Sinervoscisom2010.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Sinervoscisom2010.Pdf Supplementary Online Materials Page 1. Table of contents 2. Materials and Methods 20. Figure S1 – Contour plot of estimated temperature change in Mexico. 21. Figure S2 – Phylogeny used in PIC analysis of Sceloporus lizard extinctions 23. Figure S3 – Phylogeny used in Phylogenetic Independent Contrasts analysis of lineage survival, Tb, Tair and reproductive mode 24. Figure S4 – Te for the Yucatán ground-truth of Sceloporus serrifer extinctions 25. Figure S5 – Temperature change at weather stations in the interior Yucatán peninsula 27. Figure S6 – Phylogeny of Phrynosomatidae used in Phylogenetic Independent Contrasts analysis of Tb and CTmax 28. Figure S7 – Phylogenetic Independent Contrasts for Tb and CTmax of the Phrynosomatidae 29. Figure S8 – Phylogeny of lizard families and reconstruction of thermoregulatory mode 31. Figure S9 – Map showing georeferenced Tb values and sites used to validate the extinction model 32. Table S1 – Geo-referenced data on extinction of Sceloporus lizards 40. Table S2 – Geo-referenced data on Mexican weather stations 44. Table S3 – Parametric climate surfaces for Tmax for México 46. Table S4 – Data set for Phylogenetic Independent Contrasts analysis of lineage survival, Tb, Tair and reproductive mode 48. Table S5 – Data set for Phylogenetic Independent Contrasts analysis of Tb and CTmax 50. Table S6 – Geo-referenced data on Tb for lizard families 75. Table S7 – Local extinctions in biotas of South America, Europe, Africa and Australia 85. Table S8 – Correspondence between local population extinction and species extinction 86. Literature cited 1 Materials and Methods Resurvey of Sceloporus localities in Mexico From 2002-2008, we resurveyed localities for Sceloporus lizard species, at sites previously described in the literature or based on our own field studies from 1980-1995. We specifically excluded any cases of extinction where habitat modification was the cause and only included sites characterized by intact habitat as described in historical surveys. We quadrupled sampling effort (hours × personnel) relative to past surveys in cases of putative extinction events to ensure that we minimized registration of false extinction records. Sceloporus lizards are heliophilic ectotherms and quite conspicuous during morning hours when they bask and engage in elaborate push-up displays, which enhances the probability of detection, especially during the breeding season when we conducted field surveys. Thus, erroneous extinction events are unlikely compared to other lizard species that have cryptic activity patterns. We resurveyed 46 species at 200 localities. We registered a total of 24 extinctions, or 12% of all populations surveyed (Table S1). Phylogenetic inference in the Phrynosomatidae Because species with adjacent ranges might be related phylogenetically, we used methods of phylogenetic independent contrasts (PIC) to determine associations among extinction risk, geography, climate and thermal adaptations like viviparity and Tb. We mapped extinctions on a phylogeny to account for phylogenetic structure in the pattern of extinctions (Figure S2). Phylogeny used for mapping extinctions was based on based on a Sceloporine super tree (S1) and phylogenies for subclades (S2, S3). We obtained most of the data for the Tb of Sceloporus from Andrew’s (S4) review, but we also included Garrick’s (S5) Tb measure for S. cyanogenys (the control values), as well as our own measurements. We also used a phylogeny for the Phrynosomatidae to reconstruct evolutionary changes in the Critical Thermal Maximum (S6), CTmax, as a function of Tb. For CTmax and Tb of the Phrynosomatidae, we used data from Table S4 for Tb of Sceloporus and reviewed additional data in the literature for Tb and CTmax across the Phrynosomatidae (S7-S22). The phylogeny is based on the