1931-15701-1-LE Maquetación 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
JVP 26(3) September 2006—ABSTRACTS
Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra. -
Skull Shape Analysis and Diet of South American Fossil Penguins (Sphenisciformes) Claudia Patricia Tambussi & Carolina Acosta Hospitaleche
Skull shape analysis and diet of South American fossil penguins (Sphenisciformes) Claudia Patricia Tambussi & Carolina Acosta Hospitaleche CONICET & Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina [email protected] [email protected] ABSTRACT – Form and function of the skull of Recent and fossil genera of available Spheniscidae are analysed in order to infer possible dietary behaviors for extinct penguins. Skull shapes were compared using the Resistant-Fit Theta-Rho- Analysis (RFTRA) Procrustean method. Due to the availability and quality of the material, this study was based on six living species belonging to five genera (Spheniscus, Eudyptula, Eudyptes, Pygoscelis, and Aptenodytes) and two Miocene species: Paraptenodytes antarticus (Moreno and Mercerat, 1891) and Madrynornis mirandus Acosta Hospitaleche, Tambussi, Donato & Cozzuol. Seventeen landmark from the skull were chosen, including homologous and geometrical points. Morphologi- cal similarities among RFTRA distances are depicted using the resulting dendrograms for UPGMA (unweighted pair-group method using arithmetic average) cluster analysis. This shape analysis allows the assessment of similarities and differences in the skulls and jaws of penguins within a more comprehensive ecomorphological and phylogenetic framework. Even though penguin diet is not well known, enough data supports the conclusion that Spheniscus + Eudyptes penguins specialize on fish and all other taxa are plankton-feeders or fish and crustacean-feeders. We compared representative species of both ecomor- phological groups with the available fossil material to evaluate their feeding strategies. Penguins are the most abundant birds, indeed the most abundant aquatic tetrapods, in Cenozoic marine sediments of South America. The results arising from this study will be of singular importance in the reconstruction of those marine ecosystems. -
Michael O. Woodburne1,* Alberto L. Cione2,**, and Eduardo P. Tonni2,***
Woodburne, M.O.; Cione, A.L.; and Tonni, E.P., 2006, Central American provincialism and the 73 Great American Biotic Interchange, in Carranza-Castañeda, Óscar, and Lindsay, E.H., eds., Ad- vances in late Tertiary vertebrate paleontology in Mexico and the Great American Biotic In- terchange: Universidad Nacional Autónoma de México, Instituto de Geología and Centro de Geociencias, Publicación Especial 4, p. 73–101. CENTRAL AMERICAN PROVINCIALISM AND THE GREAT AMERICAN BIOTIC INTERCHANGE Michael O. Woodburne1,* Alberto L. Cione2,**, and Eduardo P. Tonni2,*** ABSTRACT The age and phyletic context of mammals that dispersed between North and South America during the past 9 m.y. is summarized. The presence of a Central American province of cladogenesis and faunal differentiation is explored. One apparent aspect of such a province is to delay dispersals of some taxa northward from Mexico into the continental United States, largely during the Blancan. Examples are recognized among the various xenar- thrans, and cervid artiodactyls. Whereas the concept of a Central American province has been mentioned in past investigations it is upgraded here. Paratoceras (protoceratid artio- dactyl) and rhynchotheriine proboscideans provide perhaps the most compelling examples of Central American cladogenesis (late Arikareean to early Barstovian and Hemphillian to Rancholabrean, respectively), but this category includes Hemphillian sigmodontine rodents, and perhaps a variety of carnivores and ungulates from Honduras in the medial Miocene, as well as peccaries and equids from Mexico. For South America, Mexican canids and hy- drochoerid rodents may have had an earlier development in Mexico. Remarkably, the first South American immigrants to Mexico (after the Miocene heralds; the xenarthrans Plaina and Glossotherium) apparently dispersed northward at the same time as the first Holarctic taxa dispersed to South America (sigmodontine rodents and the tayassuid artiodactyls). -
