<<

excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved.

Chapter 18, Pages 543-566

Biomechatronics: A New Dawn Minas Liarokapis*, Kathleen A. Lamkin-Kennard†, Marko B. Popovic‡

*THE UNIVERSITY OF AUCKLAND, AUCKLAND, NEW ZEALAND †ROCHESTER INSTITUTE OF TECHNOLOGY, ROCHESTER, NY, UNITED STATES ‡WORCESTER POLYTECHNIC INSTITUTE, WORCESTER, MA, UNITED STATES

Abstract

This chapter summarizes the content presented in this book, focuses on the new developments in the field of biomechatronics, how these technologies may improve our everyday life and discusses some future directions that may deeply redefine humankind. More precisely, it presents new results in the fields of materials, sensors, and actuators, new approaches for the development of -machine interfaces, new directions in the fields of control, artificial intelligence, and machine learning, and new paradigms and designs in prosthetics, orthotics, and rehabilitation devices. Moreover, it discusses some future directions on artificial organs, tissues, implants and robotic surgery, the current trends in wearable devices, examples of biomechatronic technologies for animals and other human-oriented uses of biomechatronic technologies (e.g., biomechatronics in sports, exercise, and entertainment). In the last part, the chapter focuses on the future in an attempt to address difficult questions, such as “what are the boundaries of human existence?” and “what is the future of the biomechatronics age human?” The idea of a biomechatronics age human is rapidly transforming from a science fiction topic to a fast approaching reality. Is the world surrounding us ready? Are we ready to decide and design our next “evolution step,” to accelerate our progress? Are we ready to redefine what it means to be human? These are some discussions and debates that conclude an amazing journey into the new dawn of biomechatronic systems.

CHAPTER OUTLINE

18.1 Introduction ...... 543

18.2 New Sensors and Actuators ...... 544 18.3 Brain Machine Interfaces ...... 547

18.3.1 Alternatives to the Surface (EMG) Based Control ...... 548

18.3.2 Novel Neural Interfaces ...... 549

18.4 Control Strategies, AI, and Machine Learning ...... 550

18.4.1 Shared Control of Biomechatronic Devices ...... 550

18.4.2 Reinforcement and Deep Learning ...... 551

18.5 Bionic Tissue, Artificial Organs, and Implants ...... 552

18.5.1 Multimodal Artificial Skin ...... 553

18.5.2 Future Directions: Bioprinting, Bioartificial Organs,

and Biodegradable Electronics ...... 553

18.6 Prosthetic, Assistive, and Human Augmentation Devices ...... 554

18.6.1 Current Trends in Prosthetic Devices ...... 554

18.6.2 Assistive and Human Augmentation Devices ...... 555

18.6.3 Techno-Biological, Bioartificial Devices ...... 556

18.7 Biomechatronic Technologies for Animals ...... 557

18.7.1 Prosthetics ...... 558

18.7.2 Orthotics ...... 559

18.7.3 Additive Manufacturing of Veterinary Prosthetics and Orthotics ...... 559

18.8 Other Human Oriented Applications ...... 560

18.9 The Future of the Biomechatronics Age Human ...... 561

References ...... 563

Biomechatronics. https://doi.org/10.1016/B978-0-12-812939-5.00018-5

© 2019 Elsevier Inc. All rights reserved.

[chapter content intentionally omitted]

References [1] http://www.imdb.com/title/tt0071054/.

[2] http://www.imdb.com/title/tt0073965/.

[3] M. Caidin, , Ballantine Books, 1978.

[4] A. Miriyev, K. Kenneth Stack, H. Lipson, Soft material for soft actuators, Nat. Commun. 8 (2017).

[5] S. Ogden, L. Klintberg, G. Thornell, K. Hjort, R. Bod_en, Review on miniaturized paraffin phase change actuators, valves, and pumps, Microfluid. Nanofluid. 17 (2014) 53–71.

[6] E.T. Carlen, C.H. Mastrangelo, Electrothermally activated paraffin microactuators, J. Microelectromech. Syst. 11 (2002) 165–174.

