ENG 384 Assignment.Odt

Total Page:16

File Type:pdf, Size:1020Kb

ENG 384 Assignment.Odt PLANNING AND CONSTRUCTION OF MECHATRONICS ENGINEERING FACILITIES FOR SUSTAINABLE DEVELOPMENT IN NIGERIA; CHALLENGES AND WAY FORWARD BY SAJINYAN, OLANREWAJU OLAKUNLE 18/ENG05/055 SUBMITTED TO MECHANICAL AND MECHATRONICS DEPARTMENT COLLEGE OF ENGINEERING, ABUAD IN PARTIAL FULFILLMENT OF ENG 384: ENGINEERING LAW 2ND MAY, 2021 ABSTRACT With time, technology and engineering keep progressing across the world. In ancient times, it started with only civil engineering which involved the building of structures like houses for shelter or tools to make farming easier. Now there’s a wide range of individual engineering studies one can dive into inside this modern age. Some examples being Electrical engineering, mechanical engineering, computer engineering, even software engineering. Some of these modern age engineering programs can be further divided into other engineering categories Mechatronics engineering included. Other engineering disciplines from these categories include: Bio-Medical engineering, Structural engineering, Aeronautical Engineering. In this paper, planning and construction of Mechatronics engineering structures and facilities for sustainable development in Nigeria; its challenges as well as its way forward will be treated. INTRODUCTION TO MECHATRONICS ENGINEERING Mechatronics, also called mechatronics engineering, is an interdisciplinary branch of engineering that focuses on the engineering of electronic, electrical and mechanical engineering systems, and also includes a combination of robotics, electronics, computer, telecommunications, systems, control, and product engineering. As technology advances over time, various subfields of engineering have succeeded in both adapting and multiplying. The intention of mechatronics is to produce a design solution that unifies each of these various subfields. Originally, the field of mechatronics was intended to be nothing more than a combination of mechanics and electronics, hence the name being a portmanteau of mechanics and electronics; however, as the complexity of technical systems continued to evolve, the definition had been broadened to include more technical areas. The word mechatronics originated in Japanese-English and was created by Tetsuro Mori, an engineer of Yaskawa Electric Corporation. The word mechatronics was registered as trademark by the company in Japan with the registration number of "46-32714" in 1971. However, the company later released the right to use the word to public, where upon the word began being used across the world. Nowadays, the word is translated into many languages and is considered an essential term for advanced automated industry. Many people treat mechatronics as a modern buzzword synonymous with automation, robotics and electromechanical engineering. French standard NF E 01-010 gives the following definition: "approach aiming at the synergistic integration of mechanics, electronics, control theory, and computer science within product design and manufacturing, in order to improve and/or optimize its functionality". Description A mechatronics engineer unites the principles of mechanics, electronics, and computing to generate a simpler, more economical and reliable system. The term "mechatronics" was coined by Tetsuro Mori, the senior engineer of the Japanese company Yaskawa in 1969. An industrial robot is a prime example of a mechatronics system; it includes aspects of electronics, mechanics, and computing to do its day-to-day jobs. Engineering cybernetics deals with the question of control engineering of mechatronic systems. It is used to control or regulate such a system . Through collaboration, the mechatronic modules perform the production goals and inherit flexible and agile manufacturing properties in the production scheme. Modern production equipment consists of mechatronic modules that are integrated according to a control architecture. The most known architectures involve hierarchy, polyarchy, heterarchy, and hybrid. The methods for achieving a technical effect are described by control algorithms, which might or might not utilize formal methods in their design. Hybrid systems important to mechatronics include production systems, synergy drives, planetary exploration rovers, automotive subsystems such as anti-lock braking systems and spin-assist, and everyday equipment such as autofocus cameras, video, hard disks, CD players and phones. Course Structure: Mechatronics students take courses in various fields: Mechanical engineering and materials science and engineering Electronics engineering Electrical engineering Computer engineering Computer science Systems engineering Control engineering Optical engineering Telecommunications Applications Machine vision Automation and robotics Servo-mechanics Sensing and control systems Automotive engineering, automotive equipment in the design of subsystems such as anti-lock braking systems Building automation / Home automation Computer-machine controls, such as computer driven machines like CNC milling machines, CNC waterjets, and CNC plasma cutters Expert systems Industrial goods Consumer products Mechatronics systems Medical mechatronics, medical imaging systems Structural dynamic systems Transportation and vehicular systems Mechatronics as the new language of the automobile Computer aided and integrated manufacturing systems Computer-aided design Engineering and manufacturing systems Packaging Microcontrollers / PLCs Microprocessors Physical implementations Mechanical modeling calls for modeling and simulating physical complex phenomena in the scope of a multi-scale and multi-physical approach. This implies to implement and to manage modeling and optimization methods and tools, which are integrated in a systemic approach. The specialty is aimed for students in mechanics who want to open their mind to systems engineering, and able to integrate different physics or technologies, as well as students in mechatronics who want to increase their knowledge in optimization and multidisciplinary simulation techniques. The speciality educates students in robust and/or optimized conception methods for structures or many technological systems, and to the main modeling and simulation tools used in R&D. Special courses are also proposed for original applications to prepare the students to the coming breakthrough in the domains covering the materials and the systems. For some mechatronic systems, the main issue is no longer how to implement a control system, but how to implement actuators. Within the mechatronic field, mainly two technologies are used to produce movement/motion. Variant of the field An emerging variant of this field is biomechatronics, whose purpose is to integrate mechanical parts with a human being, usually in the form of removable gadgets such as an exoskeleton. This is the "real-life" version of cyberware. Another variant that we can consider is Motion control for Advanced Mechatronics, which presently is recognized as a key technology in mechatronics. The robustness of motion control will be represented as a function of stiffness and a basis for practical realization. Target of motion is parameterized by control stiffness which could be variable according to the task reference. However, the system robustness of motion always requires very high stiffness in the controller. Avionics is also considered a variant of mechatronics as it combines several fields such as electronics and telecom with Aerospace engineering. Internet of things The Internet of things is the inter-networking of physical devices, embedded with electronics, software, sensors, actuators, and network connectivity which enable these objects to collect and exchange data. IoT and mechatronics are complementary. Many of the smart components associated with the Internet of Things will be essentially mechatronic. The development of the IoT is forcing mechatronics engineers, designers, practitioners and educators to research the ways in which mechatronic systems and components are perceived, designed and manufactured. This allows them to face up to new issues such as data security, machine ethics and the human-machine interface. See also Cybernetics Control theory Ecomechatronics Electromechanics Materials engineering Mechanical engineering technology Robotics Systems engineering References Sources Bradley, Dawson et al., Mechatronics, Electronics in products and processes, Chapman and Hall Verlag, London, 1991. Karnopp, Dean C., Donald L. Margolis, Ronald C. Rosenberg, System Dynamics: Modeling and Simulation of Mechatronic Systems, 4th Edition, Wiley, 2006. Bestselling system dynamics book using bond graph approach. Cetinkunt, Sabri, Mechatronics, John Wiley & Sons, Inc, 2007 Zhang, Jianhua . Mechatronics and Automation Engineering. Proceedings of the International Conference on Mechatronics and Automation Engineering . Xiamen, China, 2016. Further reading Robert Munnig Schmidt, Georg Schitter, Adrian Rankers and Jan van Eijk, . IOS Press, 2014. Bishop, Robert H., . CRC Press, 2006. De Silva, Clarence W., . CRC Press, 2005 Onwubolu, Godfrey C., . Butterworth-Heinemann, 2005. Rankers, Adrian M., . University Twente, 1997 External links – Elsevier List of publications concerning examples NF E 01-010 2008 – AFNOR XP E 01-013 2009 – AFNOR Bibliography: Wikipedia @baygross LITERATURE REVIEW Before Nigeria can thrive in the establishment of Mechatronics facilities, there are things to be considered. An example of those things is the establishment of Mechatronics courses to train undergraduates in both the theory and
Recommended publications
  • Ecog Signal Processing for Brain Computer Interface with Multiple Degrees of Freedom for Clinical Application Marie-Caroline Schaeffer
    ECoG signal processing for Brain Computer Interface with multiple degrees of freedom for clinical application Marie-Caroline Schaeffer To cite this version: Marie-Caroline Schaeffer. ECoG signal processing for Brain Computer Interface with multiple degrees of freedom for clinical application. Medical Physics [physics.med-ph]. Université Grenoble Alpes, 2017. English. NNT : 2017GREAS026. tel-01763451 HAL Id: tel-01763451 https://tel.archives-ouvertes.fr/tel-01763451 Submitted on 11 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTE UNIVERSITE GRENOBLE ALPES Spécialité : MBS – Modèles, méthodes et algorithmes en biologie, santé et environnement Arrêté ministériel : 25 mai 2016 Présentée par Marie-Caroline SCHAEFFER Thèse dirigée par Tetiana AKSENOVA (EDISCE), CEA préparée au sein du Laboratoire CLINATEC dans l'École Doctorale Ingénierie pour la Santé, la Cognition et l’Environnement Traitement du signal ECoG pour Interface Cerveau Machine à grand nombre de degrés de liberté pour application clinique Thèse soutenue publiquement le 6 Juin 2017 , devant le jury composé de : Prof. Alim-Louis BENABID Président Dr. Laurent BOUGRAIN Membre Prof. François CABESTAING Rapporteur Dr. Marco CONGEDO Membre Prof.
