(Dasypus) in North America Based on Ancient Mitochondrial DNA

Total Page:16

File Type:pdf, Size:1020Kb

(Dasypus) in North America Based on Ancient Mitochondrial DNA bs_bs_banner A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA BETH SHAPIRO, RUSSELL W. GRAHAM AND BRANDON LETTS Shapiro, B. Graham, R. W. & Letts, B.: A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas. 10.1111/bor.12094. ISSN 0300-9483. The large, beautiful armadillo, Dasypus bellus, first appeared in North America about 2.5 million years ago, and was extinct across its southeastern US range by 11 thousand years ago (ka). Within the last 150 years, the much smaller nine-banded armadillo, D. novemcinctus, has expanded rapidly out of Mexico and colonized much of the former range of the beautiful armadillo. The high degree of morphological similarity between these two species has led to speculation that they might be a single, highly adaptable species with phenotypical responses and geographical range fluctuations resulting from environmental changes. If this is correct, then the biology and tolerance limits for D. novemcinctus could be directly applied to the Pleistocene species, D. bellus. To investigate this, we isolated ancient mitochondrial DNA from late Pleistocene-age specimens of Dasypus from Missouri and Florida. We identified two genetically distinct mitochondrial lineages, which most likely correspond to D. bellus (Missouri) and D. novemcinctus (Florida). Surprisingly, both lineages were isolated from large specimens that were identified previously as D. bellus. Our results suggest that D. novemcinctus, which is currently classified as an invasive species, was already present in central Florida around 10 ka, significantly earlier than previously believed. Beth Shapiro ([email protected]), Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; Russell W. Graham, Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA; Brandon Letts, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; received 27th February 2014, accepted 23rd June 2014. Xenarthra, an enigmatic superorder of mammals, first documented morphological differences in the appears in the fossil record in South America during the calcaneus. The early evolutionary history of D. bellus Palaeocene (Rose et al. 2005), around 60 million years remains unresolved. Blancan (Pliocene) forms are ago (Ma). The superorder quickly diversified into three smaller than those of the Late Pleistocene, but it orders: the Phyllophaga (sloths), Vermilingua (anteat- appears there is also a size reduction just before extinc- ers) and Cingulata (armadillos) (Gaudin & McDonald tion (Klippel & Parmalee 1984). 2008). Dasypodidae, the family that includes armadil- There are two different hypotheses proposed to los, along with two other cingulates, Glyptodontidae explain the origin of the modern nine-banded arma- and Pampatheridae, dispersed northward into North dillo, D. novemcinctus. One hypothesis suggests that the America around 3 Ma with the formation of the Pana- nine-banded armadillo is directly descended from the manian isthmus (Marshall et al. 1982). Glyptodonts and beautiful armadillo (McNab 1980; McBee & Baker pampatheres went extinct about 11 000 years ago (ka) 1982). This hypothesis is supported by the fact that the (Kurtén & Anderson 1980). body size of D. bellus decreased during the latest Pleis- Today, the Dasypodidae contains 21 extant species tocene (Klippel & Parmalee 1984). On the other hand, (Möller-Krull et al. 2007), seven of which are within the the same data (Klippel & Parmalee 1984) show that genus Dasypus, which probably diversified in South D. bellus was extremely variable in size, with small America around 7 Ma (Delsuc et al. 2003). One species, D. bellus overlapping in size with large D. novemcinctus Dasypus bellus (beautiful armadillo), occurred in the (e.g. band osteoderm widths varied from 13.2–6.8 mm USA from about 2.5 Ma (Voorhies 1987; Woodbourne in beautiful armadillos compared with 5.4–6.9 mm 2010) until about 11 ka when it went extinct (Schubert in nine-banded armadillos (Klippel & Parmalee 1984: & Graham 2000). It ranged across the southeastern p. 157, table 3)). Consequently, D. bellus and USA from New Mexico and Texas to Florida, and D. novemcinctus may not actually be different species, north to Nebraska (Voorhies 1987) and Iowa across to but rather a single, highly adaptable species that has West Virginia (Klippel & Parmalee 1984: p. 154, fig. 2). been through a series of phenotypic changes along with No records of the beautiful armadillo exist from South range expansions and contractions in response to envi- America (Schubert & Graham 2000). ronmental fluctuations. This evolutionary change may The beautiful armadillo was large (∼1.2 m long), have happened in Mexico or even further south with about twice the size of the modern nine-banded arma- the extinction of D. bellus. dillo, D. novemcinctus. Other than size, there appears to Today, D. novemcinctus is the most widespread be a high degree of morphological similarity between