDS ZERO HARM – A COMPENDIUM OF PAPERS PREPARED FOR THE GLOBAL TAILINGS REVIEW 15 SETTING THE SCENE CHAPTER II Upstream MINE TAILINGS 4 3 FACILITIES: OVERVIEW 2 1 AND INDUSTRY TRENDS Starter dyke: 1 Downstream The embankment design terms, upstream, Elaine Baker*, Professor, The University of Sydney, Australia and GRID Arendal, Arendal, Norway downstream and centreline, indicate the 4 Michael Davies*, Senior Advisor – Tailings & Mine Waste, Teck Resources Limited, Vancouver, Canada direction in which the embankment crest 3 moves in relation to the starter dyke at the Andy Fourie, Professor, University of Western Australia, Australia 2 base of the embankment wall. Gavin Mudd, Associate Professor, RMIT University, Australia 1 Kristina Thygesen, Programme Group Leader, Geological Resources and Ocean Governance, GRID Arendal, Norway Centreline Dyke: 2 to 4 or more 4 Dykes are added to raise the embankment. This continues throughout the operation 3 of the mine. 1. INTRODUCTION The tailings are most commonly stored on site 2 in a tailings storage facility. Storage methods for 1 This chapter provides an overview of mine tailings conventional tailings include cross-valley and paddock and mine tailings facilities. It illustrates why and (ring-dyke) impoundments, where the tailings are how mine tailings are produced, and the complexity behind a raised embankment(s) that then, by many Source: Vick, 1983, 1990 involved in the long-term storage and management definitions, become a dam, or multiple dams. of this waste product. The call for a global standard However, a tailings facility can have an embankment Figure 1.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Contrasting Tempos of Sex Chromosome Degeneration In
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.300236; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Contrasting tempos of sex chromosome 2 degeneration in sticklebacks 3 4 5 Jason M. Sardell1*, Matthew P. Josephson2, Anne C. Dalziel3, 6 Catherine L. Peichel2, and Mark Kirkpatrick1 7 8 1 Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 9 2 Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland 10 3 Department of Biology, Saint Mary’s University, Halifax, NS, Canada B3H 3C3 11 * Corresponding author: [email protected] 12 13 RUNNING TITLE: Blackspotted stickleback sex chromosomes 14 KEY WORDS: Sex chromosomes, stickleback, Gasterosteus, neo-Y chromosome, 15 recombination, fish 16 17 Revised version submitted 16 July 2020; original version submitted 3 April 2020 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.300236; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 19 20 Abstract 21 The steps of sex chromosome evolution are often thought to follow a predictable pattern and tempo, but 22 few studies have examined how the outcomes of this process differ between closely related species with 23 homologous sex chromosomes.
    [Show full text]
  • Appendix B Wells Harbor Ecology (Materials from the Wells NERR)
    APPENDICES Appendix B Wells Harbor Ecology (materials from the Wells NERR) CHAPTER 8 Vegetation Caitlin Mullan Crain lants are primary producers that use photosynthesis ter). In this chapter, we will describe what these vegeta- to convert light energy into carbon. Plants thus form tive communities look like, special plant adaptations for Pthe base of all food webs and provide essential nutrition living in coastal habitats, and important services these to animals. In coastal “biogenic” habitats, the vegetation vegetative communities perform. We will then review also engineers the environment, and actually creates important research conducted in or affiliated with Wells the habitat on which other organisms depend. This is NERR on the various vegetative community types, giving particularly apparent in coastal marshes where the plants a unique view of what is known about coastal vegetative themselves, by trapping sediments and binding the communities of southern Maine. sediment with their roots, create the peat base and above- ground structure that defines the salt marsh. The plants OASTAL EGETATION thus function as foundation species, dominant C V organisms that modify the physical environ- Macroalgae ment and create habitat for numerous dependent Algae, commonly known as seaweeds, are a group of organisms. Other vegetation types in coastal non-vascular plants that depend on water for nutrient systems function in similar ways, particularly acquisition, physical support, and seagrass beds or dune plants. Vegetation is reproduction. Algae are therefore therefore important for numerous reasons restricted to living in environ- including transforming energy to food ments that are at least occasionally sources, increasing biodiversity, and inundated by water.