Bulletin~ of the American Museum of Natural History Volume 87: Article 1 New York: 1946 - X X |! |
GEORGE GAYLORD SIMPSON BULLETIN~ OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 87: ARTICLE 1 NEW YORK: 1946 - X X |! | - -s s- - - - - -- -- --| c - - - - - - - - - - - - - - - - - -- FOSSIL PENGUINS FOSSIL PENGUINS GEORGE GAYLORD SIMPSON Curator of Fossil Mammals and Birds PUBLICATIONS OF THE SCARRITT EXPEDITIONS, NUMBER 33 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 87: ARTICLE 1 NEW YORK: 1946 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 87, article 1, pages 1-100, text figures 1-33, tables 1-9 Issued August 8, 1946 CONTENTS INTRODUCTION . 7 A SKELETON OF Paraptenodytes antarcticus. 9 CONSPECTUS OF TERTIARY PENGUINS . 23 Patagonia. 24 Deseado Formation. 24 Patagonian Formation . 25 Seymour Island . 35 New Zealand. 39 Australia. 42 COMPARATIVE OSTEOLOGY OF MIOCENE PENGUINS . 43 Skull . 43 Vertebrae 44 Scapula. 45 Coracoid. 46 Sternum. 49 Humerus. 49 Radius and Ulna. 53 Metacarpus. 55 Phalanges . 56 The Wing as a Whole. 56 Femur. 59 Tibiotarsus. 60 Tarsometatarsus 61 NOTES ON VARIATION. 65 TAXONOMY AND PHYLOGENY OF THE SPHENISCIDAE . 68 DISTRIBUTION OF MIOCENE PENGUINS. 71 SIZE OF THE FOSSIL PENGUINS 74 THE ORIGIN OF PENGUINS. 77 Status of the Problem. 77 The Fossil Evidence . 78 Conclusions from the Fossil Evidence. 83 A General Theory of Penguin Evolution. 84 A Note on Archaeopteryx and Archaeornis 92 ADDENDUM . 96 BIBLIOGRAPHY 97 5 INTRODUCTION FEW ANIMALS have excited greater popular basis for comparison, synthesis, and gener- and scientific interest than penguins. Their alization, in spite of the fact -
Short Review of Dental Microstructure and Dental Microwear in Xenarthran Teeth
231 Short review of dental microstructure and dental microwear in xenarthran teeth Daniela C. Kalthoff Introduction Dentin is one of three tooth tissues occurring in mammals, Also using SEM technique, the most comprehensive and the other two being the hypermineralized tooth enamel detailed histological study to date is from Kalthoff (2011), and tooth cementum. In respect to volume, dentin usu- comprising teeth from about 50 xenarthran taxa dating ally makes up the largest part of the tooth. Interestingly, from late Eocene to Holocene. a number of mammal taxa have reduced the resistant Dental microwear analysis is the study of microscopic layer of tooth enamel during their evolutionary history, scars on the chewing surface of cheek teeth. Last consumed thus focusing on dentin as the main tooth building tissue. food items (and potentially also exogenous grit; Hoffman Enamelless teeth can be found in various extant and ex- et al. 2015) leave these scars, mainly different kinds of tinct taxa of odontocete whales (Odontoceti), aardvarks pits and scratches, during mastication and different food (Tubulidentata), armadillos, glyptodonts and pampatheres categories (leaves, grass, seeds, fruits, meat, insects, (Cingulata), sloths (Folivora), walruses (Odobenidae), sea etc.) produce different kinds of scars. Extant species with cows (Dugongidae), and elephants (Proboscidea). known diets are used to calibrate microwear scars. From This review will give an overview of recent results on the beginning of dental microwear analysis, the highly histology as well as dietary adaptations using the distinctly mineralized enamel had been the target tissue, and this built dentin teeth in armadillos and sloths and their fossil technique has been employed to various mammal clades relatives (in the following referred to with the informal term (e. -
Los Cingulata (Mammalia, Xenarthra) Del “Conglomerado Osífero” (Mioceno Tardío) De La Formación Ituzaingó De Entre Ríos, Argentina
