ENG 384 Assignment.Odt
Total Page:16
File Type:pdf, Size:1020Kb
PLANNING AND CONSTRUCTION OF MECHATRONICS ENGINEERING FACILITIES FOR SUSTAINABLE DEVELOPMENT IN NIGERIA; CHALLENGES AND WAY FORWARD BY SAJINYAN, OLANREWAJU OLAKUNLE 18/ENG05/055 SUBMITTED TO MECHANICAL AND MECHATRONICS DEPARTMENT COLLEGE OF ENGINEERING, ABUAD IN PARTIAL FULFILLMENT OF ENG 384: ENGINEERING LAW 2ND MAY, 2021 ABSTRACT With time, technology and engineering keep progressing across the world. In ancient times, it started with only civil engineering which involved the building of structures like houses for shelter or tools to make farming easier. Now there’s a wide range of individual engineering studies one can dive into inside this modern age. Some examples being Electrical engineering, mechanical engineering, computer engineering, even software engineering. Some of these modern age engineering programs can be further divided into other engineering categories Mechatronics engineering included. Other engineering disciplines from these categories include: Bio-Medical engineering, Structural engineering, Aeronautical Engineering. In this paper, planning and construction of Mechatronics engineering structures and facilities for sustainable development in Nigeria; its challenges as well as its way forward will be treated. INTRODUCTION TO MECHATRONICS ENGINEERING Mechatronics, also called mechatronics engineering, is an interdisciplinary branch of engineering that focuses on the engineering of electronic, electrical and mechanical engineering systems, and also includes a combination of robotics, electronics, computer, telecommunications, systems, control, and product engineering. As technology advances over time, various subfields of engineering have succeeded in both adapting and multiplying. The intention of mechatronics is to produce a design solution that unifies each of these various subfields. Originally, the field of mechatronics was intended to be nothing more than a combination of mechanics and electronics, hence the name being a portmanteau of mechanics and electronics; however, as the complexity of technical systems continued to evolve, the definition had been broadened to include more technical areas. The word mechatronics originated in Japanese-English and was created by Tetsuro Mori, an engineer of Yaskawa Electric Corporation. The word mechatronics was registered as trademark by the company in Japan with the registration number of "46-32714" in 1971. However, the company later released the right to use the word to public, where upon the word began being used across the world. Nowadays, the word is translated into many languages and is considered an essential term for advanced automated industry. Many people treat mechatronics as a modern buzzword synonymous with automation, robotics and electromechanical engineering. French standard NF E 01-010 gives the following definition: "approach aiming at the synergistic integration of mechanics, electronics, control theory, and computer science within product design and manufacturing, in order to improve and/or optimize its functionality". Description A mechatronics engineer unites the principles of mechanics, electronics, and computing to generate a simpler, more economical and reliable system. The term "mechatronics" was coined by Tetsuro Mori, the senior engineer of the Japanese company Yaskawa in 1969. An industrial robot is a prime example of a mechatronics system; it includes aspects of electronics, mechanics, and computing to do its day-to-day jobs. Engineering cybernetics deals with the question of control engineering of mechatronic systems. It is used to control or regulate such a system . Through collaboration, the mechatronic modules perform the production goals and inherit flexible and agile manufacturing properties in the production scheme. Modern production equipment consists of mechatronic modules that are integrated according to a control architecture. The most known architectures involve hierarchy, polyarchy, heterarchy, and hybrid. The methods for achieving a technical effect are described by control algorithms, which might or might not utilize formal methods in their design. Hybrid systems important to mechatronics include production systems, synergy drives, planetary exploration rovers, automotive subsystems such as anti-lock braking systems and spin-assist, and everyday equipment such as autofocus cameras, video, hard disks, CD players and phones. Course Structure: Mechatronics students take courses in various fields: Mechanical engineering and materials science and engineering Electronics engineering Electrical engineering Computer engineering Computer science Systems engineering Control engineering Optical engineering Telecommunications Applications Machine vision Automation and robotics