    [Show full text]
  • Dam Effects on Low-Tide Channel Pools and Fish Use of Estuarine Habitat
    Beaver in Tidal Marshes: Dam Effects on Low-Tide Channel Pools and Fish Use of Estuarine Habitat W. Gregory Hood Wetlands Official Scholarly Journal of the Society of Wetland Scientists ISSN 0277-5212 Wetlands DOI 10.1007/s13157-012-0294-8 1 23 Your article is protected by copyright and all rights are held exclusively by Society of Wetland Scientists. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Wetlands DOI 10.1007/s13157-012-0294-8 ARTICLE Beaver in Tidal Marshes: Dam Effects on Low-Tide Channel Pools and Fish Use of Estuarine Habitat W. Gregory Hood Received: 31 August 2011 /Accepted: 16 February 2012 # Society of Wetland Scientists 2012 Abstract Beaver (Castor spp.) are considered a riverine or can have multi-decadal or longer effects on river channel form, lacustrine animal, but surveys of tidal channels in the Skagit riverine and floodplain wetlands, riparian vegetation, nutrient Delta (Washington, USA) found beaver dams and lodges in the spiraling, benthic community structure, and the abundance and tidal shrub zone at densities equal or greater than in non-tidal productivity of fish and wildlife (Jenkins and Busher 1979; rivers. Dams were typically flooded by a meter or more during Naiman et al.
    [Show full text]
  • Beaver Dam Mine Project Environmental Impact Statement
    Plain Language Summary BEAVER DAM MINE PROJECT ENVIRONMENTAL IMPACT STATEMENT 1 Table Of Contents 3 About 4 Project Overview 5 Sustainable Development at Beaver Dam Mine Project 6 Current Condition of the Project Site 8 Project Description 10 The Life of the Mine 12 The Environmental Assessment Process 14 Engaging Communities of Nova Scotia • Meeting with the Mi’kmaq of Nova Scotia • Meeting with the General Public 16 Traditional Use by Mi’kmaq People • Nearest Mi’kmaq Communities 18 The Natural & Human Environment Today • Fish & Wildlife • Water • Current Use by Mi’kmaq Communities • Mi’kmaq Ecological Knowledge Study • Traditional Land and Resource Use Study (Millbrook First Nation) • Cultural and Heritage Resources • Recreational and Commercial Activities 22 Effects on the Natural & Human Environment • Air • Light • Noise • Groundwater • Surface Water • Land • Animals • Fish • Birds • Cultural and Heritage Resources • Effects to the Mi’kmaq People 34 Environmental Monitoring 36 Reclamation 38 Environmental Management Programs ꢀ 40ꢀ BenefitsꢀofꢀtheꢀProject 2 41 Conclusions 1 Increase font size for all body copy? About The purpose of this booklet is to describe, in plain language, theꢀproposed development of a gold mine at Beaver Dam (Marinette), inꢀHalifax County, Nova Scotia. Atlantic Mining NS Corp. (Atlantic Gold) isꢀtheꢀcompany that wants to develop this mine. This is a plain language summary of the Environmental Impact Statement that Atlantic Gold first gave to the federal government in 2017. It is important to Atlantic Gold that you understand how they will build the mine. Atlantic Gold wants you to know how they will protect the environment during building, operating and closure of the mine.