El Neógeno de la Mesopotamia argentina. D. Brandoni y J.I. Noriega, Editores (2013) Asociación Paleontológica Argentina, Publicación Especial 14: 118–134 LOS CINGULATA (MAMMALIA, XENARTHRA) DEL “CONGLOMERADO OSÍFERO” (MIOCENO TARDÍO) DE LA FORMACIÓN ITUZAINGÓ DE ENTRE RÍOS, ARGENTINA GUSTAVO J. SCILLATO-YANÉ1,2, FLÁVIO GÓIS2,3, ALFREDO E. ZURITA2,4, ALFREDO A. CARLINI1,2, LAUREANO R. GONZÁLEZ RUIZ2,5, CECILIA M. KRMPOTIC1,2, CRISTIAN OLIVA6 y MARTÍN ZAMORANO1,2 1 Departamento Científico Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque, s/n, 1900, La Plata, Buenos Aires, Argentina. scillato@fcnym. unlp.edu.ar, [email protected], [email protected], [email protected] 2 CONICET. 3 Laboratorio de Paleontología de Vertebrados, Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICYTTP-CONICET), Materi y España, E3105BWA Diamante, Entre Ríos, Argentina. [email protected] 4 Centro de Ecología Aplicada del Litoral (CECOAL) y Universidad Nacional del Nordeste, Ruta 5, km 2.5, Corrientes, provincia de Corrientes, Argentina. [email protected] 5 Laboratorio de Investigaciones en Evolución y Biodiversidad, Facultad de Ciencias Naturales, sede Esquel, Universidad Nacional de la Patagonia “San Juan Bosco”, Sarmiento 849, 9200 Esquel, Chubut, Argentina. [email protected] 6 Museo Municipal de Ciencias Naturales Carlos Darwin, Urquiza 123, Punta Alta, provincia de Buenos Aires, Argentina. [email protected] Resumen. Los Cingulata del “Conglomerado osífero” (Mioceno Tardío) de la Formación Ituzaingó comprenden tres familias: Dasypodidae, Pampatheriidae y Glyptodontidae (más una mención de Peltephilidae por Ameghino en 1906). La mayor parte de las especies fueron dadas a conocer por Ameghino entre 1883 y 1886. -
The Intervals Method: a New Approach to Analyse Finite Element Outputs Using Multivariate Statistics
The intervals method: a new approach to analyse finite element outputs using multivariate statistics Jordi Marcé-Nogué1, Soledad De Esteban-Trivigno2,3, Thomas A. Püschel4 and Josep Fortuny2,5 1 Centrum für Naturkunde, University of Hamburg, Hamburg, Germany 2 Virtual Palaeontology, Institut Català de Paleontologia, Bellaterra, Spain 3 Transmitting Science, Piera, Spain 4 School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom 5 Centre de Recherches en Paléobiodiversité et Paléoenvironnements, Museum national d'Histoire naturelle, Paris, France ABSTRACT Background. In this paper, we propose a new method, named the intervals' method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods. The intervals' method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results. Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals' method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Submitted 10 March 2017 Discussion. We show that the proposed approach is a useful methodology not Accepted 20 August 2017 affected by the characteristics of the finite element mesh. -
Pleistocene Mammals of North America Pdf
Pleistocene mammals of north america pdf Continue Subscription and order Prices To buy short-term access, please sign up to your Oxford Academic Account above. You don't have an academic account at Oxford yet? Registration of the Pleistocene Mammals of North America - 24 hours of access Start your review of the Pleistocene mammals of North America Very, very dry and actual so don't worry if you're passionately interested in Pleistocene mammals, or assignments comparing the fauna of the Hell Creek Formation with the Pleistocene fauna... and what are the chances of that? Useful reference book, now, alas, a little outdated. End of big beasts Who or what snuffed out megafauna 11,000 years ago? Holdings Description Comments Similar Items Staff Viewing similar items palorchestes (Museum of Victoria). In the second half of the Kenosoy era - about 50 million years ago until the end of the last ice age - prehistoric mammals were much larger (and alien) than their modern