Distinguishing Quaternary Glyptodontine Cingulates in South America: How Informative Are Juvenile Specimens?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Asymmetry in the Great American Biotic Interchange in Mammals Is Consistent with Differential Susceptibility to Mammalian Predation
Coversheet This is the accepted manuscript (post-print version) of the article. Contentwise, the accepted manuscript version is identical to the final published version, but there may be differences in typography and layout. How to cite this publication Please cite the final published version: Faurby, S. and Svenning, J.-C. (2016), The asymmetry in the Great American Biotic Interchange in mammals is consistent with differential susceptibility to mammalian predation. Global Ecol. Biogeogr., 25: 1443–1453. doi:10.1111/geb.12504 Publication metadata Title: The asymmetry in the Great American Biotic Interchange in mammals is consistent with differential susceptibility to mammalian predation Author(s): Faurby, S. and Svenning, J.-C. Journal: Global Ecology and Biogeography DOI/Link: https://doi.org/10.1111/geb.12504 Document version: Accepted manuscript (post-print) This is the peer reviewed version of the following article: [Faurby, S. and Svenning, J.-C. (2016), The asymmetry in the Great American Biotic Interchange in mammals is consistent with differential susceptibility to mammalian predation. Global Ecol. Biogeogr., 25: 1443–1453. doi:10.1111/geb.12504], which has been published in final form at [https://doi.org/10.1111/geb.12504]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. General Rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. -
High School Living Earth Evidence for Evolution Lessons Name: School: Teacher
DO NOT EDIT--Changes must be made through “File info” CorrectionKey=CA-B High School Living Earth Evidence for Evolution Lessons Name: School: Teacher: The Unit should take approximately 4 days complete. Read each section and complete the tasks. DO NOT EDIT--Changes must be made through “File info” CorrectionKey=CA-B FIGURE 1: This creosote ring in the Mojave Desert is estimated to be 11 700 years old . This makes it one of the oldest living organisms on Earth . The creosote bush is thought to be the most drought-tolerant plant in North America. It has a variety of adaptations to its desert environment, including its reproductive tendency to clone outward in rings rather than rely solely on seed production. The plant’s leaves are coated in a foul-tasting resin that protects it from water loss through evaporation and from grazing. It only opens its stomata in the morning to pull in carbon dioxide for photosynthesis from the more humid air and closes them as the day’s temperature increases. It also has a root system that consists of both an exceptionally long tap root and a vast network of shallow feeder roots. Creosote bushes exhibit two different shapes to fit different microclimates. In drier areas, the plant has a cone shape in which stems funnel rainwater into the taproot. In wetter areas, the bush has a more rounded shape that provides shade to its shallow feeder roots. PREDICT How do species change over time to adjust to varying conditions? DRIVING QUESTIONS As you move through the unit, gather evidence to help you answer the following questions. -
Revised Stratigraphy of Neogene Strata in the Cocinetas Basin, La Guajira, Colombia
Swiss J Palaeontol (2015) 134:5–43 DOI 10.1007/s13358-015-0071-4 Revised stratigraphy of Neogene strata in the Cocinetas Basin, La Guajira, Colombia F. Moreno • A. J. W. Hendy • L. Quiroz • N. Hoyos • D. S. Jones • V. Zapata • S. Zapata • G. A. Ballen • E. Cadena • A. L. Ca´rdenas • J. D. Carrillo-Bricen˜o • J. D. Carrillo • D. Delgado-Sierra • J. Escobar • J. I. Martı´nez • C. Martı´nez • C. Montes • J. Moreno • N. Pe´rez • R. Sa´nchez • C. Sua´rez • M. C. Vallejo-Pareja • C. Jaramillo Received: 25 September 2014 / Accepted: 2 February 2015 / Published online: 4 April 2015 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2015 Abstract The Cocinetas Basin of Colombia provides a made exhaustive paleontological collections, and per- valuable window into the geological and paleontological formed 87Sr/86Sr geochronology to document the transition history of northern South America during the Neogene. from the fully marine environment of the Jimol Formation Two major findings provide new insights into the Neogene (ca. 17.9–16.7 Ma) to the fluvio-deltaic environment of the history of this Cocinetas Basin: (1) a formal re-description Castilletes (ca. 16.7–14.2 Ma) and Ware (ca. 3.5–2.8 Ma) of the Jimol and Castilletes formations, including a revised formations. We also describe evidence for short-term pe- contact; and (2) the description of a new lithostratigraphic riodic changes in depositional environments in the Jimol unit, the Ware Formation (Late Pliocene). We conducted and Castilletes formations. The marine invertebrate fauna extensive fieldwork to develop a basin-scale stratigraphy, of the Jimol and Castilletes formations are among the richest yet recorded from Colombia during the Neogene. -