[7] J.I. Lipton, S. Angle, R.E. Banai, E. Peretz, H. Lipson, Electrically actuated hydraulic solids, Adv. Eng. Mater. 18 (2016) 1710–1715.

[8] R. Altmuller, R. Schwodiauer, R. Kaltseis, S. Bauer, I.M. Graz, Large area expansion of a soft dielectric membrane triggered by a liquid gaseous phase change, Appl. Phys. A Mater. Sci. Process. 105 (2011) 1–3.

[9] B.C. MacMurray, X. An, S. Robinson, I. van Meerbeek, K. O’Brien, H. Zhao, R. Shepherd, Poroelastic foams for simple fabrication of complex soft robots, Adv. Mater. 27 (2015) 41.

[10] B. MacMurray, C. Futran, J.C. Lee, K. O’Brien, M. Amiri, B. Mosadegh, M. Silberstein, J. Min, R. Shepherd, Compliant buckled foam actuators and application in patient-specific direct cardiac compression, Soft Robot. (2017).

[11] https://softroboticstoolkit.com/foam-based-soft-actuators/design (02.04.18).

[12] https://spectrum.ieee.org/automaton/robotics/robotics-hardware/an-edible-actuator- foringestible-robots (02.04.18).

[13] J. Wade, T. Bhattacharjee, C. Kemp, Force and thermal sensing with a fabric-based skin, in: IROS Workshop on See, Touch, and Hear: 2nd Workshop on Multimodal Sensor-Based Robot Control for HRI and Soft Manipulation, 2016.

[14] D. Graupe, J. Salahi, K.H. Kohn, Multifunctional and orthosis control via microcomputer identification of temporal pattern differences in single site myoelectric signals, J. Biomed. Eng. 4 (1) (1982) 17–22.

[15] P.K. Artemiadis, K.J. Kyriakopoulos, EMG-based control of a robot arm using low-dimensional embeddings, IEEE Trans. Robot. 26 (2) (2010) 393–398.

[16] J. Vogel, C. Castellini, P.P. van der Smagt, EMG-based teleoperation and manipulation with the DLR LWR-III, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, pp. 672– 678.

[17] C. Cipriani, F. Zaccone, S. Micera, M.C. Carrozza, On the shared control of an EMG-controlled prosthetic hand: analysis of user prosthesis interaction, IEEE Trans. Robot. 24 (1) (2008) 170–184.

[18] L. Lucas, M. DiCicco, Y. Matsuoka, An EMG-controlled hand exoskeleton for natural pinching, J. Robot. Mechatr. 16 (5) (2004) 482–488. [19] E. Costanza, S.A. Inverso, R. Allen, P. Maes, Intimate interfaces in action: assessing the usability and subtlety of EMG-based motionless gestures, in: Proceedings of the SIGCHI conference on Human factors in computing systems, ACM, New York, NY, 2007, pp. 819–828.

[20] H. Benko, S. Saponas, D. Morris, D. Tan, Enhancing input on and above the interactive surface with muscle sensing, in: ITS ’09 Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, 2009.

[21] D. Sierra Gonzalez, C. Castellini, A realistic implementation of ultrasound imaging as a human– machine interface for upper-limb amputees, Front. Neurorobot. 7 (2013)17 https://doi.org/10.3389/fnbot.2013.00017.

[22] D. Yungher, M. Wininger, W. Baar, W. Craelius, A. Threlkeld, Surface muscle pressure as a means of active and passive behavior of muscles during gait, Med. Eng. Phys. 33 (2011) 464–471. https://doi.org/10.1016/j.medengphy.2010.11.012.

[23] T.D. Lalitharatne, K. Teramoto, Y. Hayashi, K. Kiguchi, Towards hybrid EEG-EMG-based control approaches to be used in bio-robotics applications: current status, challenges and future directions, Paladyn, J. Behav. Robot. 4 (2) (2013) 147–154.

[24] M. Markovic, S. Dosen, C. Cipriani, D.B. Popovic, D. Farina, Stereovision and augmented reality closed loop control of grasping in hand prostheses, J. Neural Eng. 11 (2013) 046001.