    [Show full text]
  • Louvicourt Mine Tailings Storage Facility and Polishing Pond 2019 Dam Safety Inspection
    REPORT Louvicourt Mine Tailings Storage Facility and Polishing Pond 2019 Dam Safety Inspection Submitted to: Morgan Lypka, P.Eng. Teck Resources Ltd. 601 Knighton Road, Kimberley, BC V1A 3E1 Submitted by: Golder Associates Ltd. 7250, rue du Mile End, 3e étage Montréal (Québec) H2R 3A4 Canada +1 514 383 0990 001-19118317-5000-RA-Rev0 25 March 2020 25 March 2020 001-19118317-5000-RA-Rev0 Distribution List 1 e-copy: Teck Resources Ltd., Kimberley, BC 1 e-copy: Golder Associates Ltd., Saskatoon, SK 1 e-copy: Golder Associates Ltd., Montreal, QC 1 e-copy: MELCC, Rouyn-Noranda, QC 1 copy: MELCC, Rouyn-Noranda, QC i 25 March 2020 001-19118317-5000-RA-Rev0 Executive Summary This report presents the 2019 annual dam safety inspection (DSI) for the tailings storage facility (TSF) and polishing pond at the closed Louvicourt mine site located near Val-d’Or, Quebec. This report was prepared based on a site visit carried out on September 24, 2019 by Laurent Gareau and Simon Chapuis of Golder Associates Ltd (Golder), Morgan Lypka and Jason McBain of Teck Resources Limited (Teck, Owner), Jonathan Charland of Glencore Canada (Glencore, Owner) and Rene Fontaine of WSP (who conducts routine inspections with Glencore personnel), as well as on a review of available data representative of conditions over the period since the previous annual DSI. Golder Associates are the original designer of the facility and have been the provider of the Engineer of Record (EOR) since 2017. Golder performed an inspection in 2009, and then has performed annual inspections of the facilities since 2014.
    [Show full text]
  • Synopsis of the Parasites of Fishes of Canada
    1 ci Bulletin of the Fisheries Research Board of Canada DFO - Library / MPO - Bibliothèque 12039476 Synopsis of the Parasites of Fishes of Canada BULLETIN 199 Ottawa 1979 '.^Y. Government of Canada Gouvernement du Canada * F sher es and Oceans Pëches et Océans Synopsis of thc Parasites orr Fishes of Canade Bulletins are designed to interpret current knowledge in scientific fields per- tinent to Canadian fisheries and aquatic environments. Recent numbers in this series are listed at the back of this Bulletin. The Journal of the Fisheries Research Board of Canada is published in annual volumes of monthly issues and Miscellaneous Special Publications are issued periodically. These series are available from authorized bookstore agents, other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que. K I A 0S9. Make cheques or money orders payable in Canadian funds to the Receiver General for Canada. Editor and Director J. C. STEVENSON, PH.D. of Scientific Information Deputy Editor J. WATSON, PH.D. D. G. Co«, PH.D. Assistant Editors LORRAINE C. SMITH, PH.D. J. CAMP G. J. NEVILLE Production-Documentation MONA SMITH MICKEY LEWIS Department of Fisheries and Oceans Scientific Information and Publications Branch Ottawa, Canada K1A 0E6 BULLETIN 199 Synopsis of the Parasites of Fishes of Canada L. Margolis • J. R. Arthur Department of Fisheries and Oceans Resource Services Branch Pacific Biological Station Nanaimo, B.C. V9R 5K6 DEPARTMENT OF FISHERIES AND OCEANS Ottawa 1979 0Minister of Supply and Services Canada 1979 Available from authorized bookstore agents, other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que.
    [Show full text]
  • Biodiversity of Arctic Marine Fishes: Taxonomy and Zoogeography
    Mar Biodiv DOI 10.1007/s12526-010-0070-z ARCTIC OCEAN DIVERSITY SYNTHESIS Biodiversity of arctic marine fishes: taxonomy and zoogeography Catherine W. Mecklenburg & Peter Rask Møller & Dirk Steinke Received: 3 June 2010 /Revised: 23 September 2010 /Accepted: 1 November 2010 # Senckenberg, Gesellschaft für Naturforschung and Springer 2010 Abstract Taxonomic and distributional information on each Six families in Cottoidei with 72 species and five in fish species found in arctic marine waters is reviewed, and a Zoarcoidei with 55 species account for more than half list of families and species with commentary on distributional (52.5%) the species. This study produced CO1 sequences for records is presented. The list incorporates results from 106 of the 242 species. Sequence variability in the barcode examination of museum collections of arctic marine fishes region permits discrimination of all species. The average dating back to the 1830s. It also incorporates results from sequence variation within species was 0.3% (range 0–3.5%), DNA barcoding, used to complement morphological charac- while the average genetic distance between congeners was ters in evaluating problematic taxa and to assist in identifica- 4.7% (range 3.7–13.3%). The CO1 sequences support tion of specimens collected in recent expeditions. Barcoding taxonomic separation of some species, such as Osmerus results are depicted in a neighbor-joining tree of 880 CO1 dentex and O. mordax and Liparis bathyarcticus and L. (cytochrome c oxidase 1 gene) sequences distributed among gibbus; and synonymy of others, like Myoxocephalus 165 species from the arctic region and adjacent waters, and verrucosus in M. scorpius and Gymnelus knipowitschi in discussed in the family reviews.
