Bulletin~ of the American Museum of Natural History Volume 87: Article 1 New York: 1946 - X X |! |

Total Page:16

File Type:pdf, Size:1020Kb

Bulletin~ of the American Museum of Natural History Volume 87: Article 1 New York: 1946 - X X |! | GEORGE GAYLORD SIMPSON BULLETIN~ OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 87: ARTICLE 1 NEW YORK: 1946 - X X |! | - -s s- - - - - -- -- --| c - - - - - - - - - - - - - - - - - -- FOSSIL PENGUINS FOSSIL PENGUINS GEORGE GAYLORD SIMPSON Curator of Fossil Mammals and Birds PUBLICATIONS OF THE SCARRITT EXPEDITIONS, NUMBER 33 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 87: ARTICLE 1 NEW YORK: 1946 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 87, article 1, pages 1-100, text figures 1-33, tables 1-9 Issued August 8, 1946 CONTENTS INTRODUCTION . 7 A SKELETON OF Paraptenodytes antarcticus. 9 CONSPECTUS OF TERTIARY PENGUINS . 23 Patagonia. 24 Deseado Formation. 24 Patagonian Formation . 25 Seymour Island . 35 New Zealand. 39 Australia. 42 COMPARATIVE OSTEOLOGY OF MIOCENE PENGUINS . 43 Skull . 43 Vertebrae 44 Scapula. 45 Coracoid. 46 Sternum. 49 Humerus. 49 Radius and Ulna. 53 Metacarpus. 55 Phalanges . 56 The Wing as a Whole. 56 Femur. 59 Tibiotarsus. 60 Tarsometatarsus 61 NOTES ON VARIATION. 65 TAXONOMY AND PHYLOGENY OF THE SPHENISCIDAE . 68 DISTRIBUTION OF MIOCENE PENGUINS. 71 SIZE OF THE FOSSIL PENGUINS 74 THE ORIGIN OF PENGUINS. 77 Status of the Problem. 77 The Fossil Evidence . 78 Conclusions from the Fossil Evidence. 83 A General Theory of Penguin Evolution. 84 A Note on Archaeopteryx and Archaeornis 92 ADDENDUM . 96 BIBLIOGRAPHY 97 5 INTRODUCTION FEW ANIMALS have excited greater popular basis for comparison, synthesis, and gener- and scientific interest than penguins. Their alization, in spite of the fact that relatively quaintly human appearance, their peculiar few distinguishable species are represented. habits, the ability of some of them to thrive Several years elapsed before the collection in the bitter Antarctic cold, their association could be fully prepared, and it was then with remote coasts and islands, and their hoped that some specialist on penguins would radical differences from all other birds have be able to undertake the description of these long made them favorite subjects of layman materials, but such an opportunity did not and student alike. They appear regularly in arise. With the reorganization of paleontol- cartoons, advertisements, moving pictures, ogy in the American Museum in November, popular books, and magazine articles, and 1944, curatorial responsibility for fossil birds with about equal regularity, if less frequently, was returned to the Department of Geology in the technical literature, where their habits and Paleontology and was assigned specifi- and structure have been described in great, cally to me within the department. In partial but still incomplete, detail and where their fulfillment of this responsibility and in con- origin and history have been and still are bit- tinuation of our program on the Tertiary terly disputed. faunas of South America, the present study Fossil penguins were made known as long has been prepared in order to make available ago as 1859 and by no less an authority than the essential facts about these important fos- T. H. Huxley. Since then, some hundreds of sils. specimens have been collected in several In the course of identification and descrip- widely distant parts of the world, and many tion of our collection, it was necessary to re- of these have been exhaustively described, view literature on other known fossil pen- but knowledge has remained very incomplete guins. It quickly became obvious that a gen- and in part quite confused. The known speci- eral taxonomic revision could not be made mens are all incomplete. No fragment of the under existing circumstances, but it has skull has hitherto been described and in few seemed worth while to present notes on tax- instances have two or more surely associated onomy and to review available knowledge of bones of one individual been found. From the all fossil penguins and not alone those in our scattered literature it has been most difficult, collection. Although it is not only, or even on some points impossible, to gather a clear mainly, dependent on study of the extinct and correct idea of the variety and characters forms, the vexatious problem of penguin of the known fossil penguins as a whole. A origins is also clearly pertinent and some complete and satisfying review cannot now comments on it have been appended. be made, but a contribution toward this end Comparative osteological material of re- is presented. cent penguins has been provided by the De- The present study grew out of the discov- partment of Birds of this Museum, with the ery in 1933 by the Second Scarritt Patago- cooperation of Dr. Murphy and Mr. O'Brien. nian Expedition of a fossil penguin skeleton, The osteological collection unfortunately far from complete but nevertheless much the lacks the important genera Eudyptula and best that