Early Holocene Mammalian Extinctions in South America in a Context of Shrinking Open Areas?

Total Page:16

File Type:pdf, Size:1020Kb

Early Holocene Mammalian Extinctions in South America in a Context of Shrinking Open Areas? 7 Did Humans Cause the Late Pleistocene-Early Holocene Mammalian Extinctions in South America in a Context of Shrinking Open Areas? Alberto L. Cione,* Eduardo P. Tonni, and Leopoldo Soibelzon División Paleontología de Vertebrados Facultad de Ciencias Naturales y Museo Universidad Nacional de La Plata, Paseo del Bosque 1900 La Plata, Argentina [email protected], [email protected], [email protected] Keywords South America • mammals • extinction • pseu- Moreover, presently there are no megamammals in Europe and doextinction • human impacts Australia. In Asia today there are only two megamammals and in Africa four megamammal species and the giraffe, close to a ton in body mass. The largest terrestrial mammal in the Neotropics Introduction is the tapir Tapirus bairdii, some individuals of which slightly surpass 300 kg (Nowak and Paradiso, 1983). The last important – and possibly the most spectacular – turn- The large mammal extinction of the latest Cenozoic occurred over in South American mammal history occurred around the on different continents and islands at different times (Steadman Pleistocene-Holocene boundary, when 100% of megamam- et al., 2005). For explaining these extinctions several hypotheses mal species and about 80% of large mammal species became have been proposed, most related to cold climate, disease, or extinct. In this paper, we consider as “megamammals” those human activities. We agree with Barnosky et al. (2004) in that with body mass over 1,000 kg, and “large mammals” those the accumulated evidence suggests it is time to move beyond over 44 kg (Tables 7.1 and 7.2). With the exception of a few casting the Pleistocene extinction debate as a dichotomy of smaller mammals, no other animals or plants disappeared. climate versus humans. In this context, we have proposed what Consequently, this extinction event was distinct from mass we call the Broken Zig-Zag hypothesis (Cione et al., 2003). extinctions (see comments in Cione et al., 2003). During most of the middle and late Pleistocene, dry and cold South American communities had included at least some climate caused open areas to predominate in South America. megamammals since the latest Paleogene, but gigantism in Nearly all megamammals and large mammals that became mammals markedly emerged during the Ensenadan age (early extinct were adapted to this kind of environment. The periodic Pleistocene; Fig. 7.1) when many large mammal genera first though relatively short interglacial increases in temperature and appeared (Ameghino, 1889; Pascual et al., 1965; Cione and Tonni, humidity led to dramatic shrinking of open areas and extreme 2005). Most genera, with different species, survived during the reduction of the mammalian biomass (albeit not of species late Pleistocene when the remarkable figure of 37 megamammal richness) adapted to open habitats. However, during the longer species can be documented (Table 7.1). Many appear to have glacial periods, open-area mammal populations recovered. This persisted in the early Holocene. However, none is living today. alternation of low and high biomass of mammals from open and closed areas is what we refer to as the Zig-Zag. Remarkably, the extinction rate of large mammals and megamammals during * Address for correspondence: [email protected] more than a half million years was not high, until rising abruptly during the latest Pleistocene. G. Haynes (ed.), American Megafaunal Extinctions at the End of the Pleistocene, 125–144. In this paper, (1) we analyze the biostratigraphic and chrono- © Springer Science + Business Media B.V. 2009 logic pattern of the large continental mammals of South America 125 126 A.L. Cione et al. Table 7.1. Mammal taxa present in putative Lujanian (sensu Cione Table 7.2. Large mammals and megamammals in the Guerrero and Tonni, 1999) beds in South America and that became extinct Member of the Luján Formation and correlative units. (modified from Cione et al., 2003). Asterisks indicate taxa that occur Antifer neumeieri Megatherium americanum in archeological sites. Arctotherium bonariense Megatherium lundi Megamammals Large mammals Arctotherium tarijense Megatherium