xenarthran, with a continuous range extending from the two species (Auffenberg 1957; Slaughter 1961; Patagonia in Argentina northward into Nebraska in the Voorhies 1987), although Jansinski & Wallace (2013) USA (McBee & Baker 1982). In fact, it is the only DOI 10.1111/bor.12094 © 2014 Collegium Boreas. Published by John Wiley & Sons Ltd 2 Beth Shapiro et al. BOREAS xenarthran in the USA, where the US Department of and 10 thousand years old. We additionally attempted Fish and Wildlife Services consider it to be an invasive to extract DNA from four glyptodont and five (non-native) species (Simonson et al. 2004). It rapidly pampathere bones and teeth (Table 1) sampled from expanded its range out of Mexico through Texas the Florida Museum of Natural History. and into the mid-central southern states within the From each specimen, we performed DNA extraction last 150 years (Humphrey 1974). Independently, in the for poorly preserved bones as described previously middle 1800s, humans introduced populations of (Letts & Shapiro 2012). As with all ancient DNA D. novemcinctus into Florida. Likewise, this population research, we performed DNA extraction and PCR expanded its distribution into the southeastern USA set-up in a sterile, positive pressure clean laboratory, in (Humphrey 1974). In the last 15 years, D. novemcinctus this instance the ancient DNA laboratory at the Penn- has continued its range extension in to central Missouri sylvania State University, which is physically isolated and southern Illinois (Taulman & Robbins 1996). With from modern molecular biology research. Prior to this the projection for future climate warming (IPCC 2013), project, no molecular biology research was carried out expectations are that it will continue to expand north- on either living or extinct armadillos in either the ward (McBee & Baker 1982; Taulman & Robbins 1996; ancient DNA laboratory or the modern DNA labora- Fig. 1). tory in which downstream molecular biology work was The recent, rapid expansion of nine-banded armadil- performed. Workflow was always from the ancient los into North America is reflected in their present-day DNA laboratory to the modern DNA laboratory, and genetic diversity. Two divergent mitochondrial lineages full protective coverings were worn at all times. Nega- of nine-banded armadillos are known (Huchon et al. tive controls were used at all steps and PCR products 1999; Frutos & Van den Bussche 2002; Arteaga et al. were cloned to characterize DNA damage and identify 2012), but only one of these has been identified in the environmental contaminants. Prior to extraction, we USA (Huchon et al. 1999; Arteaga et al. 2012). In addi- removed subsamples from each specimen using a tion, in an analysis of diversity within the mitochondrial Dremel tool. We collected bone powder either by drill- control region, which is the most rapidly evolving ing directly into the interior of the bone with a drill tip, segment of the mitochondrial genome, only two very or by removing a larger piece of bone with a cutting closely related haplotypes were observed amongst a disk and reducing this piece to powder with a sample of 20 nine-banded armadillos from across their Mikrodismembrator (Braun). Of those that we were US range (Huchon et al. 1999). By contrast, a far greater able to powder (Lab ID is listed as n/a in Table 1) we diversity of mitochondrial haplotypes is found in South collected 200–400 mg of bone powder, from which we and Central America, where both lineages of nine- extracted DNA using the silica-binding method banded armadillos are found as far north as Mexico described by Rohland et al. (2010). In the final step of (Huchon et al. 1999; Frutos & Van den Bussche 2002; the extraction, we eluted the DNA in 50 μl of TE buffer Arteaga et al. 2012). and added Tween-20 to a concentration of 0.5%, as this Here, we investigated the evolutionary relationship has been shown to prevent DNA molecules from between the extinct D. bellus and extant D. binding to the walls of the tube in which the extract is novemcinctus using ancient mitochondrial DNA. We stored (Rohland & Hofreiter 2007). isolated genetic data from two North American indi- Initial results suggested that DNA was preserved in viduals dating to the Pleistocene, one from Florida and two of the 12 armadillo samples (see below). However, the other from Missouri, both identified as D. bellus. We these samples were heavily contaminated with human performed a phylogenetic analysis of these and previ- DNA, probably introduced during excavation, han- ously isolated mitochondrial DNA data from nine- dling and storage. We therefore performed an addi- banded armadillos and from the most closely related tional extraction from these two samples, this time living species to the nine-banded armadillo, the greater including a bleach step in which coarsely powdered long-nosed armadillo (D. kappleri). bone was immersed in 3% bleach for 15 min. This pro- tocol has been shown to effectively remove nearly all Material and methods exogenous DNA contamination (Kemp & Smith 2005).