has hitherto been found. It includes Megadyptes, but it is rich in most of the spe- for the first time the greater part of a skull, cies of all other living genera. Previous stud- and it also comprises more different parts of ies of penguin osteology have, of course, also the skeleton of one individual than had ever been utilized throughout, even when not ex- been found in association. In addition to this plicitly cited on a given point. The avail- unique skeleton, the expedition also col- ability of these works, especially Gervais lected more than a hundred other specimens and Alix (1877), Pycraft (1898), Shufeldt of fossil penguins, constituting an admirable (1901), Virchow (1931), and Watson (1883), 7 8 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY VOL. 87 makes it unnecessary to review the osteology In resuming work on Patagonian fossils, I of the Spheniscidae as a whole and possible wish again to express gratitude to Mr. H. S. to concentrate on some of the more striking Scarritt, the principal sponsor of our collect- and pertinent comparative differences within ing in that region. The specimens involved in the group.' this study were collected by Coleman S. Wil- liams, Justino Hernandez, and me, and were 1 Except for the skull, even the most detailed osteo- prepared mostly by Albert Thomson. The il- logical studies of recent penguins have,-however, paid too little attention to their variation and to their lustrations have been prepared by John C. taxonomic differentiation. Even Watson's careful de- Germann. scription is markedly deficient in detecting and stating differences between the various species and genera. A SKELETON OF PARAPTENODYTES ANTARCTICUS OCCURRENCE pointed out in the description below, the THE SPECIMEN HERE TO BE DESCRIBED iS homologous bones of our specimen differ A.M.N.H. No. 3338. It was found by Justino from the type in various minor details. By Hernandez, on the Second Scarritt Patago- standards that have been applied to fossil nian Expedition, in November, 1933. The penguins, especially by Ameghino, these dif- locality is on the south side of the Rio ferences would justify specific or even generic Chubut, about 3 leagues above (west of) separation, but I am convinced that this is Trelew and directly opposite the settlement not correct and that the specific reference is of Gaiman, in Chubut Territory, Argentina. well founded. Equally great differences occur Part of the specimen had weathered out, but within a single species among modern pen- parts were in situ and were removed in a guins. The general agreement in size and block of matrix. structure is close, and no other Patagonian The stratigraphy of this region has been species in the long list established by Ame- discussed elsewhere (Simpson, 1935). The ghino is liable to confusion with this. The penguin skeleton was found in the lower part type is from Santa Cruz Territory, from the of "3" of Section 1 of the paper cited (fig. 1 Middle Patagonian at the mouth of the Rio and pp. 6-7). This stratigraphic unit con- Santa Cruz, according to Ameghino, and our sists of about 35 meters of thick-bedded, specimen is from the Lower Patagonian of pale, yellowish tuff. It represents the first the Chubut Valley, but all the evidence is depositional phase in this region of the that the penguin faunas are identical in Patagonian marine incursion, of disputed age these two regions and at these different levels, but now considered Early Miocene by a which differ little if at all in age. Moreno and strong consensus. It immediately overlies the Mercerat (1891) also referred to this species terrestrial Trelew beds, of late Colhue-Huapi three isolated bones, ulna, femur, and tibio- age (probably latest Oligocene, perhaps tarsus, from Chubut-exact locality not earliest Miocene), with an erosional but not given but doubtless near Trelew or Gaiman angular uncomformity apparently represent- and from the same beds as our specimen. ing only a slight hiatus in time. The species is relatively but not extremely Besides this skeleton, numerous isolated rare. The type, our skeleton, and the three penguin bones were found in the same bed, isolated bones mentioned by Moreno and along with remains of sharks, rays, whales, Mercerat are the only surely identified re- and sparse Ostrea hatcheri. Our party found mains reported in the literature or known to no land mammals at this level, but these were me. Ameghino (1895) also mentioned a meta- probably correctly reported by Frenguelli carpus and the anterior part of a mandible, (1926), although there is some lingering of unstated origin, but, as he later (1905) re- doubt about this because of his failure to dis- marked about the mandible, the reference is tinguish the terrestrial Trelew from the mar- not well established. As noted below, the ine Patagonian at this locality. In any case, humerus referred by Ameghino (1905) to there is little doubt that the deposit was Perispheniscus wimani probably belongs to formed in shallow water and is littoral or Paraptenodytes antarcticus.