counterparts. On the following slides you will find photos and detailed profiles of more than 80 different giant mammals and megafauna that ruled the earth after the extinction of dinosaurs, ranging from Aepycamelus to Woolly Rhino. Epicomelus. Name of Heinrich Harder: Aepycamelus (Greek for high camel); pronounced AY-peeh-CAM-ell-us Habitat: Plains of North America Historical Age: Medium-Late Miocene (15-5 million years ago) Size and Weight: About 10 feet tall on the shoulder and 1000-2000 pounds Diet: Plants Distinctive Characteristics: Large Size; Long, giraffe-like legs and neck right off the bat, there are two strange things about Aepycamelus: first, this camel megafauna is more like a giraffe, with its long legs and slender neck, and secondly, it lived in the Miocene of North America (not a place that is usually associated with camels). -
Mammals and Stratigraphy : Geochronology of the Continental Mammal·Bearing Quaternary of South America
MAMMALS AND STRATIGRAPHY : GEOCHRONOLOGY OF THE CONTINENTAL MAMMAL·BEARING QUATERNARY OF SOUTH AMERICA by Larry G. MARSHALLI, Annallsa BERTA'; Robert HOFFSTETTER', Rosendo PASCUAL', Osvaldo A. REIG', Miguel BOMBIN', Alvaro MONES' CONTENTS p.go Abstract, Resume, Resumen ................................................... 2, 3 Introduction .................................................................. 4 Acknowledgments ............................................................. 6 South American Pleistocene Land Mammal Ages ....... .. 6 Time, rock, and faunal units ...................... .. 6 Faunas....................................................................... 9 Zoological character and history ................... .. 9 Pliocene-Pleistocene boundary ................................................ 12 Argentina .................................................................... 13 Pampean .................................................................. 13 Uquian (Uquiense and Puelchense) .......................................... 23 Ensenadan (Ensenadense or Pampeano Inferior) ............................... 28 Lujanian (LuJanense or Pampeano lacus/re) .................................. 29 Post Pampean (Holocene) ........... :....................................... 30 Bolivia ................ '...................................................... ~. 31 Brazil ........................................................................ 37 Chile ........................................................................ 44 Colombia -
Mammalia, Xenarthra)
AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 41 (4): 651-664. Buenos Aires, 30-12-2004 ISSN 0002-7014 Functional and phylogenetic assessment of the masticatory adaptations in Cingulata (Mammalia, Xenarthra) Sergio F. VIZCAÍNO1, Richard A. FARIÑA2, M. Susana BARGO1 and Gerardo DE IULIIS3 Abstract. Cingulata -armadillos, pampatheres and glyptodonts- are among the most representative of South American Cenozoic mammalian groups. Their dental anatomy is characterised by homodonty, hypselodonty, and the absence of enamel in almost all known species. It has been proposed that these peculiarities are related to a primitive adaptation to insectivory and that they represent a strong phylogenetic constraint that restricted, or at least conditioned, adaptations toward other ali- mentary habits. However, the great diversity of forms recorded suggests a number of adaptive possibilities that range from specialised myrmecophagous species to carrion-eaters or predators among the animalivorous, and from selective browsers to bulk grazers among herbivores, as well as omnivores. Whereas armadillos (Dasypodidae) developed varied habits, mostly an- imalivorous but also including omnivores and herbivores, pampatheres (Pampatheriidae) and glyptodonts (Glyptodontidae) were herbivores. Morphofunctional and biomechanical studies have permitted a review of previous hypotheses based solely on comparative morphology. While in some cases these were refuted (carnivory in peltephiline armadillos), they were corrob- orated (carnivory in armadillos of the genus Macroeuphractus; -