tarijense Ctenomys lujanensis Morenelaphus lujanensis Cuvieronius humboldti* Antifer niemeyeri Cuvieronius humboltii Mylodon darwinii Cuvieronius hyodon Arctotherium bonariense Dusicyon avus Mylodon listai Doedicurus clavicaudatus * Arctotherium brasiliense Doedicurus clavicaudatus Neochoerus aesopy Eremotherium carolinense Arctotherium tarijense Equus (A.) andium Neosclerocalyptus paskoensis Eremotherium laurillardi Brasiliochoerus stenocephalus Equus (A.) neogeus Neothoracophorus depressus Eremotherium mirabile Equus (A. merhippus) andium Eremotherium sp. Neuryurus n. sp. Eremotherium rusconii Equus (A.) insulatus Eulamaops paralellus Onohippidium salidiasi Glossotherium (Oreomylodon) Equus (A.) lasallei wagneri Eutatus seguini Palaeolama sp. Glossotherium lettsomi Equus (A.) neogeus* Eutatus punctatus Pampatherium typum Glossotherium (Pseudolestodon) Equus (A.) santa-elenae myloides Glossotherium lettsomi Panochthus morenoi Glossotherium robustum* Eulamaops paralellus Glossotherium myloides Panochthus tuberculatus Glossotherium tropicorum Eutatus seguini* Glossotherium robustum Paraceros fragilis Glyptodon clavipes Eutatus punctatus Glyptodon clavipes Plaxhaplous canaliculatus Glyptodon perforatus Glyptotherium sp. Glyptodon perforatus Propraopus grandis Glyptodon reticulatus Hippidion principale* Glyptodon reticulatus Scelidodon sp. Glyptotherium cf. cylindricum* Holmesina occidentalis Glyptotherium cylindricum Scelidotherium leptocephalum Hemiauchenia paradoxa * Holmesina paulacoutoi Hemiauchenia paradoxa Smilodon populator Lestodon armatus Hoplophorus euphractus Hippidion principale Stegomastodon platensis Lestodon trigonidens Lama gracilis Holmesina sp. Stegomastodon waringi Macrauchenia patachonica* Morenelaphus lujanensis Lama gracilis Toxodon burmeisteri Megalonyx sp. Mylodopsis ibseni Lestodon armatus Toxodon platensis Megatherium americanum* Neochoerus aesopy Lestodon trigonidens Megatherium medinae Neochoerus sirasakae Macrauchenia patachonica Mixotoxodon larensis Neosclerocalyptus paskoensis* Mylodon darwinii Neuryurus n. sp. Mylodon listai* Nothropus priscus Neothoracophorus depressus Nothrotherium roverei Panochthus frenzelianus Ocnopus gracilis Panochthus morenoi Ocnotherium giganteum during the late Pleistocene-earliest Holocene with new evidence, Panochthus tuberculatus Onohippidion saldiasi* (2) discuss why megamammals and large mammals were more Plaxhaplous canaliculatus Palaeolama niedae liable to become extinct than those that survived, (3) discuss the Stegomastodon platensis Palaeolama weddelli timing of human entry into South America, and (4) examine the Stegomastodon guayasensis Pampatherium humboldti Stegomastodon waringi Pampatherium typum possible role of humans in this extinction. Toxodon burmeisteri Paraceros fragilis Toxodon platensis* Parapanochthus jaguaribensis Xenorhinotherium bahiense Propraopus grandis The Broken Zig-Zag Hypothesis Propraopus humboldti Propraopus magnus We have proposed that megamammal and large mammal Scelidodon cuvieri Scelidodon chiliensis extinction in South America during the late Pleistocene- Scelidodon reyesi earliest Holocene was caused by human foragers (Cione Scelidotherium leptocephalum et al., 2003). However, we believe that this event would have Smilodon populator been favoured by a particular circumstance: total biomass (not Tapirus cristatellus diversity) and distribution of open-area-adapted mammals Trigonodops lopesi began to be extremely reduced in response to the periodic Medium sized mammals Small mammals shrinking of this kind of environments (the Zig-Zag) which Canis dirus Eligmodontia n. sp. was stimulated by the last (present) interglacial’s periodic Dusicyon avus* Microcavia robusta Protocyon orcesi Desmodus draculae rising temperature and humidity. Humans certainly did not Protocyon troglodytes exterminate all the extinct taxa (e.g., the large carnivores), Protopithecus brasiliensis but killed off many and provoked changes that occasioned the Valgipes deformis disappearance of the remaining ones (see also Kay, 2002). 