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • 1931-15701-1-LE Maquetación 1
    AMEGHINIANA 50 (6) Suplemento 2013–RESÚMENES REUNIÓN DE COMUNICACIONES DE LA ASOCIACIÓN PALEONTOLÓGICA ARGENTINA 20 a 22 de Noviembre de 2013 Ciudad de Córdoba, Argentina INSTITUCIÓN ORGANIZADORA AUSPICIAN AMEGHINIANA 50 (6) Suplemento 2013–RESÚMENES COMISIÓN ORGANIZADORA Claudia Tambussi Emilio Vaccari Andrea Sterren Blanca Toro Diego Balseiro Diego Muñoz Emilia Sferco Ezequiel Montoya Facundo Meroi Federico Degrange Juan José Rustán Karen Halpern María José Salas Sandra Gordillo Santiago Druetta Sol Bayer COMITÉ CIENTÍFICO Dr. Guillermo Albanesi (CICTERRA) Dra. Viviana Barreda (MACN) Dr. Juan Luis Benedetto (CICTERRA) Dra. Noelia Carmona (UNRN) Dra. Gabriela Cisterna (UNLaR) Dr. Germán M. Gasparini (MLP) Dra. Sandra Gordillo (CICTERRA) Dr. Pedro Gutierrez (MACN) Dr. Darío Lazo (UBA) Dr. Ricardo Martinez (UNSJ) Dra. María José Salas (CICTERRA) Dr. Leonardo Salgado (UNRN) Dra. Emilia Sferco (CICTERRA) Dra. Andrea Sterren (CICTERRA) Dra. Claudia P. Tambussi (CICTERRA) Dr. Alfredo Zurita (CECOAL) AMEGHINIANA 50 (6) Suplemento 2013–RESÚMENES RESÚMENES CONFERENCIAS EL ANTROPOCENO Y LA HIPÓTESIS DE GAIA ¿NUEVOS DESAFÍOS PARA LA PALEONTOLOGÍA? S. CASADÍO1 1Universidad Nacional de Río Negro, Lobo 516, R8332AKN Roca, Río Negro, Argentina. [email protected] La hipótesis de Gaia propone que a partir de unas condiciones iniciales que hicieron posible el inicio de la vida en el planeta, fue la propia vida la que las modificó. Sin embargo, desde el inicio del Antropoceno la humanidad tiene un papel protagónico en dichas modificaciones, e.g. el aumento del CO2 en la atmósfera. Se estima que para fines de este siglo, se alcanzarían concentraciones de CO2 que el planeta no registró en los últimos 30 Ma. La información para comprender como funcionarían los sistemas terrestres con estos niveles de CO2 está contenida en los registros de períodos cálidos y en las grandes transiciones climáticas del pasado geológico.
    [Show full text]
  • Skull Shape Analysis and Diet of South American Fossil Penguins (Sphenisciformes) Claudia Patricia Tambussi & Carolina Acosta Hospitaleche
    Skull shape analysis and diet of South American fossil penguins (Sphenisciformes) Claudia Patricia Tambussi & Carolina Acosta Hospitaleche CONICET & Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina [email protected] [email protected] ABSTRACT – Form and function of the skull of Recent and fossil genera of available Spheniscidae are analysed in order to infer possible dietary behaviors for extinct penguins. Skull shapes were compared using the Resistant-Fit Theta-Rho- Analysis (RFTRA) Procrustean method. Due to the availability and quality of the material, this study was based on six living species belonging to five genera (Spheniscus, Eudyptula, Eudyptes, Pygoscelis, and Aptenodytes) and two Miocene species: Paraptenodytes antarticus (Moreno and Mercerat, 1891) and Madrynornis mirandus Acosta Hospitaleche, Tambussi, Donato & Cozzuol. Seventeen landmark from the skull were chosen, including homologous and geometrical points. Morphologi- cal similarities among RFTRA distances are depicted using the resulting dendrograms for UPGMA (unweighted pair-group method using arithmetic average) cluster analysis. This shape analysis allows the assessment of similarities and differences in the skulls and jaws of penguins within a more comprehensive ecomorphological and phylogenetic framework. Even though penguin diet is not well known, enough data supports the conclusion that Spheniscus + Eudyptes penguins specialize on fish and all other taxa are plankton-feeders or fish and crustacean-feeders. We compared representative species of both ecomor- phological groups with the available fossil material to evaluate their feeding strategies. Penguins are the most abundant birds, indeed the most abundant aquatic tetrapods, in Cenozoic marine sediments of South America. The results arising from this study will be of singular importance in the reconstruction of those marine ecosystems.