Late Cenozoic Large Mammal and Tortoise Extinction in South America
Cione et al: Late Cenozoic extinction Rev.in South Mus. America Argentino Cienc. Nat., n.s.1 5(1): 000, 2003 Buenos Aires. ISSN 1514-5158 The Broken Zig-Zag: Late Cenozoic large mammal and tortoise extinction in South America Alberto L. CIONE1, Eduardo P. TONNI1, 2 & Leopoldo SOIBELZON1 1Departamento Científico Paleontología de Vertebrados, 'acultad de Ciencias Naturales y Museo, Paseo del Bosque, 1900 La Plata, Argentina. 2Laboratorio de Tritio y Radiocarbono, LATYR. 'acultad de Ciencias Naturales y Museo, Paseo del Bosque, 1900 La Plata, Argentina. E-mail: [email protected], [email protected], [email protected]. Corresponding author: Alberto L. CIONE Abstract: During the latest Pleistocene-earliest Holocene, South American terrestrial vertebrate faunas suffered one of the largest (and probably the youngest) extinction in the world for this lapse. Megamammals, most of the large mammals and a giant terrestrial tortoise became extinct in the continent, and several complete ecological guilds and their predators disappeared. This mammal extinction had been attributed mainly to overkill, climatic change or a combination of both. We agree with the idea that human overhunting was the main cause of the extinction in South America. However, according to our interpretation, the slaughtering of mammals was accom- plished in a particular climatic, ecological and biogeographical frame. During most of the middle and late Pleis- tocene, dry and cold climate and open areas predominated in South America. Nearly all of those megamammals and large mammals that became extinct were adapted to this kind of environments. The periodic, though rela- tively short, interglacial increases in temperature and humidity may have provoked the dramatic shrinking of open areas and extreme reduction of the biomass (albeit not in diversity) of mammals adapted to open habitats. -
34º Jornadas Argentinas De Paleontología De Vertebrados
34º JORNADAS ARGENTINAS DE PALEONTOLOGÍA DE VERTEBRADOS 34º JAPV 2021 - Mendoza ii 34º JAPV 2021 - Mendoza 34º JORNADAS ARGENTINAS DE PALEONTOLOGÍA DE VERTEBRADOS LIBRO DE RESÚMENES 26, 27 y 28 de mayo 2021 Instituciones Organizadoras Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), Museo de Historia Natural de San Rafael (MHNSR) y Museo de Ciencias Naturales y Antropológicas “Juan Cornelio Moyano” (MCNAM). Auspiciantes Universidad Nacional de Cuyo (UNCUYO), Asociación Paleontológica Argentina (APA), Dirección de Patrimonio Cultural y Museos, Ministerio de Cultura y Turismo, Mendoza. Auspiciantes Simposio de Patrimonio Paleontológico ICOM Argentina y Fundación Azara. Financiadores Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) y Fundación Balseiro. iii 34º JAPV 2021 - Mendoza iv 34º JAPV 2021 - Mendoza COMITÉ ORGANIZADOR: Dra. Cecilia Benavente (Coordinadora), Sr. Jorge L. Blanco, Dr. Alberto Boscaini, Sr. Marcelo Bourguet, Dra. Evelyn Luz Bustos, Dra. Esperanza Cerdeño (Coordinadora general), Dr. Marcelo de la Fuente (Coordinador general), Lic. Susana Devincenzi, Dr. Marcos Fernández García, Dra. Analía M. Forasiepi (Coordinadora referente), MSc. Charlene Gaillard, MSc. Pablo González Ruíz, Lic. Silvina Lassa, Dra. Adriana C. Mancuso (Coordinadora general), Dr. Ignacio Maniel, Lic. Alejandra Moschetti, Dr. Tomás Pedernera, Dra. Elena Previtera, Dr. François Pujos, MSc. Cristo O. Romano Muñoz (Coordinador) y Sr. Cristian Sancho. COMITÉ EDITOR: Dr. Alberto Boscaini, Dra. Esperanza Cerdeño (Coordinadora), Dr. Marcos Fernández García, Dr. Marcelo de la Fuente, Dr. Ignacio Maniel, Dra. Elena Previtera, Dr. François Pujos y MSc. Cristo O. Romano Muñoz. COMITÉ CIENTÍFICO EXTERNO: Dr. Fernando Abdala, Dra. Alejandra Abello, Dra. Andrea Arcucci, Dra. Susana Bargo, Dra. Paula Bona, Lic. Mariano Bond, Dr.