7. Did Humans Cause the Late Pleistocene-Early Holocene Mammalian Extinctions in South America 127 Figure 7.1. Chronological chart of the middle Pleistocene-Recent in southern South America depicting mammal zones and South American ages (modified from Cione and Tonni, 2005) and the climatic oscilations represented by (1) 18O of Vostok, Antarctica (Petit et al., 1999) and (2) data from Dronning Maud Land, Antartica (Steig, 2006). The Zig-Zag struction of South America during the LGM, we calculated that open areas would have encompassed 31% of the terri- Studies based on geochemical proxies in glacial ice cores tory, medium areas 54%, and closed areas 15% (Cione et al., from Greenland, Antarctica, and South America show that 2003). Simberloff (1986 fide Raup, 1992: 136) had calculated temperatures strongly fluctuated during at least the last that areas of wet forests were reduced by 84% during this time. 400 ka and that the present interglacial is not substantially We understand that the most difficult definition is that of the different from the earlier ones, of which there were over 20 “medium vegetated areas.” In this term, cerrados, chaco, monte, during the middle-late Pleistocene (Fig. 7.1; McCulloch et al., and other relatively closed areas are included along with some 2000; Blunier
Recommended publications
  • Pleistocene Mammals and Paleoecology of the Western Amazon
    PLEISTOCENE MAMMALS AND PALEOECOLOGY OF THE WESTERN AMAZON By ALCEU RANCY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1991 . To Cleusa, Bianca, Tiago, Thomas, and Nono Saul (Pistolin de Oro) . ACKNOWLEDGMENTS This work received strong support from John Eisenberg (chairman) and David Webb, both naturalists, humanists, and educators. Both were of special value, contributing more than the normal duties as members of my committee. Bruce MacFadden provided valuable insights at several periods of uncertainty. Ronald Labisky and Kent Redford also provided support and encouragement. My field work in the western Amazon was supported by several grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) , and the Universidade Federal do Acre (UFAC) , Brazil. I also benefitted from grants awarded to Ken Campbell and Carl Frailey from the National Science Foundation (NSF) I thank Daryl Paul Domning, Jean Bocquentin Villanueva, Jonas Pereira de Souza Filho, Ken Campbell, Jose Carlos Rodrigues dos Santos, David Webb, Jorge Ferigolo, Carl Frailey, Ernesto Lavina, Michael Stokes, Marcondes Costa, and Ricardo Negri for sharing with me fruitful and adventurous field trips along the Amazonian rivers. The CNPq and the Universidade Federal do Acre, supported my visit to the. following institutions (and colleagues) to examine their vertebrate collections: iii . ; ; Universidade do Amazonas, Manaus
    [Show full text]
  • Reveals That Glyptodonts Evolved from Eocene Armadillos
    Molecular Ecology (2016) 25, 3499–3508 doi: 10.1111/mec.13695 Ancient DNA from the extinct South American giant glyptodont Doedicurus sp. (Xenarthra: Glyptodontidae) reveals that glyptodonts evolved from Eocene armadillos KIEREN J. MITCHELL,* AGUSTIN SCANFERLA,† ESTEBAN SOIBELZON,‡ RICARDO BONINI,‡ JAVIER OCHOA§ and ALAN COOPER* *Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia, †CONICET-Instituto de Bio y Geociencias del NOA (IBIGEO), 9 de Julio No 14 (A4405BBB), Rosario de Lerma, Salta, Argentina, ‡Division Paleontologıa de Vertebrados, Facultad de Ciencias Naturales y Museo (UNLP), CONICET, Museo de La Plata, Paseo del Bosque, La Plata, Buenos Aires 1900, Argentina, §Museo Arqueologico e Historico Regional ‘Florentino Ameghino’, Int De Buono y San Pedro, Rıo Tercero, Cordoba X5850, Argentina Abstract Glyptodonts were giant (some of them up to ~2400 kg), heavily armoured relatives of living armadillos, which became extinct during the Late Pleistocene/early Holocene alongside much of the South American megafauna. Although glyptodonts were an important component of Cenozoic South American faunas, their early evolution and phylogenetic affinities within the order Cingulata (armoured New World placental mammals) remain controversial. In this study, we used hybridization enrichment and high-throughput sequencing to obtain a partial mitochondrial genome from Doedicurus sp., the largest (1.5 m tall, and 4 m long) and one of the last surviving glyptodonts. Our molecular phylogenetic analyses revealed that glyptodonts fall within the diver- sity of living armadillos. Reanalysis of morphological data using a molecular ‘back- bone constraint’ revealed several morphological characters that supported a close relationship between glyptodonts and the tiny extant fairy armadillos (Chlamyphori- nae).