    [Show full text]
  • Best Practices for Digitally Constructing Endocranial Casts: Examples from Birds and Their Dinosaurian Relatives Amy M
    Journal of Anatomy J. Anat. (2016) 229, pp173--190 doi: 10.1111/joa.12378 Best practices for digitally constructing endocranial casts: examples from birds and their dinosaurian relatives Amy M. Balanoff,1* G. S. Bever,2* Matthew W. Colbert,3 Julia A. Clarke,3 Daniel J. Field,4 Paul M. Gignac,5 Daniel T. Ksepka,6 Ryan C. Ridgely,7 N. Adam Smith,8 Christopher R. Torres,9 Stig Walsh10 and Lawrence M. Witmer7 1Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA 2Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, USA 3Department of Geological Sciences, The University of Texas at Austin, Austin, TX, USA 4Department of Geology and Geophysics, Yale University, New Haven, CT, USA 5Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA 6Bruce Museum, Greenwich, CT, USA 7Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA 8Department of Earth Sciences, The Field Museum of Natural History, Chicago, IL, USA 9Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA 10Department of Natural Sciences, National Museums Scotland,, Edinburgh, UK Abstract The rapidly expanding interest in, and availability of, digital tomography data to visualize casts of the vertebrate endocranial cavity housing the brain (endocasts) presents new opportunities and challenges to the field of comparative neuroanatomy. The opportunities are many, ranging from the relatively rapid acquisition of data to the unprecedented ability to integrate critically important fossil taxa. The challenges consist of navigating the logistical barriers that often separate a researcher from high-quality data and minimizing the amount of non- biological variation expressed in endocasts – variation that may confound meaningful and synthetic results.
    [Show full text]
  • Nov. Comb. (Aves, Spheniscidae) De La Formación Gaiman (Mioceno Temprano), Chubut, Argentina
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 44 (2): 417-426. Buenos Aires, 30-6-2007 ISSN 0002-7014 Revisión sistemática de Palaeospheniscus biloculata (Simpson) nov. comb. (Aves, Spheniscidae) de la Formación Gaiman (Mioceno Temprano), Chubut, Argentina Carolina ACOSTA HOSPITALECHE1 Abstract. SYSTEMATIC REVISION OF PALAEOSPHENISCUS BILOCULATA (SIMPSON) NOV. COMB. (AVES, SPHENISCIDAE) FROM THE GAIMAN FORMATION (EARLY MIOCENE), CHUBUT, ARGENTINA. An articulated skeleton coming from sediments of the Gaiman Formation (Early Miocene), Chubut Province, Argentina assigned to Palaeospheniscus biloculata (Simpson) nov. comb. is described. The original diagnosis of this genus and spe- cies is emended. Eretiscus tonnii (Simpson), Palaeospheniscus bergi Moreno and Mercerat, P. patagonicus Moreno and Mercerat and P. biloculata (Simpson) nov. comb. are included in the "Palaeospheniscinae" group, whose distribution is restricted to the Neogene of South America. Resumen. Se da a conocer un esqueleto articulado parcialmente completo procedente de sedimentos de la Formación Gaiman (Mioceno Temprano) de la provincia del Chubut, Argentina, que ha sido asignado a Palaeospheniscus biloculata (Simpson) nov. comb. Una revisión sistemática del género y la especie fue efec- tuada a partir de los nuevos datos disponibles. En la presente propuesta se incluye a Eretiscus tonnii (Simpson), Palaeospheniscus bergi Moreno y Mercerat, P. patagonicus Moreno y Mercerat y P. biloculata (Simpson) nov. comb. dentro del grupo no taxonómico de los "Palaeospheniscinae", cuya distribución es exclusivamente neógena y sudamericana. Key words. Spheniscidae. Palaeospheniscus biloculata nov. comb. Gaiman Formation. Systematics. Distribution. Palabras clave. Spheniscidae. Palaeospheniscus biloculata nov. comb. Formación Gaiman. Sistemática. Distribución. Introducción El registro paleontológico de Argentina se encuen- tra conformado por importantes acumulaciones óse- Todas las especies de pingüinos (Aves, Sphe- as que aparecen en distintas áreas de la Patagonia.