Michael O. Woodburne1,* Alberto L. Cione2,**, and Eduardo P. Tonni2,***
Woodburne, M.O.; Cione, A.L.; and Tonni, E.P., 2006, Central American provincialism and the 73 Great American Biotic Interchange, in Carranza-Castañeda, Óscar, and Lindsay, E.H., eds., Ad- vances in late Tertiary vertebrate paleontology in Mexico and the Great American Biotic In- terchange: Universidad Nacional Autónoma de México, Instituto de Geología and Centro de Geociencias, Publicación Especial 4, p. 73–101. CENTRAL AMERICAN PROVINCIALISM AND THE GREAT AMERICAN BIOTIC INTERCHANGE Michael O. Woodburne1,* Alberto L. Cione2,**, and Eduardo P. Tonni2,*** ABSTRACT The age and phyletic context of mammals that dispersed between North and South America during the past 9 m.y. is summarized. The presence of a Central American province of cladogenesis and faunal differentiation is explored. One apparent aspect of such a province is to delay dispersals of some taxa northward from Mexico into the continental United States, largely during the Blancan. Examples are recognized among the various xenar- thrans, and cervid artiodactyls. Whereas the concept of a Central American province has been mentioned in past investigations it is upgraded here. Paratoceras (protoceratid artio- dactyl) and rhynchotheriine proboscideans provide perhaps the most compelling examples of Central American cladogenesis (late Arikareean to early Barstovian and Hemphillian to Rancholabrean, respectively), but this category includes Hemphillian sigmodontine rodents, and perhaps a variety of carnivores and ungulates from Honduras in the medial Miocene, as well as peccaries and equids from Mexico. For South America, Mexican canids and hy- drochoerid rodents may have had an earlier development in Mexico. Remarkably, the first South American immigrants to Mexico (after the Miocene heralds; the xenarthrans Plaina and Glossotherium) apparently dispersed northward at the same time as the first Holarctic taxa dispersed to South America (sigmodontine rodents and the tayassuid artiodactyls). -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
Mammalia, Cingulata, Glyptodontia)
Journal of South American Earth Sciences 66 (2016) 32e40 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames A reassessment of the taxonomic status of Paraglyptodon Castellanos, 1932 (Mammalia, Cingulata, Glyptodontia) * Laura E. Cruz a, , Juan C. Fernicola a, b, Matias Taglioretti c, Nestor Toledo d a CONICET, Consejo Nacional de Investigaciones Científicas y Tecnicas-Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”,Av.Angel Gallardo 470, Capital Federal, C1405DJR, Argentina b Departamento de Ciencias Basicas, Universidad Nacional de Lujan, Ruta 5 y Avenida Constitucion, 6700, Lujan, Buenos Aires, Argentina c CONICET-Instituto de Geología de Costas y del Cuaternario, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Dean Funes 3350, B7602AYL, Mar del Plata, Buenos Aires, Argentina d CONICET-Division Paleontología Vertebrados, Unidades de Investigacion Anexo Museo FCNyM-UNLP, Avenida 60 y 122, B1900FWA, La Plata, Argentina article info abstract Article history: Castellanos described and published about new genera of glyptodonts, according to a phylogenetic Received 21 September 2015 scheme mainly based on the evolution of the external surface of the dorsal carapace. Among these new Received in revised form genera, Castellanos proposed Paraglyptodon as the predecessor of Glyptodon, and included within Par- 4 November 2015 aglyptodon all known species of Glyptodontinae recovered from “horizontes pre-Ensenadenses”, and Accepted 20 November 2015 within Glyptodon all known species from “Horizontes pampeanos”, restricting the latter to the Quaternary. Available online 25 November 2015 All the species that belong to Paraglyptodon, that is Paraglyptodon chapalmalensis, Paraglyptodon uquiensis, Paraglyptodon dubius, and Paraglyptodon paranensis were established based on one, two or few Keywords: Osteoderm osteoderms, mostly from the dorsal carapace. -