    [Show full text]
  • 1931-15701-1-LE Maquetación 1
    AMEGHINIANA 50 (6) Suplemento 2013–RESÚMENES REUNIÓN DE COMUNICACIONES DE LA ASOCIACIÓN PALEONTOLÓGICA ARGENTINA 20 a 22 de Noviembre de 2013 Ciudad de Córdoba, Argentina INSTITUCIÓN ORGANIZADORA AUSPICIAN AMEGHINIANA 50 (6) Suplemento 2013–RESÚMENES COMISIÓN ORGANIZADORA Claudia Tambussi Emilio Vaccari Andrea Sterren Blanca Toro Diego Balseiro Diego Muñoz Emilia Sferco Ezequiel Montoya Facundo Meroi Federico Degrange Juan José Rustán Karen Halpern María José Salas Sandra Gordillo Santiago Druetta Sol Bayer COMITÉ CIENTÍFICO Dr. Guillermo Albanesi (CICTERRA) Dra. Viviana Barreda (MACN) Dr. Juan Luis Benedetto (CICTERRA) Dra. Noelia Carmona (UNRN) Dra. Gabriela Cisterna (UNLaR) Dr. Germán M. Gasparini (MLP) Dra. Sandra Gordillo (CICTERRA) Dr. Pedro Gutierrez (MACN) Dr. Darío Lazo (UBA) Dr. Ricardo Martinez (UNSJ) Dra. María José Salas (CICTERRA) Dr. Leonardo Salgado (UNRN) Dra. Emilia Sferco (CICTERRA) Dra. Andrea Sterren (CICTERRA) Dra. Claudia P. Tambussi (CICTERRA) Dr. Alfredo Zurita (CECOAL) AMEGHINIANA 50 (6) Suplemento 2013–RESÚMENES RESÚMENES CONFERENCIAS EL ANTROPOCENO Y LA HIPÓTESIS DE GAIA ¿NUEVOS DESAFÍOS PARA LA PALEONTOLOGÍA? S. CASADÍO1 1Universidad Nacional de Río Negro, Lobo 516, R8332AKN Roca, Río Negro, Argentina. [email protected] La hipótesis de Gaia propone que a partir de unas condiciones iniciales que hicieron posible el inicio de la vida en el planeta, fue la propia vida la que las modificó. Sin embargo, desde el inicio del Antropoceno la humanidad tiene un papel protagónico en dichas modificaciones, e.g. el aumento del CO2 en la atmósfera. Se estima que para fines de este siglo, se alcanzarían concentraciones de CO2 que el planeta no registró en los últimos 30 Ma. La información para comprender como funcionarían los sistemas terrestres con estos niveles de CO2 está contenida en los registros de períodos cálidos y en las grandes transiciones climáticas del pasado geológico.
    [Show full text]
  • Distinguishing Quaternary Glyptodontine Cingulates in South America: How Informative Are Juvenile Specimens?
    Distinguishing Quaternary glyptodontine cingulates in South America: How informative are juvenile specimens? CARLOS A. LUNA, IGNACIO A. CERDA, ALFREDO E. ZURITA, ROMINA GONZALEZ, M. CECILIA PRIETO, DIMILA MOTHÉ, and LEONARDO S. AVILLA Luna, C.A., Cerda, I.A., Zurita, A.E., Gonzalez, R., Prieto, M.C., Mothé, D., and Avilla, L.S. 2018. Distinguishing Quaternary glyptodontine cingulates in South America: How informative are juvenile specimens? Acta Palaeontologica Polonica 63 (1): 159–170. The subfamily Glyptodontinae (Xenarthra, Cingulata) comprises one of the most frequently recorded glyptodontids in South America. Recently, the North American genus Glyptotherium was recorded in South America, in addition to the genus Glyptodon. It has been shown that both genera shared the same geographic distribution in central-north and eastern areas of South America (Venezuela and Brazil, respectively). Although some characters allow differentiation between adult specimens of both genera, the morphological distinction between these two genera is rather difficult in juvenile specimens. In this contribution, a detailed morphological, morphometric and histological survey of a juvenile specimen of Glyptodontinae recovered from the Late Pleistocene of northern Brazil is performed. The relative lower osteoderms thickness, the particular morphology of the annular and radial sulci and the distal osseous projections of the caudal osteoderms suggest that the specimen belongs to the genus Glyptotherium. In addition, the validity of some statistical tools to distinguish between different ontogenetic stages and in some cases between genera is verified. The osteoderm microstructure of this juvenile individual is characterized by being composed of a cancellous internal core surrounded by a compact bone cortex. Primary bone tissue mostly consists of highly vascularized, woven-fibered bone tissue.