    [Show full text]
  • Bird Fossils from the Takatika Grit, Chatham Island
    BIRD FOSSILS FROM THE TAKATIKA GRIT, CHATHAM ISLAND, NEW ZEALAND A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geology At the University of Canterbury By Jacob Christopher Blokland University of Canterbury 2017 Figure I: An interpretation of Archaeodyptes stilwelli. Original artwork by Jacob Blokland. i ACKNOWLEDGEMENTS The last couple years have been exciting and challenging. It has been a pleasure to work with great people, and be involved with new research that will hopefully be of contribution to science. First of all, I would like to thank my two supervisors, Dr Catherine Reid and Dr Paul Scofield, for tirelessly reviewing my work and providing feedback. I literally could not have done it without you, and your time, patience and efforts are very much appreciated. Thank you for providing me with the opportunity to do a vertebrate palaeontology based thesis. I would like to extend my deepest gratitude to Catherine for encouragement regarding my interest in palaeontology since before I was an undergraduate, and providing great information regarding thesis and scientific format. I am also extremely grateful to Paul for welcoming me to use specimens from Canterbury Museum, and providing useful information and recommendations for this project through your expertise in this particular discipline. I would also like to thank Associate Professor Jeffrey Stilwell for collecting the fossil specimens used in this thesis, and for the information you passed on regarding the details of the fossils. Thank you to Geoffrey Guinard for allowing me to use your data from your published research in this study.
    [Show full text]
  • ON 20 (1) 19-26.Pdf
    ORNITOLOGIA NEOTROPICAL 20: 19–26, 2009 © The Neotropical Ornithological Society VARIATION IN THE CRANIAL MORPHOMETRY OF THE MAGELLANIC PENGUIN (SPHENISCUS MAGELLANICUS) Carolina Acosta Hospitaleche CONICET, División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina. E-mail: [email protected] Resumen. – Variación en la morfometría craneal del pingüino de Magallanes (Spheniscus ma- gellanicus). – Se analizaron las variaciones morfométricas en cráneos de Spheniscus magellanicus. Se seleccionaron trece landmarks en la porción posterior del cráneo a fines de evaluar las variaciones mor- fológicas en las crestas nucales, la fosa temporal, la region interorbitaria y el surco para la glándula de la sal. Adicionalmente, se analizaron cinco landmarks en el rostro. La morfometría geométrica permitió establecer qué caracteres son más confiables en las identificaciones sistemáticas. Los resultados mos- traron una variación mínima en el desarrollo del surco para la glándula de la sal, mientras que la exten- sión de la fosa temporal resultó ser el carácter más variable. Abstract. – Skull morphometric variation was analyzed in Magellanic Penguin (Spheniscus magellani- cus). Thirteen landmarks were selected in the posterior region of the skull in order to evaluate the mor- phology variation exhibited in the nuchal crests, the temporal fossa, the interorbital region, and the sulcus glandulae nasale. Additionally, five landmarks were analyzed in the rostrum. Morphometric geometry allowed to establish which characters are more reliable for systematic identification. The results show a minimum variation in the development of the groove of the salt gland among the analyzed specimens of Spheniscus magellanicus, while the extension of the temporal fossa is the most variable character.