Sceloporine super tree (S1) and phylogenies for subclades (S23), and a more recent Phrynosomatidae phylogeny that includes 2 evolutionary branch lengths based on 2 mtDNA genes and 5 nuclear genes (S24). This recent phylogeny confirms the topology of the Sceloporine super tree based on diverse genetic data (S1). We computed phylogenetic independent contrasts (PIC) (Figure S4) using the PDAP (S25) module of Mesquite (S26) and branch lengths are based on the Phrynosomatidae phylogeny (S24). Details on Yucatán ground-truth and the thermal physiological model of extinction Thermal models designed to mimic thermal properties of basking lizards estimate operative model temperatures, Te [(S27) PVC pipe size, 2.5×15cm, grey primer paint to match reflectance of S. serrifer], were connected to a HOBOTEMP™ and deployed at 4 sites in the Yucatán. We recorded average model temperature, Te, every h over a 4-month period (Jan-May). Geographical coordinates of the ground-truth for persistent (Izamal, Conkal) and extinct sites (Chumpan, Uxmal) in the interior of the Yucatán peninsula are: Izamal, Yucatán, 20° 53' 48.2'' N; 88° 47' 10.4'' W, 22m elevation; Conkal, Yucatán, 21° 03' 46.1'' N; 89° 32' 09.2'' W, 9 m elev.; Chumpan, Campeche, 18° 12' 42.3'' N; 91° 30' 45.7'' W, 10m elev.; and Uxmal, Yucatán, 20° 27' 37.2'' N; 89° 44' 38.7'' W, and 47m elev. Three weather stations (Mérida, Valladolid, Chetumal see Fig. S5) are close to the sites. A plot of the change in Tmax over the last 36 years at these stations is shown for the months of January to May (Fig S5). A total of 14 of 15 station×months registered significant increases in Tmax. The four S. serrifer sites in our ground-truth of extinction and thermal physiology are closest to the Mérida weather station. We used temperature records from the Mérida station (Jan-Apr 2009) to compute the functional relationship between hr in activity time, which is the cumulative h each day when Te > Tb preferred (Tb preferred =31°C for S. serrifer) (Fig. 4B). We related hr on a daily basis to the Tmax observed at Mérida on a daily basis and fitted the following highly significant linear regression equation (Figure S4B): hr[Te >Tb preferred] = slope × (Tmax) + intercept1 (Equation S1). This equation has a high goodness-of-fit to a linear equation with no evidence of non-linearity (e.g., quadratic or cubic terms). Notice that if we standardize Eqn. S1 in terms of Tb preferred (e.g., where Tmax – Tb, preferred is the x-variate) before carrying out the model fit we obtain a more general equation for lizards: 3 hr[Te >Tb preferred] = slope × (Tmax – Tb, preferred) + intercept2 (Equation S2). Given data on Tb, preferred, Equation S2 can be extended to any species of lizard. Data on Tb preferred is actually quite rare, because it requires measurement in a laboratory thermal gradient under standard conditions (S28). However, measurements of activity body temperatures (Tb), which are highly correlated with Tb preferred (S28), are available for almost all of the species in our extinction survey and Tb is highly correlated with extinction (Tb is also highly correlated with Tb preferred, see analysis Table S6). To extend our physiological model of extinction to other Sceloporus we substituted Tb from Table S4 for Tb preferred. When a Tb value for a species was unavailable, we used nearest ancestor reconstruction to estimate values (only a few species required ancestor reconstruction, c.f., species listed in Table S1 vs. Table S4). Figure S4A suggests a value of hr ~ 4 h (March-April average), based on persistent S. serrifer populations that are on the verge of extinction. We explored this assumption by varying hr from 1 to 12 h in 0.1 h increments to compute the overall fit of the model (e.g., deviations of extinction model from observed data). Based on this statistical estimation procedure, a value of hr =3.85 h provides the best fit between