    [Show full text]
  • Mammals from Upper Pleistocene of Afrânio, Pernambuco, Northeast of Brazil
    Quaternary and Environmental Geosciences (2010) 02(2):01-11 Mamíferos do Pleistoceno Superior de Afrânio, Pernambuco, nordeste do Brasil Mammals from Upper Pleistocene of Afrânio, Pernambuco, northeast of Brazil Fabiana Marinho Silvaab, César Felipe Cordeiro Filgueirasac, Alcina Magnólia Franca Barretoad, Édison Vicente Oliveiraae a Universidade Federal de Pernambuco b c d e [email protected], [email protected], [email protected], [email protected] RESUMO Os mamíferos pleistocênicos são encontrados com frequência em toda a região Nordeste do Brasil. Os fósseis em geral ocorrem em tanques, lagoas, terraços fluviais, cavernas e ravinas. No estado de Pernambuco são registradas ocorrências de mamíferos pleistocênicos em 38 municípios. Neste trabalho, foram estudados aspectos taxonômicos e tafonômicos de paleofauna, preservada em lagoas da bacia do riacho Caboclo, tributário do rio São Francisco, em Afrânio, Pernambuco, Brasil. A pesquisa envolveu levantamento bibliográfico, cartográfico, trabalhos de campo e laboratoriais. Mais de 1.250 ossos, dentes e osteodermos foram estudados. A associação fossilífera é monotípica, poliespecífica, com os graus de fragmentação e desgaste variando em quatro classes. Os ossos foram preservados por conservação da composição química original, permineralização e substituição por calcita e por calcita magnesiana. Foi identificada uma diversificada fauna distribuída em cinco ordens (Tardigrada, Cingulata, Notoungulata, Proboscidea e Perissodactyla), sete famílias (Megatheriidae, Mylodontidae, Dasypodidae, Glyptodontidae, Toxodontidae, Gomphotheriidae e Equidae) com os taxa: Eremotherium laurillardi, Mylodonopsis ibseni, Panochthus greslebini, Holmesina paulacoutoi, Hoplophorus euphractus, Stegomastodon waringi, Toxodon platensis, equídeo e gliptodontideo indeterminados. Foram registrados pela primeira vez em Pernambuco os gêneros Hoplophorus e Mylodonopsis. A paleofauna é predominantemente herbívora, de um paleoambiente de savana ou cerrado.
    [Show full text]
  • Michael O. Woodburne1,* Alberto L. Cione2,**, and Eduardo P. Tonni2,***
    Woodburne, M.O.; Cione, A.L.; and Tonni, E.P., 2006, Central American provincialism and the 73 Great American Biotic Interchange, in Carranza-Castañeda, Óscar, and Lindsay, E.H., eds., Ad- vances in late Tertiary vertebrate paleontology in Mexico and the Great American Biotic In- terchange: Universidad Nacional Autónoma de México, Instituto de Geología and Centro de Geociencias, Publicación Especial 4, p. 73–101. CENTRAL AMERICAN PROVINCIALISM AND THE GREAT AMERICAN BIOTIC INTERCHANGE Michael O. Woodburne1,* Alberto L. Cione2,**, and Eduardo P. Tonni2,*** ABSTRACT The age and phyletic context of mammals that dispersed between North and South America during the past 9 m.y. is summarized. The presence of a Central American province of cladogenesis and faunal differentiation is explored. One apparent aspect of such a province is to delay dispersals of some taxa northward from Mexico into the continental United States, largely during the Blancan. Examples are recognized among the various xenar- thrans, and cervid artiodactyls. Whereas the concept of a Central American province has been mentioned in past investigations it is upgraded here. Paratoceras (protoceratid artio- dactyl) and rhynchotheriine proboscideans provide perhaps the most compelling examples of Central American cladogenesis (late Arikareean to early Barstovian and Hemphillian to Rancholabrean, respectively), but this category includes Hemphillian sigmodontine rodents, and perhaps a variety of carnivores and ungulates from Honduras in the medial Miocene, as well as peccaries and equids from Mexico. For South America, Mexican canids and hy- drochoerid rodents may have had an earlier development in Mexico. Remarkably, the first South American immigrants to Mexico (after the Miocene heralds; the xenarthrans Plaina and Glossotherium) apparently dispersed northward at the same time as the first Holarctic taxa dispersed to South America (sigmodontine rodents and the tayassuid artiodactyls).