(Dasypus) in North America Based on Ancient Mitochondrial DNA
bs_bs_banner A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA BETH SHAPIRO, RUSSELL W. GRAHAM AND BRANDON LETTS Shapiro, B. Graham, R. W. & Letts, B.: A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas. 10.1111/bor.12094. ISSN 0300-9483. The large, beautiful armadillo, Dasypus bellus, first appeared in North America about 2.5 million years ago, and was extinct across its southeastern US range by 11 thousand years ago (ka). Within the last 150 years, the much smaller nine-banded armadillo, D. novemcinctus, has expanded rapidly out of Mexico and colonized much of the former range of the beautiful armadillo. The high degree of morphological similarity between these two species has led to speculation that they might be a single, highly adaptable species with phenotypical responses and geographical range fluctuations resulting from environmental changes. If this is correct, then the biology and tolerance limits for D. novemcinctus could be directly applied to the Pleistocene species, D. bellus. To investigate this, we isolated ancient mitochondrial DNA from late Pleistocene-age specimens of Dasypus from Missouri and Florida. We identified two genetically distinct mitochondrial lineages, which most likely correspond to D. bellus (Missouri) and D. novemcinctus (Florida). Surprisingly, both lineages were isolated from large specimens that were identified previously as D. bellus. Our results suggest that D. novemcinctus, which is currently classified as an invasive species, was already present in central Florida around 10 ka, significantly earlier than previously believed. Beth Shapiro ([email protected]), Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; Russell W. -
Nine-Banded Armadillo (Dasypus Novemcinctus) Michael T
Nine-banded Armadillo (Dasypus novemcinctus) Michael T. Mengak Armadillos are present throughout much of Georgia and are considered an urban pest by many people. Armadillos are common in central and southern Georgia and can easily be found in most of Georgia’s 159 counties. They may be absent from the mountain counties but are found northward along the Interstate 75 corridor. They have poorly developed teeth and limited mobility. In fact, armadillos have small, peg-like teeth that are useful for grinding their food but of little value for capturing prey. No other mammal in Georgia has bony skin plates or a “shell”, which makes the armadillo easy to identify. Just like a turtle, the shell is called a carapace. Only one species of armadillo is found in Georgia and the southeastern U.S. However, 20 recognized species are found throughout Central and South America. These include the giant armadillo, which can weigh up to 130 pounds, and the pink fairy armadillo, which weighs less than 4 ounces. Taxonomy Order Cingulata – Armadillos Family Dasypodidae – Armadillo Nine-banded Armadillo – Dasypus novemcinctus The genus name Dasypus is thought to be derived from a Greek word for hare or rabbit. The armadillo is so named because the Aztec word for armadillo meant turtle-rabbit. The species name novemcinctus refers to the nine movable bands on the middle portion of their shell or carapace. Their common name, armadillo, is derived from a Spanish word meaning “little armored one.” Figure 1. Nine-banded Armadillo. Photo by author, 2014. Status Armadillos are considered both an exotic species and a pest. -
Introducing the FOSSIL Project
FOSSIL CLUB OF LEE COUNTY MARCH 2014 PRESIDENT'S MESSAGE Auction time!! for credit cards. Sorry. All rules will be discussed Yes! It’s time for our annual fossil auction. prior to the start. Every March, rain or shine, we have our fossil auc- Since the last club meeting, in January, I at- tion. And all members are expected to be there! tended, along with Al Govin, the North American Really, we would love to see you. We work hard at Paleontological Convention, in Gainesville, Florida. presenting a nice assortment of items for your op- This opportunity was made possible through the portunity to take them home. We will have at least a FOSSIL Project. This project is a new network set hundred different lots. I want to thank each of you up to help fossil clubs and museums and profes- that donated to this great cause! An auction of this sional paleontologists better communicate and work size takes several hours, so plan accordingly so you together. It is an exciting venture, inasmuch as it al- can see it all. lows interaction between different levels of the sci- The auction starts PROMPTLY at 7 pm. In past ence that did not exist before. After several days of years we started it a little earlier, but many of our attending lectures from different paleontologists, members found it difficult to get home from work from all over the world, reporting on their individual and get to the fellowship hall for the early start. This projects, we had the first formal FOSSIL workshops. -