    [Show full text]
  • Phylogenetic Characters in the Humerus and Tarsometatarsus of Penguins
    vol. 35, no. 3, pp. 469–496, 2014 doi: 10.2478/popore−2014−0025 Phylogenetic characters in the humerus and tarsometatarsus of penguins Martín CHÁVEZ HOFFMEISTER School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, BS8 1RJ, Bristol, United Kingdom and Laboratorio de Paleoecología, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile <[email protected]> Abstract: The present review aims to improve the scope and coverage of the phylogenetic matrices currently in use, as well as explore some aspects of the relationships among Paleogene penguins, using two key skeletal elements, the humerus and tarsometatarsus. These bones are extremely important for phylogenetic analyses based on fossils because they are commonly found solid specimens, often selected as holo− and paratypes of fossil taxa. The resulting dataset includes 25 new characters, making a total of 75 characters, along with eight previously uncoded taxa for a total of 48. The incorporation and analysis of this corrected subset of morphological characters raise some interesting questions consider− ing the relationships among Paleogene penguins, particularly regarding the possible exis− tence of two separate clades including Palaeeudyptes and Paraptenodytes, the monophyly of Platydyptes and Paraptenodytes, and the position of Anthropornis. Additionally, Noto− dyptes wimani is here recovered in the same collapsed node as Archaeospheniscus and not within Delphinornis, as in former analyses. Key words: Sphenisciformes, limb bones, phylogenetic analysis, parsimony method, revised dataset. Introduction Since the work of O’Hara (1986), the phylogeny of penguins has been a sub− ject of great interest. During the last decade, several authors have explored the use of molecular (e.g., Subramanian et al.
    [Show full text]
  • Balanoff, A. M., G. S. Bever, M. Colbert, J. A. Clark, D. Field, P. M. Gignac, D. T. Ksepka, R. C. Ridgely
    joa_229_2_oc_Layout 1 11-07-2016 11:31 Page 1 ISSN 0021- 8782 Volume 229, Issue 2, August 2016 Journal of Anatomy Journal of Journal of Anatomy Volume 229, Issue 2, Pages 171–342, August 2016 Symposium Articles 171 Symposium on 'Evolving approaches for studying the anatomy of the avian brain': introduction N.A. Smith, A.M. Balanoff and D.T. Ksepka Anatomy 173 Best practices for digitally constructing endocranial casts: examples from birds and their dinosaurian relatives Structure, Function, Development, Evolution A.M. Balanoff, G.S. Bever, M.W. Colbert, J.A. Clarke, D.J. Field, P.M. Gignac, D.T. Ksepka, R.C. Ridgely, 229,Volume Issue 2, Pages 171–342, August 2016 N.A. Smith, C.R. Torres, S. Walsh and L.M. Witmer 191 Studying avian encephalization with geometric morphometrics J. Marugán-Lobón, A. Watanabe and S. Kawabe 204 Brain modularity across the theropod–bird transition: testing the influence of flight on neuroanatomical variation A.M. Balanoff, J.B. Smaers and A.H. Turner 215 A reappraisal of Cerebavis cenomanica (Aves, Ornithurae), from Melovatka, Russia S.A. Walsh, A.C. Milner and E. Bourdon 228 Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast J.V. Proffitt, J.A. Clarke and R.P. Scofield 239 Comparative brain morphology of Neotropical parrots (Aves, Psittaciformes) inferred from virtual 3D endocasts J. Carril, C.P. Tambussi, F.J. Degrange, M.J. Benitez Saldivar and M.B.J. Picasso Original Articles 252 Comparative histology of some craniofacial sutures and skull-base synchondroses in non-avian dinosaurs and their extant phylogenetic bracket A.M.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    /4-2_ ANNALS OF THE SOUTH AFRICAN MUSEUM ANNALE VAN DIE SUID-AFRIKAANSE MUSEUM Volume 95 Band April 1985 April Part 4 Deel AN EARLY PLIOCENE MARINE AVIFAUNA FROM DUINEFONTEIN, CAPE PROVINCE, SOUTH AFRICA By STORKS L. OLSON Cape Town Kaapstad The ANNALS OF THE SOUTH AFRICAN MUSEUM are issued in parts at irregular intervals as material becomes available Obtainable from the South African Museum, P.O. Box 61, Cape Town 8000 Die ANNALE VAN DIE SUID-AFRIKAANSE MUSEUM word uitgegee in dele op ongereelde tye na gelang van die beskikbaarheid van stof Verkrygbaar van die Suid-Afrikaanse Museum, Posbus 61, Kaapstad 8000 OUT OF PRINT/UIT DRUK 1, 2(1-3, 5-8), 3(1-2, 4-5, 8, t.-p.i.), 5(1-3, 5, 7-9), 6(1, t.-p.i.), 7(1-4), 8, 9(1-2, 7), 10(1-3), 11(1-2, 5, 7, t.-p.i.), 14(1-2), 15(4-5), 24(2), 27, 31(1-3), 32(5), 33, 36(2), 45(1) Copyright enquiries to the South African Museum Kopieregnavrae aan die Suid-Afrikaanse Museum ISBN 0 86813 068 0 Printed in South Africa by In Suid-Afrika gedruk deur The Rustica Press, Pty., Ltd., Die Rustica-pers, Edms., Bpk., Court Road, Wynberg, Cape Courtweg, Wynberg, Kaap AN EARLY PLIOCENE MARINE AVIFAUNA FROM DUINEFONTEIN, CAPE PROVINCE, SOUTH AFRICA By STORRS L. OLSON Percy FitzPatrick Institute, University of Cape Town* (With 3 figures and 1 table) [MS accepted 14 June 1984] ABSTRACT Late Tertiary marine deposits of the Varswater Formation at Duinefontein, Cape Province, Soutii Africa, liave yielded remains of 16 or 17 species of sea-birds (Sphenisciformes, Procellariiformes, Pelecaniformes) and one land-bird (Galliformes, Phasianidae).