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina
    Palaeontologia Electronica palaeo-electronica.org An exceptionally well-preserved skeleton of Thomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina Juan D. Carrillo and Robert J. Asher ABSTRACT We describe one of the oldest notoungulate skeletons with associated cranioden- tal and postcranial elements: Thomashuxleya externa (Isotemnidae) from Cañadón Vaca in Patagonia, Argentina (Vacan subage of the Casamayoran SALMA, middle Eocene). We provide body mass estimates given by different elements of the skeleton, describe the bone histology, and study its phylogenetic position. We note differences in the scapulae, humerii, ulnae, and radii of the new specimen in comparison with other specimens previously referred to this taxon. We estimate a body mass of 84 ± 24.2 kg, showing that notoungulates had acquired a large body mass by the middle Eocene. Bone histology shows that the new specimen was skeletally mature. The new material supports the placement of Thomashuxleya as an early, divergent member of Toxodon- tia. Among placentals, our phylogenetic analysis of a combined DNA, collagen, and morphology matrix favor only a limited number of possible phylogenetic relationships, but cannot yet arbitrate between potential affinities with Afrotheria or Laurasiatheria. With no constraint, maximum parsimony supports Thomashuxleya and Carodnia with Afrotheria. With Notoungulata and Litopterna constrained as monophyletic (including Macrauchenia and Toxodon known for collagens), these clades are reconstructed on the stem
    [Show full text]
  • (Dasypus) in North America Based on Ancient Mitochondrial DNA
    bs_bs_banner A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA BETH SHAPIRO, RUSSELL W. GRAHAM AND BRANDON LETTS Shapiro, B. Graham, R. W. & Letts, B.: A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas. 10.1111/bor.12094. ISSN 0300-9483. The large, beautiful armadillo, Dasypus bellus, first appeared in North America about 2.5 million years ago, and was extinct across its southeastern US range by 11 thousand years ago (ka). Within the last 150 years, the much smaller nine-banded armadillo, D. novemcinctus, has expanded rapidly out of Mexico and colonized much of the former range of the beautiful armadillo. The high degree of morphological similarity between these two species has led to speculation that they might be a single, highly adaptable species with phenotypical responses and geographical range fluctuations resulting from environmental changes. If this is correct, then the biology and tolerance limits for D. novemcinctus could be directly applied to the Pleistocene species, D. bellus. To investigate this, we isolated ancient mitochondrial DNA from late Pleistocene-age specimens of Dasypus from Missouri and Florida. We identified two genetically distinct mitochondrial lineages, which most likely correspond to D. bellus (Missouri) and D. novemcinctus (Florida). Surprisingly, both lineages were isolated from large specimens that were identified previously as D. bellus. Our results suggest that D. novemcinctus, which is currently classified as an invasive species, was already present in central Florida around 10 ka, significantly earlier than previously believed. Beth Shapiro ([email protected]), Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; Russell W.