Servo-mechanics Sensing and control systems Automotive engineering, automotive equipment in the design of subsystems such as anti-lock braking systems Building automation / Home automation Computer-machine controls, such as computer driven machines like CNC milling machines, CNC waterjets, and CNC plasma cutters Expert systems Industrial goods Consumer products Mechatronics systems Medical mechatronics, medical imaging systems Structural dynamic systems Transportation and vehicular systems Mechatronics as the new language of the automobile Computer aided and integrated manufacturing systems Computer-aided design Engineering and manufacturing systems Packaging Microcontrollers / PLCs Microprocessors Physical implementations Mechanical modeling calls for modeling and simulating physical complex phenomena in the scope of a multi-scale and multi-physical approach. This implies to implement and to manage modeling and optimization methods and tools, which are integrated in a systemic approach. The specialty is aimed for students in mechanics who want to open their mind to systems engineering, and able to integrate different physics or technologies, as well as students in mechatronics who want to increase their knowledge in optimization and multidisciplinary simulation techniques. The speciality educates students in robust and/or optimized conception methods for structures or many technological systems, and to the main modeling and simulation tools used in R&D. Special courses are also proposed for original applications to prepare the students to the coming breakthrough in the domains covering the materials and the systems. For some mechatronic systems, the main issue is no longer how to implement a control system, but how to implement actuators. Within the mechatronic field, mainly two technologies are used to produce movement/motion. Variant of the field An emerging variant of this field is biomechatronics, whose purpose is to integrate mechanical parts with a human being, usually in the form of removable gadgets such as an exoskeleton. This is the "real-life" version of cyberware. Another variant that we can consider is Motion control for Advanced Mechatronics, which presently is recognized as a key technology in mechatronics. The robustness of motion control will be represented as a function of stiffness and a basis for practical realization. Target of motion is parameterized by control stiffness which could be variable according to the task reference. However, the system robustness of motion always requires very high stiffness in the controller. Avionics is also considered a variant of mechatronics as it combines several fields such as electronics and telecom with Aerospace engineering. Internet of things The Internet of things is the inter-networking of physical devices, embedded with electronics, software, sensors, actuators, and network connectivity which enable these objects to collect and exchange data. IoT and mechatronics are complementary. Many of the smart components associated with the Internet of Things will be essentially mechatronic. The development of the IoT is forcing mechatronics engineers, designers, practitioners and educators to research the ways in which mechatronic systems and components are perceived, designed and manufactured. This allows them to face up to new issues such as data security, machine ethics and the human-machine interface. See also Cybernetics Control theory Ecomechatronics Electromechanics Materials engineering Mechanical engineering technology Robotics Systems engineering References Sources Bradley, Dawson et al., Mechatronics, Electronics in products and processes, Chapman and Hall Verlag, London, 1991. Karnopp, Dean C., Donald L. Margolis, Ronald C. Rosenberg, System Dynamics: Modeling and Simulation of Mechatronic Systems, 4th Edition, Wiley, 2006. Bestselling system dynamics book using bond graph approach. Cetinkunt, Sabri, Mechatronics, John Wiley & Sons, Inc, 2007 Zhang, Jianhua . Mechatronics and Automation Engineering. Proceedings of the International Conference on Mechatronics and Automation Engineering . Xiamen, China, 2016. Further reading Robert Munnig Schmidt, Georg Schitter, Adrian Rankers and Jan van Eijk, . IOS Press, 2014. Bishop, Robert H., . CRC Press, 2006. De Silva, Clarence W., . CRC Press, 2005 Onwubolu, Godfrey C., . Butterworth-Heinemann, 2005. Rankers, Adrian M., . University Twente, 1997 External links – Elsevier List of publications concerning examples NF E 01-010 2008 – AFNOR XP E 01-013 2009 – AFNOR Bibliography: Wikipedia @baygross LITERATURE REVIEW Before Nigeria can thrive in the establishment of Mechatronics facilities, there are things to be considered. An example of those things is the establishment of Mechatronics courses to train undergraduates in both the theory and