[25] C. Castellini, P. Artemiadis, M. Wininger, A. Ajoudani, M. Alimusaj, Bicchi, D. Farina, Proceedings of the first workshop on peripheral machine interfaces: going beyond traditional surface electromyography, Front. Neurorobot. 8 (2014) 22.

[26] R.M. Neely, D.K. Piech, S.R. Santacruz, M.M. Maharbiz, J.M. Carmena, Recent advances in neural dust: towards a neural interface platform, Curr. Opin. Neurobiol. 50 (2018) 64–71.

[27] A. Gijsberts, R. Bohra, D. Sierra Gonza´lez, A. Werner, M. Nowak, B. Caputo, C. Castellini, Stable myoelectric control of a hand prosthesis using non-linear incremental learning, Front. Neurorobot. 8 (8) (2014).

[28] P.M. Pilarski, M.R. Dawson, T. Degris, F. Fahimi, J.P. Carey, R.S. Sutton, Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning, in: IEEE International Conference on Rehabilitation Robotics (ICORR), 2011, pp. 1–7.

[29] P. Xia, H. Jie, P. Yinghong, EMG-based estimation of limb movement using deep learning with recurrent convolutional neural networks. Artif. Organs 42 (5) (2018) E67–E77, doi:10.1111/aor.13004.

[30] Z. Zou, C. Zhu, Y. Li, X. Lei, W. Zhang, J. Xiao, Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite, Sci. Adv. 4 (2) (2018).

[31] B.J. Jank, L. Xiong, P.T. Moser, J.P. Guyette, X. Ren, C.L. Cetrulo, D.A. Leonard, L. Fernandez, S. P. Fagan, H.C. Ott, Engineered composite tissue as a bioartificial limb graft, Biomaterials 61 (2015) 246–256.

[32] M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta, W.O. Soboyejo, N. Verma, D.H. Gracias, M. C. McAlpine, 3D printed bionic ears, Nano Lett. 13 (6) (2013) 2634–2639. [33] V. Mironov, T. Boland, T. Trusk, G. Forgacs, R.R. Markwald, Organ printing: computer-aided jet-based 3D tissue , Trends Biotechnol. 21 (4) (2003) 157–161.

[34] A.M. Dollar, R.D. Howe, The SDM hand as a prosthetic terminal device: a feasibility study, in: IEEE 10th International Conference on Rehabilitation Robotics, 2007.

[35] A.M. Dollar, R.D. Howe, The highly adaptive SDM hand: design and performance evaluation, Int. J. Robot. Res. 29 (5) (2010) 585–597.

[36] M.-S. Scholz, J.P. Blanchfield, L.D. Bloom, B.H. Coburn, M. Elkington, J.D. Fuller, M.E. Gilbert, S. A. Muflahi, M.F. Pernice, S.I. Rae, J.A. Trevarthen, S.C. White, P.M. Weaver, I.P. Bond, The use of composite materials in modern orthopaedic and prosthetic devices: a review, Compos. Sci. Technol. 71 (16) (2011) 1791–1803.

[37] F. Thorsteinsson, I. Gudmundsson, C. Lecomte, Prosthetic and Orthotic Devices Having Magnetorheological Elastomer Spring with Controllable Stiffness, https://patents.google.com/patent/US9724210B2/en.

[38] M.K. Shepherd, E.J. Rouse, The VSPA foot: a quasi-passive ankle-foot prosthesis with continuously variable stiffness, IEEE Trans. Neural Syst. Rehabil. Eng. 25 (12) (2017) 2375–2386.

[39] E. Saint-Elme, et al., Design of a biologically accurate prosthetic hand, in: 2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob), IEEE, 2017.

[40] G.P. Kontoudis, M.V. Liarokapis, A.G. Zisimatos, C.I. Mavrogiannis, K.J. Kyriakopoulos, Open-source, anthropomorphic, underactuated robot hands with a selectively lockable differential mechanism: towards affordable prostheses, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg (Germany), 2015.

[41] http://www.bionicboot.com/.

[42] http://www.air-trekkers.com/.

[43] B.B. Kang, et al., Development of a polymer-based tendon-driven wearable robotic hand, in: IEEE International Conference on Robotics and Automation (ICRA), 2016.