    [Show full text]
  • Human Enhancement Technologies and Our Merger with Machines
    Human Enhancement and Technologies Our Merger with Machines Human • Woodrow Barfield and Blodgett-Ford Sayoko Enhancement Technologies and Our Merger with Machines Edited by Woodrow Barfield and Sayoko Blodgett-Ford Printed Edition of the Special Issue Published in Philosophies www.mdpi.com/journal/philosophies Human Enhancement Technologies and Our Merger with Machines Human Enhancement Technologies and Our Merger with Machines Editors Woodrow Barfield Sayoko Blodgett-Ford MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editors Woodrow Barfield Sayoko Blodgett-Ford Visiting Professor, University of Turin Boston College Law School Affiliate, Whitaker Institute, NUI, Galway USA Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Philosophies (ISSN 2409-9287) (available at: https://www.mdpi.com/journal/philosophies/special issues/human enhancement technologies). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-0904-4 (Hbk) ISBN 978-3-0365-0905-1 (PDF) Cover image courtesy of N. M. Ford. © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Rehabilitation Technologies: Biomechatronics Point of View
    1 Rehabilitation Technologies: Biomechatronics Point of View Erhan Akdoğan and M. Hakan Demir Yıldız Technical University Turkey 1. Introduction Rehabilitation aims to bring back the patient’s physical, sensory, and mental capabilities that were lost due to injury, illness, and disease, and to support the patient to compensate for deficits that cannot be treated medically (http://www.ehendrick.org/healthy, June 2010). After the Spinal Cord Injury (SCI), stroke, muscle disorder, and surgical operation such as knee artroplasticy, patients need rehabilitation to recover their movement capability (mobilization) (Bradly et al., 2000; Inal, 2000; Metrailler et al., 2007; Okada et al., 2000; Reinkensmeyer, 2003 and http://www.manchesterneurophysio.co.uk, November 2010). The number of those who need rehabilitation is steadily increasing everyday. Parallel to this, equipment and techniques used in the field of rehabilitation are becoming more advanced and sophisticated. On the other hand, mechatronics, an interdisciplinary science, is a combination of machinery, electric-electronics and computer sciences plays an important role in rehabilitation technologies. In particular mechatronics systems provide important benefits for movements that are related to physical exercises in rehabilitation process. Biomechatronics is a sub-discipline of mechatronics. It is related to develop mechatronics systems which assist or restore to human body. A biomechatronic system has four units: Biosensors, Mechanical Sensors, Controller, and Actuator. Biosensors detect intentions of human using biological reactions coming from nervous or muscle system. The controller acts as a translator between biological and electronic systems, and also monitors the movements of the biomechatronic device. Mechanical sensors measure information about the biomechatronic device and relay to the biosensor or controller.
    [Show full text]
  • Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain–Computer Interfaces: a Systematic Literature Review
    sensors Systematic Review Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain–Computer Interfaces: A Systematic Literature Review Nuraini Jamil 1 , Abdelkader Nasreddine Belkacem 2,* , Sofia Ouhbi 1 and Abderrahmane Lakas 2 1 Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; [email protected] (N.J.); sofi[email protected] (S.O.) 2 Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; [email protected] * Correspondence: [email protected] Abstract: Humans interact with computers through various devices. Such interactions may not require any physical movement, thus aiding people with severe motor disabilities in communicating with external devices. The brain–computer interface (BCI) has turned into a field involving new elements for assistive and rehabilitative technologies. This systematic literature review (SLR) aims to help BCI investigator and investors to decide which devices to select or which studies to support based on the current market examination. This examination of noninvasive EEG devices is based on published BCI studies in different research areas. In this SLR, the research area of noninvasive Citation: Jamil, N.; Belkacem, A.N.; BCIs using electroencephalography (EEG) was analyzed by examining the types of equipment used Ouhbi, S.; Lakas, A. Noninvasive for assistive, adaptive, and rehabilitative BCIs. For this SLR, candidate studies were selected from Electroencephalography Equipment the IEEE digital library, PubMed, Scopus, and ScienceDirect. The inclusion criteria (IC) were limited for Assistive, Adaptive, and to studies focusing on applications and devices of the BCI technology.