observed and predicted extinctions. This calibration suggests that a value of hr =3.85 h during critical reproductive periods may be general for heliothermic Sceloporus species. In the future, this assumption could be tested by exploring other factors known to influence Te and thermal activity limits such as body size, habitat preference, and perch height (S27, S28) and with Te estimates of other species located at sites on the verge of extinction. Nevertheless, the goodness-of-fit of the model in predicting extinctions is exceptional (see text). We also varied the two critical months used to compute hr, but March and April provided the best fit for both reproductive modes. This is intuitively appealing because if it gets too hot early in the season, it will be exceptionally hot in May-July and thus only the early season hr (i.e., critical period of reproduction) sends a population to the tipping point of extinction. It might be more appropriate to compute the cumulative hours Te exceeds CTmax (Fig. S4C). However, CTmax values are rarely reported in the primary literature (N=11, Table S5) compared to Tb values (N=26, Table S4). Moreover, Tmax recorded at weather stations, which is the most widely reported measure of environmental temperature in climate databases, rarely exceeded CTmax values (Fig. S4C), 4 thus potentially generating large errors of inference in relating hr to Tmax-CTmax. In contrast, Tmax often exceeds Tb, providing residuals (e.g., Tmax - Tb, Fig. S4BC) for estimating a functional relationship with hr. Thus, the relationship between Tb - Tmax (Equation S2) performs well in predicting extinction, while CTmax - Tmax performs poorly. Finally CTmax is correlated with Tb in PIC regression analysis (Table S5, Fig. S7). A Physiological model for extinction risk and Tb and global climate models of Tmax i. Overview of the Global Simulation Model We used global climate surfaces from the WORLDCLIM web site (S30) (www.worldclim.org) (for the years 1975, 2020, 2050, 2080) to derive Tmax (°C) at a given latitude and longitude (10-arc minute resolution). We also used WORLDCLIM predictions for Tmax in the year 2050 and 2080 under three scenarios for climate change (IPPC 3rd Assessment).
Recommended publications
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • Preface Amphibian & Reptile Conservation Special Angola and Africa Issue
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2): i–iii (e128). Preface Amphibian & Reptile Conservation Special Angola and Africa Issue William R. Branch Curator Emeritus Herpetology, Bayworld, P.O. Box 13147, Humewood 6013, SOUTH AFRICA (Research Associate, Department of Zoology, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA) Citation: Branch WR. 2016. Preface (Amphibian & Reptile Conservation Special Angola and Africa Issue). Amphibian & Reptile Conservation 10(2): i‒iii (e128). Copyright: © 2016 Branch. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the official and authorized publication sources are recognized and properly credited. The official and authorized publication credit sources, which will be duly enforced, are as follows: official journal title Amphibian & Reptile Conservation; official journal website <amphibian-reptile-conservation. org>. Published: 30 November 2016 Africa is a mega continent that was isolated for long pe- merous additional locality records dispersed in museum riods of its history. However, after the tectonic activity collections, they have not been consolidated and made and uplift that accompanied Gondwana’s breakup and easily accessible. This hinders the study of the African Africa’s birth c. 130 Ma the continent was relatively qui- herpetofauna, preventing fuller understanding of its ori- escent for nearly 100 million years until the development gins and diversity, and therefore its conservation (Tolley of the East African Rift system 31‒30 mMa (Ring 2014).