Recommended publications
  • Ancient Mitogenomes Shed Light on the Evolutionary History And
    Ancient Mitogenomes Shed Light on the Evolutionary History and Biogeography of Sloths Frédéric Delsuc, Melanie Kuch, Gillian Gibb, Emil Karpinski, Dirk Hackenberger, Paul Szpak, Jorge Martinez, Jim Mead, H. Gregory Mcdonald, Ross Macphee, et al. To cite this version: Frédéric Delsuc, Melanie Kuch, Gillian Gibb, Emil Karpinski, Dirk Hackenberger, et al.. Ancient Mitogenomes Shed Light on the Evolutionary History and Biogeography of Sloths. Current Biology - CB, Elsevier, 2019. hal-02326384 HAL Id: hal-02326384 https://hal.archives-ouvertes.fr/hal-02326384 Submitted on 22 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Ancient Mitogenomes Shed Light on the Evolutionary 2 History and Biogeography of Sloths 3 Frédéric Delsuc,1,13,*, Melanie Kuch,2 Gillian C. Gibb,1,3, Emil Karpinski,2,4 Dirk 4 Hackenberger,2 Paul Szpak,5 Jorge G. Martínez,6 Jim I. Mead,7,8 H. Gregory 5 McDonald,9 Ross D. E. MacPhee,10 Guillaume Billet,11 Lionel Hautier,1,12 and 6 Hendrik N. Poinar2,* 7 Author list footnotes 8 1Institut des Sciences de l’Evolution de Montpellier
    [Show full text]
  • The Northern Naked-Tailed Armadillo in the Lacandona Rainforest, Mexico: New Records and Potential Threats Revista Mexicana De Biodiversidad, Vol
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; González-Di Pierro, Ana María; Lombera, Rafael; de la Peña-Cuéllar, Erika; Peña-Mondragón, Juan Luis; Hernández-Ordoñez, Omar; Muench, Carlos; Garmendia, Adriana; Stoner, Kathryn E. The northern naked-tailed armadillo in the Lacandona rainforest, Mexico: new records and potential threats Revista Mexicana de Biodiversidad, vol. 83, núm. 2, 2012, pp. 581-586 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42523421033 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 82: 581-586, 2011 Research note The northern naked-tailed armadillo in the Lacandona rainforest, Mexico: new records and potential threats Armadillo de cola desnuda en la selva lacandona, México: nuevos registros y amenazas potenciales Arturo González-Zamora1,2, Víctor Arroyo-Rodríguez2, Ana María González-Di Pierro2, Rafael Lombera4, Erika de la Peña-Cuéllar2, Juan Luis Peña-Mondragón2, Omar Hernández-Ordoñez2, Carlos Muench2, Adriana Garmendia2 and Kathryn E. Stoner2,3 1División de Posgrado, Instituto de Ecología A.C. Km. 2.5 Carretera antigua a Coatepec No.351. Congregación El Haya, 91070 Xalapa, Veracruz, México. 2Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, México.