    [Show full text]
  • Chapter 23. Lower Limb Active Prosthetic Systems—Overview
    CHAPTER LOWER LIMB ACTIVE PROSTHETIC SYSTEMS— OVERVIEW 23 Alexandra S. Voloshina and Steven H. Collins Department of Mechanical Engineering, Stanford University, Stanford, CA, United States 23.1 INTRODUCTION Changes in lower limb mechanics, sensory feedback, and power output associated with lower limb loss have substantial impacts on the gait biomechanics and energetics of individuals with amputa- tions. During unimpaired level ground walking, the ankle produces significant net positive ankle power throughout the stride [1,2], with other locomotor tasks, such as walking up slopes, relying on additional net positive power output at the knee [3]. As a result, lower limb amputation and the associated loss of ankle and knee power production is linked to slower self-selected walking speeds and increased energy expenditure [4]. People with transtibial and transfemoral amputation expend up to 30% and 60% more metabolic energy, respectively [4,5], when compared to unimpaired indi- viduals walking at the same speed. Similarly, the preferred walking speed of individuals with amputation can be 10%À65% slower than the average walking speed of unaffected individuals, depending on the level of amputation and the walking surface [4,6]. Individuals with lower limb amputation often adapt compensatory gait strategies that can lead to significant changes in gait dynamics, joint loading and work, and muscle activity in the affected and unaffected limbs. For example, unilateral below-knee prosthesis users tend to favor their unaf- fected limb [7,8], which often endures greater joint forces, moments, and stress during daily activity [9À11]. The hip joint on the contralateral limb can produce up to three times more work than the hip joint of an unimpaired individual, likely as compensation for lack of power production of con- ventional passive prostheses [1,12].
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Sudeep Sarkar Professor and Chair, Department of Computer Science and Engineering University of South Florida 4202 East Fowler Ave., ENB 118 Tampa, Florida 33620 E-mail: [email protected] http://www.cse.usf.edu/˜sarkar/ October 13, 2017 To teach, to seek, to serve, & to learn. 1. Educational Background • Doctor of Philosophy (Electrical Engineering) o The Ohio State University, Columbus, Ohio, March 1993. o Dissertation title: On Computing Perceptual Organization in Computer Vision. o Advisor: Prof. Kim L. Boyer. • Master of Science (Electrical Engineering) o The Ohio State University, Columbus, Ohio, March 1990. o Thesis: Optimal, Efficient Detection and Low Level Perceptual Organization of Edge Features. o Advisor: Prof. Kim L. Boyer. • Bachelor of Technology (Electrical Engineering) o Indian Institute of Technology, Kanpur, India, May 1988. o Project: Modeling of flicker noise using autoregressive moving average (ARMA) models: Simulation and Hardware Validation. o Project Advisor: Prof R. Sharan. 2. Honors 1. Fellow of the National Academy of Inventors (NAI), 2017. 2. Fellow of the American Institute for Medical and Biological Engineering (AIMBE), 2016. 3. Best Student Paper Award at IEEE International Conference on Identity, Security, and Behavior Analysis, 2015. 4. Best Scientific Paper Award at International Conference on Pattern Recognition, 2014. 5. Outstanding Faculty Award, University of South Florida, 2014. 6. Fellow of the American Association for the Advancement of Sciences (AAAS), 2013. 7. Fellow of the Institute for Electrical and Electronics Engineering (IEEE), 2013. 8. IEEE Computer Society Distinguished Visitor Program Speaker, 2010-2012. 9. Charter Member of National Academy of Inventors, 2010. 10. IBM Best Student Paper Award at International Conference on Pattern Recognition, 2010.