    [Show full text]
  • Quaternary International Colonisation and Early Peopling of The
    Quaternary International xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Colonisation and early peopling of the Colombian Amazon during the Late Pleistocene and the Early Holocene: New evidence from La Serranía La Lindosa ∗ Gaspar Morcote-Ríosa, Francisco Javier Aceitunob, , José Iriartec, Mark Robinsonc, Jeison L. Chaparro-Cárdenasa a Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia b Departamento de Antropología, Universidad de Antioquia, Medellín, Colombia c Department of Archaeology, Exeter, University of Exeter, United Kingdom ARTICLE INFO ABSTRACT Keywords: Recent research carried out in the Serranía La Lindosa (Department of Guaviare) provides archaeological evi- Colombian amazon dence of the colonisation of the northwest Colombian Amazon during the Late Pleistocene. Preliminary ex- Serranía La Lindosa cavations were conducted at Cerro Azul, Limoncillos and Cerro Montoya archaeological sites in Guaviare Early peopling Department, Colombia. Contemporary dates at the three separate rock shelters establish initial colonisation of Foragers the region between ~12,600 and ~11,800 cal BP. The contexts also yielded thousands of remains of fauna, flora, Human adaptability lithic artefacts and mineral pigments, associated with extensive and spectacular rock pictographs that adorn the Rock art rock shelter walls. This article presents the first data from the region, dating the timing of colonisation, de- scribing subsistence strategies, and examines human adaptation to these transitioning landscapes. The results increase our understanding of the global expansion of human populations, enabling assessment of key inter- actions between people and the environment that appear to have lasting repercussions for one of the most important and biologically diverse ecosystems in the world.
    [Show full text]
  • Variable Impact of Late-Quaternary Megafaunal Extinction in Causing
    Variable impact of late-Quaternary megafaunal SPECIAL FEATURE extinction in causing ecological state shifts in North and South America Anthony D. Barnoskya,b,c,1, Emily L. Lindseya,b, Natalia A. Villavicencioa,b, Enrique Bostelmannd,2, Elizabeth A. Hadlye, James Wanketf, and Charles R. Marshalla,b aDepartment of Integrative Biology, University of California, Berkeley, CA 94720; bMuseum of Paleontology, University of California, Berkeley, CA 94720; cMuseum of Vertebrate Zoology, University of California, Berkeley, CA 94720; dRed Paleontológica U-Chile, Laboratoria de Ontogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile; eDepartment of Biology, Stanford University, Stanford, CA 94305; and fDepartment of Geography, California State University, Sacramento, CA 95819 Edited by John W. Terborgh, Duke University, Durham, NC, and approved August 5, 2015 (received for review March 16, 2015) Loss of megafauna, an aspect of defaunation, can precipitate many megafauna loss, and if so, what does this loss imply for the future ecological changes over short time scales. We examine whether of ecosystems at risk for losing their megafauna today? megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We Approach compare ecological impacts of late-Quaternary megafauna extinction The late-Quaternary impact of losing 70–80% of the megafauna in five American regions: southwestern Patagonia, the Pampas, genera in the Americas (19) would be expected to trigger biotic northeastern United States, northwestern United States, and Berin- transitions that would be recognizable in the fossil record in at gia. We find that major ecological state shifts were consistent with least two respects.
    [Show full text]
  • Overkill, Glacial History, and the Extinction of North America's Ice Age Megafauna
    PERSPECTIVE Overkill, glacial history, and the extinction of North America’s Ice Age megafauna PERSPECTIVE David J. Meltzera,1 Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved September 23, 2020 (received for review July 21, 2020) The end of the Pleistocene in North America saw the extinction of 38 genera of mostly large mammals. As their disappearance seemingly coincided with the arrival of people in the Americas, their extinction is often attributed to human overkill, notwithstanding a dearth of archaeological evidence of human predation. Moreover, this period saw the extinction of other species, along with significant changes in many surviving taxa, suggesting a broader cause, notably, the ecological upheaval that occurred as Earth shifted from a glacial to an interglacial climate. But, overkill advocates ask, if extinctions were due to climate changes, why did these large mammals survive previous glacial−interglacial transitions, only to vanish at the one when human hunters were present? This question rests on two assumptions: that pre- vious glacial−interglacial transitions were similar to the end of the Pleistocene, and that the large mammal genera survived unchanged over multiple such cycles. Neither is demonstrably correct. Resolving the cause of large mammal extinctions requires greater knowledge of individual species’ histories and their adaptive tolerances, a fuller understanding of how past climatic and ecological changes impacted those animals and their biotic communities, and what changes occurred at the Pleistocene−Holocene boundary that might have led to those genera going extinct at that time. Then we will be able to ascertain whether the sole ecologically significant difference between previous glacial−interglacial transitions and the very last one was a human presence.
    [Show full text]