    [Show full text]
  • Tabbitha Schliesman Tolypeutes Matacus Southern Three-Banded Armadillo
    Tabbitha Schliesman Tolypeutes matacus Southern Three-banded Armadillo Description: The Southern Three-Banded Armadillo, Tolypeutes matacus, is a small creature, about 10- 15 cm tall, 21 – 30 cm long(Eisenburg & Redford, 1999), and 1.00 to 1.59 kg in weight (EOL, 2014). The outer shell of the Southern Three-Banded Armadillo ranges from light brownish-yellow to blackish-brown in coloring. This armadillo is comprised of three parts: a head, body, and an immobile, stout tail that are heavily armored with a leathery, think shell(Ellis, 1999). This leathery armor covers the entire animal, except for the belly and ears, when walking and/or standing. The skin of the front and rear portions of the Southern Three-Banded Armadillo are not attached to the middle section, allowing the animal to roll into a tight ball(EOL, 2014). Other features that make the Southern Three-Banded Southern Three Banded-Armadillo, Tolypeutes Armadillo distinct are the third and fourth claws of matacus, (Smith, 2007). the hind feet that look like hooves, while the front feet have only three sharp powerful claws(Superina, 2009). Southern Three-Banded Armadillos have a long pink tongue that is usually sticky. Their heads are long, and are unique to each armadillo; like humans’ fingerprints, researchers have used their head patterns while tracking them to identify which individual armadillo they are researching(HZ, 2011). Ecology: Southern Three-Banded Armadillos are native to north central Argentina, east central Bolivia and multiple sections of Paraguay and south west Brazil. The Southern Three-Banded Armadillo is found mainly in scrub forests and savannahs in these sections of South America.
    [Show full text]
  • Reveals That Glyptodonts Evolved from Eocene Armadillos
    Molecular Ecology (2016) 25, 3499–3508 doi: 10.1111/mec.13695 Ancient DNA from the extinct South American giant glyptodont Doedicurus sp. (Xenarthra: Glyptodontidae) reveals that glyptodonts evolved from Eocene armadillos KIEREN J. MITCHELL,* AGUSTIN SCANFERLA,† ESTEBAN SOIBELZON,‡ RICARDO BONINI,‡ JAVIER OCHOA§ and ALAN COOPER* *Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia, †CONICET-Instituto de Bio y Geociencias del NOA (IBIGEO), 9 de Julio No 14 (A4405BBB), Rosario de Lerma, Salta, Argentina, ‡Division Paleontologıa de Vertebrados, Facultad de Ciencias Naturales y Museo (UNLP), CONICET, Museo de La Plata, Paseo del Bosque, La Plata, Buenos Aires 1900, Argentina, §Museo Arqueologico e Historico Regional ‘Florentino Ameghino’, Int De Buono y San Pedro, Rıo Tercero, Cordoba X5850, Argentina Abstract Glyptodonts were giant (some of them up to ~2400 kg), heavily armoured relatives of living armadillos, which became extinct during the Late Pleistocene/early Holocene alongside much of the South American megafauna. Although glyptodonts were an important component of Cenozoic South American faunas, their early evolution and phylogenetic affinities within the order Cingulata (armoured New World placental mammals) remain controversial. In this study, we used hybridization enrichment and high-throughput sequencing to obtain a partial mitochondrial genome from Doedicurus sp., the largest (1.5 m tall, and 4 m long) and one of the last surviving glyptodonts. Our molecular phylogenetic analyses revealed that glyptodonts fall within the diver- sity of living armadillos. Reanalysis of morphological data using a molecular ‘back- bone constraint’ revealed several morphological characters that supported a close relationship between glyptodonts and the tiny extant fairy armadillos (Chlamyphori- nae).