    [Show full text]
  • Non Invasive Brain-Machine Interfaces Final Report
    Non Invasive Brain-Machine Interfaces Final Report Authors: José del R. Millán, Pierre W. Ferrez, Anna Buttfield Affiliation: IDIAP Research Institute ESA Research Fellow/Technical Officer: Carlo Menon Contacts: Prof. Dr. José del R. Millán Tel: +41-27-7217770 Fax: +41-27-7217712 e-mail: [email protected] Dr. Carlo Menon Tel: +31(0)715658675 Fax: +31(0)715658018 e-mail: [email protected] Ariadna ID: 05/6402 Available on the ACT website Study Duration: 2 months http://www.esa.int/act Contract Number: 19708/06/NL/HE Table of Contents 1. Introduction............................................................................................. 3 2. EEG-based Brain-Computer Interfaces: Methodologies ........................ 6 2.1 Evoked BCIs ................................................................................... 6 2.2 Spontaneous BCI............................................................................. 7 2.2.1 Slow Potentials................................................................. 8 2.2.2 Rhythmic Activity............................................................ 9 2.3 Operant Conditioning & Machine Learning ................................. 11 2.4 Synchronous vs. Asynchronous BCI............................................. 12 2.5 Spatial Filtering............................................................................. 13 3. Hardware............................................................................................... 14 4. Current Applications............................................................................
    [Show full text]
  • Pdf Biomed Tech 2014; 59 (S1) © 2014 by Walter De Gruyter • Berlin • Boston
    Biomed Tech 2014; 59 (s1) © 2014 by Walter de Gruyter • Berlin • Boston. DOI 10.1515/bmt-2014-4445 S1024 Development of an implantable integrated MEMS pressure sensor us- ing polyimide epoxy composite and Atomic Layer Deposition for en- capsulation P. Gembaczka1, M. Görtz1 and M. Kraft1, 1Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, Germany, [email protected] Introduction The futher miniaturization of MEMS sensors (micro-electro-mechanical system) opens up a wide range of medical im- plants applications. Typical medically approved encapsulation materials are titanium or ceramic, which have thick layer (~100µm) and hence are relatively large. For MEMS pressure sensors the membranes must be free to move and in con- tact with tissues or body fluids. A thin and hermetically sealing encapsulation adapting to the shape of the MEMS sen- sor is needed. Flexible encapsulation based on silicone is no hermetic sealing. Here, a novel encapsulation method is demonstrated for a capacitive MEMS pressure sensor system. A high temperature resistant polyimide-epoxy composite was used as die attach material and as sealing compound for bond wires and parts of the chip surface (figure 1). This was followed by an atomic-layer-deposition (ALD) of aluminium oxide (Al2O3) and tantalum pentoxide (Ta2O5) (figure 2) providing a hermetically sealed encapsulation. The polyimide-epoxy is compatible with the ALD deposition tempera- ture of 275°C for several hours. Methods To locate even the smallest defects in the passivation a destructive amperometric measurement method in phosphate buffered saline (PBS) was chosen. To test the performance and repeatability, the pressure measurement system was op- erated and calibrated in a 0.9% saline solution (figure 3).
    [Show full text]
  • Course Outline: Biomechatronic Systems Course Description
    K. N. Toosi University of Technology Faculty of Electrical Engineering Course Outline: Biomechatronic Systems Course Description This course will cover the interdisciplinary elements of biomechatronic systems and provides insight into the diverse applications of current biomechatronic technologies. Most lectures incorporate examples of emerging research and development activities across the medical and engineering fields. Course Instructor Dr. Mehdi Delrobaei Email: [email protected] Phone: 84062450 Ex. 304 Course Evaluation Assignments: 10 % Mid-Term Exam: 25 % Project: 25 % Final Exam: 40 % Lectures Week 1: Introduction to Biomechatronics Bio-mechanics, Bio-electrics, Bionics, and Bio-mechatronics Physiological and Bio-mechanical Systems The Human Factors: Stimulus, Sensing, and Actuation Nervous System Musculoskeletal System Safety and Ethical Aspects Week 2: Signal Processing Biomedical and Bioelectric Signals Signal Acquisition Amplifiers and Noise Time Domain Analysis Frequency Domain Analysis Practical Considerations Weeks 3-4: Sensors and Actuators Simple Sensors: Switches, Resistive, Capacitive, Inductive, Magnetic Sonar and Optical Sensors Inertial Measurement Units Temperature, Pressure, and Tactile Sensing Body-Surface Biopotential Electrodes Simple Actuators: Solenoids, DC Motors, Stepper Motors, Servo Motors Linear Actuators Pneumatic Muscles Shape Memory Alloys Weeks 5-6: Feedback and Control Systems Biological Feedback Mechanisms Biomechatronic Feedback Mechanisms Proportional and Higher-Order