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • Level 1 Fauna Survey of the Gruyere Gold Project Borefields (Harewood 2016)
    GOLD ROAD RESOURCES LIMITED GRUYERE PROJECT EPA REFERRAL SUPPORTING DOCUMENT APPENDIX 5: LEVEL 1 FAUNA SURVEY OF THE GRUYERE GOLD PROJECT BOREFIELDS (HAREWOOD 2016) Gruyere EPA Ref Support Doc Final Rev 1.docx Fauna Assessment (Level 1) Gruyere Borefield Project Gold Road Resources Limited January 2016 Version 3 On behalf of: Gold Road Resources Limited C/- Botanica Consulting PO Box 2027 BOULDER WA 6432 T: 08 9093 0024 F: 08 9093 1381 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 T/F: (08) 9725 0982 E: [email protected] GRUYERE BOREFIELD PROJECT –– GOLD ROAD RESOURCES LTD – FAUNA ASSESSMENT (L1) – JAN 2016 – V3 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION .....................................................................................................1 2. SCOPE OF WORKS ...............................................................................................1 3. RELEVANT LEGISTALATION ................................................................................2 4. METHODS...............................................................................................................3 4.1 POTENTIAL VETEBRATE FAUNA INVENTORY - DESKTOP SURVEY ............. 3 4.1.1 Database Searches.......................................................................................3 4.1.2 Previous Fauna Surveys in the Area ............................................................3 4.1.3 Existing Publications .....................................................................................5 4.1.4 Fauna
    [Show full text]
  • Cretaceous Fossil Gecko Hand Reveals a Strikingly Modern Scansorial Morphology: Qualitative and Biometric Analysis of an Amber-Preserved Lizard Hand
    Cretaceous Research 84 (2018) 120e133 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand * Gabriela Fontanarrosa a, Juan D. Daza b, Virginia Abdala a, c, a Instituto de Biodiversidad Neotropical, CONICET, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuman, Argentina b Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Lee Drain Building Suite 300, Huntsville, TX 77341, USA c Catedra de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de Tucuman, Argentina article info abstract Article history: Gekkota (geckos and pygopodids) is a clade thought to have originated in the Early Cretaceous and that Received 16 May 2017 today exhibits one of the most remarkable scansorial capabilities among lizards. Little information is Received in revised form available regarding the origin of scansoriality, which subsequently became widespread and diverse in 15 September 2017 terms of ecomorphology in this clade. An undescribed amber fossil (MCZ Re190835) from mid- Accepted in revised form 2 November 2017 Cretaceous outcrops of the north of Myanmar dated at 99 Ma, previously assigned to stem Gekkota, Available online 14 November 2017 preserves carpal, metacarpal and phalangeal bones, as well as supplementary climbing structures, such as adhesive pads and paraphalangeal elements. This fossil documents the presence of highly specialized Keywords: Squamata paleobiology adaptive structures. Here, we analyze in detail the manus of the putative stem Gekkota. We use Paraphalanges morphological comparisons in the context of extant squamates, to produce a detailed descriptive analysis Hand evolution and a linear discriminant analysis (LDA) based on 32 skeletal variables of the manus.
    [Show full text]
  • Estudios Autecológicos En Pristidactylus Cf. Valeriae (Squamata, Polychridae) De Chile Central
    Bol. Mus. Nac. Hist. Nat. Chile, 44: 115-130 (1993) ESTUDIOS AUTECOLÓGICOS EN PRISTIDACTYLUS CF. VALERIAE (SQUAMATA, POLYCHRIDAE) DE CHILE CENTRAL JUAN SUFÁN-CATALÁN* y HERMAN NÚÑEZ** Sede Norte, Facultad de Medicina, Depto. de Biología Celular y Genética, Universidad de Chile, Casilla 70061, C.7. Santiago, Chile. Sección Zoología, Museo Nacional de Historia Natural, Casilla 787, Santiago, Chile. RESUMEN Hemos realizado un estudio autecológico en una población de Pristidactylus cf. valeriae de la zona central de Chile. Consideramos período de actividad, selección de microhábitat, hábitos alimentarios. A estas variables les calculamos la diversidad del uso del recurso con el índice de Levins. Además registramos altura de percha, distancia crítica de huida y temperaturas corporales, asociadas a temperaturas abióticas del aire y del sustrato. Agrega­ mos un estudio morfológico analizado por la distancia euclidiana a la que aplicamos tratamientos de UPGMA para realizar un dendrograma que revelara las afinidades morfo­ lógicas entre la especie en estudio y aquellas que han sido descritas previamente. Además de los análisis anteriores, realizamos cariotipos de esta especie con técnicas estándar (Giemsa corriente) y Bandeo C. Los resultados revelan a esta especie como de hábitos saxícolas, con actividad diaria monomodal entre las 12 y las 18 horas, y hábitos alimentarios con tendencia a ingerir coléopteros, aunque esta preferencia se discute. La temperatura corporal de ella no se muestra diferente de la señalada en la literatura para otras especies del género y desde el punto de vista conductual de la selección de altura de percha, no aparecen diferencias significativas entre las hembras, los juveniles y los machos aunque se sugiere que estos últimos tendrían tendencia a estar en perchas más altas, exhibiendo conductas territoriales que se manifiestan vigorosamente.