    [Show full text]
  • Dietary Specialization and Variation in Two Mammalian Myrmecophages (Variation in Mammalian Myrmecophagy)
    Revista Chilena de Historia Natural 59: 201-208, 1986 Dietary specialization and variation in two mammalian myrmecophages (variation in mammalian myrmecophagy) Especializaci6n dietaria y variaci6n en dos mamiferos mirmec6fagos (variaci6n en la mirmecofagia de mamiferos) KENT H. REDFORD Center for Latin American Studies, Grinter Hall, University of Florida, Gainesville, Florida 32611, USA ABSTRACT This paper compares dietary variation in an opportunistic myrmecophage, Dasypus novemcinctus, and an obligate myrmecophage, Myrmecophaga tridactyla. The diet of the common long-nosed armadillo, D. novemcintus, consists of a broad range of invertebrate as well as vertebrates and plant material. In the United States, ants and termites are less important as a food source than they are in South America. The diet of the giant anteater. M. tridactyla, consists almost entirely of ants and termites. In some areas giant anteaters consume more ants whereas in others termites are a larger part of their diet. Much of the variation in the diet of these two myrmecophages can be explained by geographical and ecological variation in the abundance of prey. However, some variation may be due to individual differences as well. Key words: Dasypus novemcinctus, Myrmecophaga tridactyla, Tamandua, food habits. armadillo, giant anteater, ants, termites. RESUMEN En este trabajo se compara la variacion dietaria entre un mirmecofago oportunista, Dasypus novemcinctus, y uno obligado, Myrmecophaga tridactyla. La dieta del armadillo comun, D. novemcinctus, incluye un amplio rango de in- vertebrados así como vertebrados y materia vegetal. En los Estados Unidos, hormigas y termites son menos importantes como recurso alimenticio de los armadillos, de lo que son en Sudamérica. La dieta del hormiguero gigante, M tridactyla, está compuesta casi enteramente por hormigas y termites.
    [Show full text]
  • Distinguishing Quaternary Glyptodontine Cingulates in South America: How Informative Are Juvenile Specimens?
    Distinguishing Quaternary glyptodontine cingulates in South America: How informative are juvenile specimens? CARLOS A. LUNA, IGNACIO A. CERDA, ALFREDO E. ZURITA, ROMINA GONZALEZ, M. CECILIA PRIETO, DIMILA MOTHÉ, and LEONARDO S. AVILLA Luna, C.A., Cerda, I.A., Zurita, A.E., Gonzalez, R., Prieto, M.C., Mothé, D., and Avilla, L.S. 2018. Distinguishing Quaternary glyptodontine cingulates in South America: How informative are juvenile specimens? Acta Palaeontologica Polonica 63 (1): 159–170. The subfamily Glyptodontinae (Xenarthra, Cingulata) comprises one of the most frequently recorded glyptodontids in South America. Recently, the North American genus Glyptotherium was recorded in South America, in addition to the genus Glyptodon. It has been shown that both genera shared the same geographic distribution in central-north and eastern areas of South America (Venezuela and Brazil, respectively). Although some characters allow differentiation between adult specimens of both genera, the morphological distinction between these two genera is rather difficult in juvenile specimens. In this contribution, a detailed morphological, morphometric and histological survey of a juvenile specimen of Glyptodontinae recovered from the Late Pleistocene of northern Brazil is performed. The relative lower osteoderms thickness, the particular morphology of the annular and radial sulci and the distal osseous projections of the caudal osteoderms suggest that the specimen belongs to the genus Glyptotherium. In addition, the validity of some statistical tools to distinguish between different ontogenetic stages and in some cases between genera is verified. The osteoderm microstructure of this juvenile individual is characterized by being composed of a cancellous internal core surrounded by a compact bone cortex. Primary bone tissue mostly consists of highly vascularized, woven-fibered bone tissue.