Overkill, Glacial History, and the Extinction of North America's Ice Age Megafauna
PERSPECTIVE Overkill, glacial history, and the extinction of North America’s Ice Age megafauna PERSPECTIVE David J. Meltzera,1 Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved September 23, 2020 (received for review July 21, 2020) The end of the Pleistocene in North America saw the extinction of 38 genera of mostly large mammals. As their disappearance seemingly coincided with the arrival of people in the Americas, their extinction is often attributed to human overkill, notwithstanding a dearth of archaeological evidence of human predation. Moreover, this period saw the extinction of other species, along with significant changes in many surviving taxa, suggesting a broader cause, notably, the ecological upheaval that occurred as Earth shifted from a glacial to an interglacial climate. But, overkill advocates ask, if extinctions were due to climate changes, why did these large mammals survive previous glacial−interglacial transitions, only to vanish at the one when human hunters were present? This question rests on two assumptions: that pre- vious glacial−interglacial transitions were similar to the end of the Pleistocene, and that the large mammal genera survived unchanged over multiple such cycles. Neither is demonstrably correct. Resolving the cause of large mammal extinctions requires greater knowledge of individual species’ histories and their adaptive tolerances, a fuller understanding of how past climatic and ecological changes impacted those animals and their biotic communities, and what changes occurred at the Pleistocene−Holocene boundary that might have led to those genera going extinct at that time. Then we will be able to ascertain whether the sole ecologically significant difference between previous glacial−interglacial transitions and the very last one was a human presence. -
La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles. -
Taluany Silva Do Nascimento
UNIVERSIDADE FEDERAL DO TOCANTINS CAMPUS UNIVERSITÁRIO DE PORTO NACIONAL PROGRAMA DE PÓS-GRADUAÇÃO EM BIODIVERSIDADE, ECOLOGIA E CONSERVAÇÃO TALUANY SILVA DO NASCIMENTO NOVOS REGISTROS DE ANGIOSPERMAS PLEISTOCÊNICAS PARA FORMAÇÃO RIO MADEIRA, BACIA DO ABUNÃ, RONDÔNIA, BRASIL PORTO NACIONAL (TO) 2021 TALUANY SILVA DO NASCIMENTO NOVOS REGISTROS DE ANGIOSPERMAS PLEISTOCÊNICAS PARA FORMAÇÃO RIO MADEIRA, BACIA DO ABUNÃ, RONDÔNIA, BRASIL Dissertação apresentada ao Programa de Pós – Graduação em Biodiversidade, ecologia e conservação da Universidade Federal do Tocantins, como parte dos requisitos para obtenção de título de mestre em biodiversidade, ecologia e conservação. Orientadora: Dra. Etiene Fabbrin Pires Oliveira PORTO NACIONAL (TO) 2021 Taluany Silva do Nascimento Novos registros de angiospermas pleistocênicas para formação rio Madeira, Bacia do Abunã, Rondônia, Brasil. Dissertação apresentada ao Programa de Pós- Graduação em Biodiversidade, Ecologia e Conservação. Foi avaliada para obtenção do título de Mestre em Biodiversidade, Ecologia e Conservação e aprovada em sua forma final pela Orientadora e pela Banca Examinadora. Data de aprovação: 28/04/2021 Banca Examinadora: ___________________________________________________ Profa. Dra. Etiene Fabbrin Pires Oliveira (Orientadora), UFT ___________________________________________________ Prof. Dr. André Jasper, Univates _________________________________________________ Prof. Dr. Yuri Modesto Alves, UFT Porto Nacional - TO, 2021 AGRADECIMENTOS Durante o meu mestrado foram muitas as pessoas que contribuíram e passaram pelo meu caminho influenciando de forma direta e indireta na construção desse trabalho. Sou grata a todos! Creio que não seja possível expressar tamanha gratidão, mas escreverei algumas palavras destacando essas contribuições, sem ordem de importância, mesmo correndo o risco de esquecer algum nome. O Laboratório de Paleobiologia da Universidade Federal do Tocantins, campus Porto Nacional, foi meu lar acadêmico durante os últimos 5 anos.