    [Show full text]
  • Preliminary Analysis of Correlated Evolution of Morphology and Ecological Diversification in Lacertid Lizards
    Butll. Soc. Cat. Herp., 19 (2011) Preliminary analysis of correlated evolution of morphology and ecological diversification in lacertid lizards Fèlix Amat Orriols Àrea d'Herpetologia, Museu de Granollers-Ciències Naturals. Francesc Macià 51. 08402 Granollers. Catalonia. Spain. [email protected] Resum S'ha investigat la diversitat morfològica en 129 espècies de lacèrtids i la seva relació amb l'ecologia, per mitjà de mètodes comparatius, utilitzant set variables morfomètriques. La mida corporal és la variable més important, determinant un gradient entre espècies de petita i gran mida independentment evolucionades al llarg de la filogènia dels lacèrtids. Aquesta variable està forta i positivament correlacionada amb les altres, emmascarant els patrons de diversitat morfològica. Anàlisis multivariants en les variables ajustades a la mida corporal mostren una covariació negativa entre les mides relatives de la cua i les extremitats. Remarcablement, les espècies arborícoles i semiarborícoles (Takydromus i el clade africà equatorial) han aparegut dues vegades independentment durant l'evolució dels lacèrtids i es caracteritzen per cues extremadament llargues i extremitats anteriors relativament llargues en comparació a les posteriors. El llangardaix arborícola i planador Holaspis, amb la seva cua curta, constitueix l’única excepció. Un altre cas de convergència ha estat trobat en algunes espècies que es mouen dins de vegetació densa o herba (Tropidosaura, Lacerta agilis, Takydromus amurensis o Zootoca) que presenten cues llargues i extremitats curtes. Al contrari, les especies que viuen en deserts, estepes o matollars amb escassa vegetació aïllada dins grans espais oberts han desenvolupat extremitats posteriors llargues i anteriors curtes per tal d'assolir elevades velocitats i maniobrabilitat. Aquest és el cas especialment de Acanthodactylus i Eremias Abstract Morphologic diversity was studied in 129 species of lacertid lizards and their relationship with ecology by means of comparative analysis on seven linear morphometric measurements.
    [Show full text]
  • Lagartos Pristidactylus En El Bosque Esclerófilo
    169 Boletín del Museo Nacional de Historia Natural, Chile, 65: 169-174 (2016) LAGARTOS PRISTIDACTYLUS EN EL BOSQUE ESCLERÓFILO, ¿UNA INVASIÓN RECIENTE O SIEMPRE FUE ASÍ? 1Herman Núñez y 2Francisco Urra Museo Nacional de Historia Natural, 1Área Zoología; [email protected] 2Área Entomología; [email protected] RESUMEN A los representantes del género Pristidactylus en Chile, mayoritariamente se les vincula con bosques caducifolios, a excepción de P. volcanensis. En esta nota documentamos a P. torquatus en ambientes esclerófilos. Presentamos evidencias fotográficas. Se discute acerca de esta presunta innovación y se especula acerca de este hecho. Palabras claves: Región Bernardo O`Higgins, Colchagua, Chimbarongo, calentamiento global, distribución, hábitat, Leiosauridae, Nothofagus ABSTRACT Pristidactylus lizards in sclerophyllous forest. Recent invasion or was it always like this? The species of the genus Pristidactylus in Chile are traditionally linked with deciduous forest, except P. volcanensis; in this paper we document P. torquatus in sclerophyll environments. We present graphics evidences. We discuss about this presumptive innovation and speculate about this. Key words: Bernardo O`Higgins Region, Colchagua, Chimbarongo, distribution, global warming, habitat, Leiosauridae, Nothofagus El género de lagartos anoloides Pristidactylus se distribuye en América del Sur, en Argentina y Chile (Cei 1986, Cei et al. 2004; Scolaro 2005, 2006) . En Chile este género aparece como un grupo reducido de especies (sólo cuatro) que exhiben una marcada relación con los bosques caducifolios de Nothofagus (Bosque de Hoja Caduca sensu Gajardo 1994). La especie más septentrional, P. alvaroi (Donoso-Barros, 1974) habita en el cerro El Roble y se extiende hasta Los Amarillos, en Chicauma (Núñez y Gálvez 2015); un poco más al sur habita P.