    [Show full text]
  • Range Extension of the Northern Naked-Tailed Armadillo (Cabassous Centralis) in Southern Mexico
    Western North American Naturalist Volume 77 Number 3 Article 10 9-29-2017 Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico Rugieri Juárez-López Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Mariana Pérez-López Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Yaribeth Bravata-de la Cruz Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Alejandro Jesús-de la Cruz Universidad Juarez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Fernando M. Contreras-Moreno Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] See next page for additional authors Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Juárez-López, Rugieri; Pérez-López, Mariana; Bravata-de la Cruz, Yaribeth; Jesús-de la Cruz, Alejandro; Contreras-Moreno, Fernando M.; Thornton, Daniel; and Hidalgo-Mihart, Mircea G. (2017) "Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico," Western North American Naturalist: Vol. 77 : No. 3 , Article 10. Available at: https://scholarsarchive.byu.edu/wnan/vol77/iss3/10 This Note is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico Authors Rugieri Juárez-López, Mariana Pérez-López, Yaribeth Bravata-de la Cruz, Alejandro Jesús-de la Cruz, Fernando M.
    [Show full text]
  • Xenarthrans: 'Aliens'
    Vet Times The website for the veterinary profession https://www.vettimes.co.uk XENARTHRANS: ‘ALIENS’ ON EARTH Author : JONATHAN CRACKNELL Categories : Vets Date : August 4, 2008 JONATHAN CRACKNELL finds that hanging around with sloths and their fellow Xenarthrans offers up exciting challenges XENARTHRANS: the name sounds like a race from a low-budget science fiction film. This is actually a super-order of mammals that get their name from their “alien” joint, which is exhibited in the vertebral joints. The Xenarthrans include 31 living species: six species of sloth, four anteaters and 21 species of armadillos – all of which originated in South America. Historically, these animals were classified within the order Edentata (meaning “without teeth”), which included pangolins and aardvarks. It was realised that this was a polyphyletic group, containing unrelated families. Therefore, the Xenarthra order was created. The Xenarthrans are a well-represented order in captivity, with banded armadillos (Dasypus novemcinctus) becoming one of the new “exotic” exotics to be presented to clinicians. In zoological collections, giant anteaters (Myrmecophaga tridactyla), southern tamanduas (Tamandua tetradactyla), and sloths (typically the southern two-toed sloth – Choloepus didactylus – although others are present) are among the more common species housed in captivity. Every species has its own needs and oddities. With this brief review of each species, the author will look at basic anatomy and physiology, along with a quick review of some of the more commonly reported complaints for this group of animals. 1 / 14 Giant anteater The giant anteater’s most obvious feature is its long tongue and bushy tail. They are approximately 1.5 to two metres long and weigh in the region of 18kg to 45kg.
    [Show full text]
  • Introduction Recent Classifications Regard the Order Pilosa, Anteaters
    Introduction Recent classifications regard the order Pilosa, anteaters and sloths, and order Cingulata, the armadillos, within the superorder Xenarthra meaning “strange joints”. In the past, Pilosa and Cingulata wer regarded as suborders of the order Xenarthra, with the armadillos. Earlier still, both armadillos and pilosans were classified together with pangolins and the aardvark as the order Edentata meaning “toothless”. The orders Pilosa and Cingulata are distinguishable as the cingulatas have an armoured upper body and the pilosa have fur. Studies have concluded that sloths, anteaters, and armadillos diverged at least 75-80 million years ago and that they are as different from one another as are carnivores, bats and primates. The Pilosa are now considered almost exclusively a New World order, however, fossil records indicate that they were once found in Europe and possibly Asia. This order may have been distributed worldwide in the Cretaceous period, but became limited to South America and have remained there for most of their history and evolved into numerous groups. The Pilosa were once far more diverse than they are today; there are known to be 10 times as many fossil as living genera. The superorder is distinguished from all others by what are known as the xenarthrous vertebrae. There are secondary and sometimes even more, articulations between the vertebrae of the lumbar (lower back) series. In other words, consecutive vertebrae connect in more than one place. In addition, the pelvis connects with more of the spine than in other mammals. These adaptations to the spine give support, particularly to the hips. The name Xenarthra refers to this peculiarity of the spine and modem taxonomy places these three groups of animals together, even though they are very different from one another and they are highly specialized.