    [Show full text]
  • Environmental Effects Monitoring Program Annual Report: 2017
    Environmental Effects Monitoring Program Annual Report: 2017 January 2018 Fundy Ocean Research Center for Energy PO Box 2573, Halifax, NS B3J 3N5 (902) 406-1166 www.fundyforce.ca Executive Summary The Fundy Ocean Research Center for Energy (FORCE) is Canada’s leading research centre for the demonstration and evaluation of tidal in-stream energy conversion (TISEC) technology. This technology (commonly known as “in-stream tidal turbines”) is part of an emerging sector designed to generate electricity from the ebb and flow of the tide. It also has application in river systems and has the potential to introduce another non-carbon emitting source of electricity to the Nova Scotia electrical grid. The first demonstration in-stream tidal energy turbine was operational at the FORCE site for a short time in 2009 and removed in 2010. There were no turbines present at FORCE until Cape Sharp Tidal Venture (CSTV) deployed a two-megawatt demonstration turbine in November 2016 and began a commissioning process. In April 2017, CSTV announced the turbine would be disconnected for temporary retrieval; on June 15th, the turbine was retrieved and moved to Saint John, New Brunswick shortly thereafter. Environmental effects monitoring programs (EEMPs) began at FORCE 2009; to-date, over 90 tidal-related research studies have been completed or are underway with funding from FORCE and the Offshore Energy Research Association. In 2016/2017, EEMP work is being conducted with academic and research partners, including the University of Maine, the Sea Mammal Research Unit Consulting (Canada), Envirosphere Consultants, Acadia University, Luna Ocean Consulting, JASCO Applied Scientists, Ocean Sonics, and Nexus Coastal Resource Management.
    [Show full text]
  • Common Fishes of the Hudson-Raritan Estuary
    THE BIOLOGY OF THE HUDSON-RARITAN ESTUARY: A MARINE EDUCATION PROGRAM Produced by the Staff of the Education Program at the New Jersey Marine Sciences Consortium Building 22, Fort Hancock Sandy Hook, New Jersey 07732 Funded by the Geraldine R. Dodge Foundation and the New Jersey Sea Grant College Program N,J,SeaGrantProgram PREFACE AND ACKNOWLEDGEMENTS The Hudson-Raritan Estuary encompasses the waters of New York Harbor and the tidally influenced portions of all of the rivers and streams that empty into it.The Estuary is an extraordinary resource and a biologically rich ecosystem. However, as the site of extensive human activity, it has experienced significant ecological stress. Presently, the Estuary is threatened by increasing pollution and overuse of its resources. Although much information has been made available in recent years about human use of the marine resources of the Hudson-Raritan Estuary, it is scattered among technical and semi- technical reports, scientific journals, newsletter and magazine articles and other documents produced by federal and state agencies, private environmental organizations, and academic programs. Educational materials related to the Estuary are typically geared towards users such as commercial and recreational fishers, environmentalists, college students, or the general public. Educational materials related to the Estuary for teachers and students are lacking. To address this need, the New Jersey Marine Sciences Consortium undertook a project funded by the Geraldine R. Dodge Foundation and the New Jersey Sea Grant College Program to develop an interdisciplinary marine education program on the biology of the Hudson-Raritan Estuary.It is the goal of this project to enable teachers to introduce middle and high school students to the important resources of the Estuary, allowing them to understand why the United States Environmental Protection Agency has designated the Hudson-Raritan Estuary one of national significance.
    [Show full text]