    [Show full text]
  • Integrative and Comparative Biology Integrative and Comparative Biology, Volume 60, Number 1, Pp
    Integrative and Comparative Biology Integrative and Comparative Biology, volume 60, number 1, pp. 190–201 doi:10.1093/icb/icaa015 Society for Integrative and Comparative Biology SYMPOSIUM Convergent Evolution of Elongate Forms in Craniates and of Locomotion in Elongate Squamate Reptiles Downloaded from https://academic.oup.com/icb/article-abstract/60/1/190/5813730 by Clark University user on 24 July 2020 Philip J. Bergmann ,* Sara D. W. Mann,* Gen Morinaga,1,*,† Elyse S. Freitas‡ and Cameron D. Siler‡ *Department of Biology, Clark University, Worcester, MA, USA; †Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA; ‡Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, USA From the symposium “Long Limbless Locomotors: The Mechanics and Biology of Elongate, Limbless Vertebrate Locomotion” presented at the annual meeting of the Society for Integrative and Comparative Biology January 3–7, 2020 at Austin, Texas. 1E-mail: [email protected] Synopsis Elongate, snake- or eel-like, body forms have evolved convergently many times in most major lineages of vertebrates. Despite studies of various clades with elongate species, we still lack an understanding of their evolutionary dynamics and distribution on the vertebrate tree of life. We also do not know whether this convergence in body form coincides with convergence at other biological levels. Here, we present the first craniate-wide analysis of how many times elongate body forms have evolved, as well as rates of its evolution and reversion to a non-elongate form. We then focus on five convergently elongate squamate species and test if they converged in vertebral number and shape, as well as their locomotor performance and kinematics.
    [Show full text]
  • The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters.
    [Show full text]
  • Testing the Relevance of Binary, Mosaic and Continuous Landscape Conceptualisations to Reptiles in Regenerating Dryland Landscapes
    Testing the relevance of binary, mosaic and continuous landscape conceptualisations to reptiles in regenerating dryland landscapes Melissa J. Bruton1, Martine Maron1,2, Noam Levin1,3, Clive A. McAlpine1,2 1The University of Queensland, Landscape Ecology and Conservation Group, School of Geography, Planning and Environmental Management, St Lucia, Australia 4067 2The University of Queensland, ARC Centre of Excellence for Environmental Decisions, St. Lucia, Australia 4067 3Hebrew University of Jerusalem, Department of Geography, Mt. Scopus, Jerusalem, Israel, 91905 Corresponding author: [email protected] Ph: (+61) 409 875 780 The final publication is available at Springer via http://dx.doi.org/10.1007/s10980-015-0157-9 Abstract: Context: Fauna distributions are assessed using discrete (binary and mosaic) or continuous conceptualisations of the landscape. The value of the information derived from these analyses depends on the relevance of the landscape representation (or model) used to the landscape and fauna of interest. Discrete representations dominate analyses of landscape context in disturbed and regenerating landscapes; however within-patch variation suggests that continuous representations may help explain the distribution of fauna in such landscapes. Objectives: We tested the relevance of binary, mosaic, and continuous conceptualisations of landscape context to reptiles in regenerating dryland landscapes. Methods: For each of thirteen reptile groups, we compared the fit of models consisting of one landscape composition and one landscape heterogeneity variable for each of six landscape representations (2 x binary, 2 x mosaic, and 2 x continuous), at three buffer distances. We used Akaike weights to assess the relative support for each model. Maps were created from Landsat satellite images.
    [Show full text]