    [Show full text]
  • The Oldest Fossil Record of the Extant Penguin Genus Spheniscus—A New Species from the Miocene of Peru
    The oldest fossil record of the extant penguin genus Spheniscus—a new species from the Miocene of Peru URSULA B. GÖHLICH Göhlich, U.B. 2007. The oldest fossil record of the extant penguin genus Spheniscus—a new species from the Miocene of Peru. Acta Palaeontologica Polonica 52 (2): 285–298. Described here is a partial postcranial skeleton and additional disarticulated but associated bones of the new fossil pen− guin Spheniscus muizoni sp. nov. from the latest middle/earliest late Miocene (11–13 Ma) locality of Cerro la Bruja in the Pisco Formation, Peru. This fossil species can be attributed to the extant genus Spheniscus by postcranial morphology and is the oldest known record of this genus. Spheniscus muizoni sp. nov. is about the size of the extant Jackass and Magellanic penguins (Spheniscus demersus and Spheniscus magellanicus). Beside Spheniscus urbinai and Spheniscus megaramphus it is the third species of Spheniscus represented in the Pisco Formation. This study contains morphological comparisons with Tertiary penguins of South America and with most of the extant penguin species. Key words: Spheniscidae, Pisco Formation, Miocene, Peru. Ursula B. Göhlich [ursula.goehlich@nhm−wien.ac.at], Université Claude Bernard – Lyon 1, UMR P.E.P.S., Bâtiment Géode, 2 rue Dubois, F−69622 Villeurbanne Cedex, France; present address: Naturhistorisches Museum Wien, Geolo− gisch−Paläontologische Abteilung, Burgring 7, A−1010 Wien, Austria. Introduction Paraptenodytes robustus, Pa. antarcticus, Palaeospheniscus sp., Pygoscelis grandis Walsh and Suárez, 2006, Py. cal− The fossil record of penguins in South America comes from dernensis Acosta Hospitaleche, Chávez, and Fritis, 2006, both Atlantic and Pacific coasts and is restricted to findings in Spheniscus sp.
    [Show full text]
  • South American Fossil Penguins: a Systematic Update
    South American fossil penguins: a systematic update Carolina Acosta Hospitaleche1,2 and Claudia Tambussi1,3 1 División Paleontología Vertebrados. Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina. CONICET. 2 [email protected] 3 [email protected] ABSTRACT - During the last few years, we have worked on the systematics and paleobiology of the South American and Antarctic fossil penguins. As a result, we have obtained new data about their past biodiversity. Concerning South American fossil penguins, particularly the Tertiary ones, we can point out that, based on phylogenetic and morphometric analyses prac- ticed on skulls and appendicular skeleton, we recognised three non taxonomic groups, partially in agreement partially with the systematic scheme proposed by Simpson: “Paraptenodytinae”, “Palaeospheniscinae” and “Spheniscinae”. These species are recorded exclusively from South America and morphologically have more resemblance with the living species than the fossil penguins from others regions of the Southern Hemisphere. This suggests that the evolutionary and biogeographical history of the penguin fauna of Argentina, Chile and Peru followed different routes from those of Antarctica, New Zealand and Australia. Key words - Spheniscidae, fossil penguins, systematics, South America. Les manchots fossiles sud-américains: une mise au point systématique - Ces dernières années, nous avons travaillé sur la systématique et la paléobiologie des manchots fossiles d’Amérique du Sud et de l’Antarctique, ce qui a abouti
    [Show full text]