[44] https://en.wikipedia.org/wiki/IBOT#/media/File:Clinton-kamen.jpg.

[45] P. Mich, The emerging role of veterinary orthotics and prosthetics (V-OP) in small animal rehabilitation and pain management, Topics Compan. Anim. Med. 29 (2014) 10–19.

[46] A. Desrochers, G. St. Jean, D. Anderson, Limb amputation and prosthetics, Vet. Clin. Food Anim. 30 (2014) 143–155.

[47] http://cal.vet.upenn.edu/projects/saortho/chapter_48/48mast.htm (02.04.18).

[48] B. Goldner, A. Fuchs, I. Nolte, N. Schilling, Kinematic adaptations to tripedal locomotion in dogs, Vet. J. 204 (2) (2015) 192–200.

[49] S. Jarvis, D.Worley, S. Hogy, A. Hill, K. Haussler, R. Reiser, Kinematic and kinetic analysis of dogs during trotting after amputation of a thoracic limb, Am. J. Vet. Res. 74 (9) (2013) 1155–1163. [50] G. Cole, D. Millis, The effect of limb amputation on standing weight distribution in the remaining three limbs in dogs, Vet. Comp. Orthop. Traumatol. 30 (1) (2017) 59–61.

[51] W. Kano, S. Rahal, L. Mesquita, F. Agostinho, L. de Faria, Gait analysis in a cat with scapular luxation and contralateral forelimb amputation, Can. Vet. J. 54 (10) (2013) 990–991.

[52] M. Goldberg, J. Tomlinson, Physical Rehabilitation for Veterinary Technicians and Nurses, John Wiley & Sons Inc., 2018

[53] F. Diep,How 3-D printing made the perfect prosthetic legs for Derby the dog, Pop. Sci. (2014). https://www.popsci.com/how-3-d-printing-made-perfect-prosthetic-legs-derby-dog.

[54] http://www.k-9orthotics.com (02.04.18).

[55] http://advocacy.britannica.com/blog/advocacy/2010/02/animal-prosthetics-surviving-on- humaningenuity-and-compassion/ (02.04.18).

[56] N. Fitzpatrick, T. Smith, C. Pendegrass, R. Yeadon, M. Ring, A. Goodship, G. Blunn, Intraosseous transcutaneous amputation prosthesis (ITAP) for limb salvage in 4 dogs. Vet. Surg. 40 (8) (2011) 909–925, doi:10.1111/j.1532-950X.2011.00891.x.

[57] http://www.horsetalk.co.nz/news/2011/02/026.shtml (02.04.18).

[58] https://3dprintingindustry.com/news/10-animals-who-got-a-2nd-chance-in-lifewith-3d-printing- 51221 (02.04.18).

[59] K. Ten, G. Smit, P. Breedveld, 3D-printed upper limb prostheses: a review, Disabil. Rehabil. Assist. Technol. 12 (3) (2017) 300–314.

[60] M. Barry, Machine Man, Vintage, 2011.

[61] http://www.imdb.com/title/tt1219827/.

[62] E. Saint-Elme, M.A. Larrier Jr., C. Kracinovich, D. Renshaw, K. Troy, M. Popovic, Design of a biologically accurate prosthetic hand, in: IEEE RAS International Symposium onWearable & Rehabilitation Robotics Houston, TX, November 5–8, 2017.

[63] S.B. Kesner, L. Jentoft, F.L. Hammond, R.D. Howe, M.B. Popovic, Design considerations for an active soft orthotic system for shoulder rehabilitation, in: 33rd Annual International IEEE EMBS Conference, August 30–September 02, Boston, USA, 2011.

[64] I. Galiana, F.L. Hammond, R.D. Howe, M.B. Popovic, Wearable soft robotic device for post-stroke shoulder rehabilitation: identifying misalignments, in: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 7–12, Portugal, 2012.

[65] WPI Popovic Labs, Towards a Biomimetic Musculoskeletal Humanoid Robot with Human Movement Capabilities, 2018, http://users.wpi.edu/~mpopovic/pages/BiomimeticHumanoidRobot.html (Accessed on 2/12/2019).