    [Show full text]
  • Biomechatronic Systems
    Biomechatronic Systems Unit 1: Introduction Mehdi Delrobaei Winter 2020 1 Mechatronics Source: Wikipedia 2 Biomechatronics • Biomechatronics = Mechatronics + Biology (Medicine) • Biomechatronics = Bioelectrics + Biomechanics • Biomechatronics =? Bionics, Biomimetics 3 Source: Ekso Bionics Course Outline Course Description This course will cover the interdisciplinary elements of biomechatronic systems engineering and provides insight into the diverse applications of current biomechatronic technologies. Most lectures incorporate examples of emerging research and development activities across the medical and engineering fields. Course Evaluation Assignments: 10 % Mid-Term Exam: 25 % Project: 25 % Final Exam: 40 % 4 Topics Week 1: Introduction to Biomechatronics Bio-mechanics, Bio-electrics, Bionics, and Bio-mechatronics Physiological and Bio-mechanical Systems The Human Factors: Stimulus, Sensing, and Actuation Nervous System Musculoskeletal System Safety and Ethical Aspects Week 2: Signal Processing Biomedical and Bioelectric Signals Signal Acquisition Amplifiers and Noise Time Domain Analysis Frequency Domain Analysis Practical Considerations 5 Topics Weeks 3-4: Sensors and Actuators Simple Sensors: Switches, Resistive, Capacitive, Inductive, Magnetic Sonar and Optical Sensors Inertial Measurement Units Temperature, Pressure, and Tactile Sensing Body-Surface Biopotential Electrodes Simple Actuators: Solenoids, DC Motors, Stepper Motors, Servo Motors Linear Actuators Pneumatic Muscles Shape Memory Alloys Weeks 5-6: Feedback
    [Show full text]
  • TED Talks and Dave Eggers's the Circle
    COPAS – Current Objectives of Postgraduate American Studies Issue 20.1 (2019) The Future of the Enhanced Self and Contemporary Science Fiction: TED Talks and Dave Eggers’s The Circle Loredana Filip ABSTRACT: This article sets out to examine the ways in which cultural and literary texts actively shape the discourse on human enhancement. First, it identifies the emergence of a “sense of wonder” (Sawyer 87) in TED talks that advance transhumanist ideals. Second, it investigates the critical and ethical potential of Dave Eggers’s The Circle (2013) to challenge the notion of a ‘post-bodied future.’ KEYWORDS: TED Talks; Human Enhancement; Transhumanism; Sense of wonder; The Circle; Affect of Aliveness The Future Survival of Humanity The twenty-first century has witnessed amazing advancements in science and technology, such as bionics, genetic engineering through CRISPR-Cas9, or the first robot-citizen. The notion of scientific progress has captured the imagination of futurists who begin to imagine a better future for humanity. This act of imagining the future is often associated with the genre of science fiction. Fredric Jameson traced the genre’s emergence back to the nineteenth century when the historical novel was replaced by SF as a “form which now registers some nascent sense of the future” (150), rather than the past. Whether utopian or dystopian, visions of the future continue to be a key feature of SF, attesting to its speculative and prophetic dimensions.1 And yet they also reflect the contemporary social reality, which gives them a critical edge (cf. Haraway 6). As Jameson argued, they force us to “restructure our experience of our own present” (151).
    [Show full text]
  • Current Challenges to the Clinical Translation of Brain Machine Interface Technology
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book International Review of Neurobiology, Vol. 107 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Charles W. Lu, Parag G. Patil and Cynthia A. Chestek, Current Challenges to the Clinical Translation of Brain Machine Interface Technology. In Clement Hamani and Elena Moro, editors: International Review of Neurobiology, Vol. 107, Burlington: Academic Press, 2012, pp. 137-160. ISBN: 978-0-12-404706-8 © Copyright 2012 Elsevier Inc. Academic Press Author's personal copy CHAPTER SEVEN Current Challenges to the Clinical Translation of Brain Machine Interface Technology Charles W. Lu*, Parag G. Patil*,†,1, Cynthia A. Chestek* *Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA †Department of Neurosurgery, University of Michigan Health System, Ann Arbor, Michigan, USA 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction and Motivation 137 2.
    [Show full text]