    [Show full text]
  • The Giant Armadillo of the Gran Chaco
    The Giant Armadillo of the Gran Chaco A giant armadillo Priodontes maximus at the Saenz-Peña Zoo in South America raises up, balancing with its tail, a common posture for this large species. Venezuela The Guianas: Guyana hat’s the size of Texas and Arizona combined, reaches temperatures Suriname French Guiana Wof 115 degrees Fahrenheit, has plants with 15-inch-long thorns, Colombia and houses an armadillo larger than a coffee table? The South American Gran Chaco, where giant armadillos wander freely. The Gran Chaco region covers more than 1 million square kilometers of Argentina, Bolivia, Perú Brazil Paraguay, and Brazil, with approximately 60 percent in Argentina and Bolivia just 7 percent in Brazil. The region is a mosaic of grasslands, savannas, Paraguay • open woodlands, dry thorn forests, and gallery forests that provide a GRAN CHACO 15 range of habitats where some diverse animal species flourish. • In the gallery forests of the humid Chaco, we regularly encounter animals Argentina that are associated with tropical and subtropical forests, like jaguars, owl monkeys, howler monkeys, peccaries, deer, tapirs, and various kinds of eden- tates, a group of mammals that includes sloths, anteaters, and armadillos. The Gran Chaco—from the Quechua Although there are no sloths in the Chaco, we regularly find lesser anteaters 2003 and sometimes come across giant anteaters. Both the nine-banded armadillo, Indian language of Bolivia for “great hunting ground”—crosses four coun- also found in Texas, and the tatu bola, or three-banded armadillo, which you tries and encompasses an area the can see at the Wild Animal Park’s Animal Care Center and the San Diego Zoo’s size of Texas and Arizona combined.
    [Show full text]
  • El Armadillo, Cabassous Centralis (Cingulata: Chlamyphoridae) En Agroecosistemas Con Café De Costa Rica
    El armadillo, Cabassous centralis (Cingulata: Chlamyphoridae) en agroecosistemas con café de Costa Rica Ronald J. Sánchez-Brenes1 & Javier Monge2 1. Universidad Nacional Costa Rica, Sede Regional Chorotega, Centro Mesoamericano de Desarrollo Sostenible del Trópico Seco (CEMEDE-UNA), Nicoya, Costa Rica; [email protected], https://orcid.org/0000-0002-6979-1336 2. Universidad de Costa Rica, Facultad de Ciencias Agroalimentarias, Escuela de Agronomía, Centro de Investigación en Protección de Cultivos, Instituto de Investigaciones Agronómicas, San José, Costa Rica; [email protected], https://orcid.org/0000-0003-1530-5774 Recibido 09-VIII-2019 • Corregido 11-IX-2019 • Aceptado 30-IX-2019 DOI: https://doi.org/10.22458/urj.v11i3.2724 ABSTRACT: “The armadillo, Cabassous centralis (Cingulata: RESUMEN: Introducción: El armadillo Cabassous centralis se clasifica Chlamyphoridae) in a Costa Rican coffee agro-ecosystem”. Introduction: como una especie con Datos Insuficientes que se encuentra desde The rare Cabassous centralis armadillo is classified as a Data Deficient México hasta el norte de América del Sur. Objetivo: Ampliar la distri- species found from Mexico to northern South America). Objective: To bución ecológica de C. centralis. Métodos: Colocamos cuatro cámaras expand the ecological distribution of C. centralis. Methods: We placed trampa en sitios estratégicos como fuentes de alimentación, madrigue- four trap cameras in strategic sites such as food sites, burrows, bodies of ras, cuerpos de agua y transición al bosque secundario, en San Ramón, water and transition to the secondary forest, in San Ramón, Costa Rica. Costa Rica. Resultados: Obtuvimos un registro de C. centralis en la tran- Results: We obtained a record of C.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]