Avian Phylogeny and Divergence Times Based on Mitogenomic

Total Page:16

File Type:pdf, Size:1020Kb

Avian Phylogeny and Divergence Times Based on Mitogenomic Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Avian phylogeny and divergence times based on mitogenomic sequences Kerryn Elizabeth Slack 2012 A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Genetics Institute of Molecular BioSciences Massey University Palmerston North, New Zealand page i Abstract Despite decades of research using a variety of data sources (such as morphological, paleontological, immunological, DNA hybridization and short DNA sequences) both the relationships between modern bird orders and their times of origin remain uncertain. Complete mitochondrial (mt) genomes have been extensively used to study mammalian and fish evolution. However, at the very beginning of my study only the chicken mt sequence was available for birds, though seven more avian mt genomes were published soon after. In order to address these issues, I sequenced eight new bird mt genomes: four (penguin, albatross, petrel and loon) from previously unrepresented orders and four (goose, brush-turkey, gull and lyrebird) to provide improved taxon sampling. Adding these taxa to the avian mt genome dataset aids in resolving deep bird phylogeny and confirms the traditional placement of the root of the avian tree (between paleognaths and neognaths). In addition to the mt genomes, in a collaboration between paleontologists and molecular biologists, the oldest known penguin fossils (which date from 61- 62 million years ago) are described. These fossils are from the Waipara Greensand, North Canterbury, New Zealand, and establish an excellent calibration point for estimating avian divergence times. Bayesian analysis of the DNA sequence data, using the penguin calibration point plus two others, indicates a substantial radiation of modern bird orders in the Late Cretaceous (80 - 65 million years ago). Biotic interactions between modern birds and declining groups such as pterosaurs and early bird groups (e.g. Hesperornis and Ichthyornis) may thus have played an important role during this time. page ii Acknowledgements This thesis is for my family – Mum, Dad, Jude, Stu and Buzz: THANK YOU for your support, your encouragement and, above all, your patience! Words cannot express my gratitude to my supervisors: David Penny (Professor of Theoretical Biology and former Co-Director, Allan Wilson Center for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand) – more than just a supervisor: a true friend, colleague and mentor; Mike Hendy (Professor of Mathematical Biology and founding Executive Director, Allan Wilson Center for Molecular Ecology and Evolution, Massey University) – I always appreciate your dry sense of humour Mike!; Ulfur Arnason (Professor of Evolutionary Molecular Systematics, Department of Cell and Organism Biology, University of Lund, Lund, Sweden) – I’ll never forget the ‘rock party’ Ulfur!; and Bengt-Olle Bengtsson (Professor of Genetics, Department of Cell and Organism Biology, University of Lund) – always patient, always kind. Thanks also to my unofficial supervisor: Pete Lockhart (Institute of Molecular BioSciences, Massey University, Palmerston North, NZ) – the archetypal ‘absent-minded professor’ -. A big thanks to my other co-authors: Axel Janke (Professor of Ecological Genomics, Goethe University, Senckenberg, Frankfurt, Germany), G. L. (Abby) Harrison (University of Oxford, Oxford, U.K.), P. A. (Trish) McLenachan (Institute of Molecular BioSciences, Massey University, NZ), Matt J. Phillips (University of Queensland, Brisbane, Australia), Alan Cooper (Professor, University of Adelaide, Adelaide, Australia), Craig M. Jones (Institute of Geological and Nuclear Sciences, Lower Hutt, NZ), Tatsuro Ando (Department of Geology, University of Otago, Dunedin, NZ), R. Ewan Fordyce (Professor, Department of Geology, University of Otago, Dunedin, NZ), and Frederic Delsuc (Laboratoire de Paléontologie, Phylogénie et Paléobiologie, Institut des Sciences de l’Evolution, Université Montpellier II, Montpellier, France). My deepest appreciation to the following: Anette Gullberg (University of Lund) and Trish McLenachan, Abby Harrison, Alicia Gore, Gillian Gibb and Charmaine Carlisle (all of/formerly of Massey University) for technical assistance; Matt (‘font of vertebrate information’) Phillips and Fred Delsuc for assistance with analysis; and Tim White and Warwick Allen (both of Massey University) for their assistance with computer programs, for running analyses on the Helix supercomputer and for help with other computer matters. I would also like to thank all those who helped out, by sharing information, advice and access, in the preparation of the manuscripts, Te Papa for the use of facilities, Massey Interloans for sterling service and the anonymous reviewers who commented on the early manuscript drafts. page iii A huge thanks to my NZ friends and colleagues, especially Trish McLenachan, Abby Harrison, Alicia Gore, Gillian Gibb, Charmaine Carlisle, Matt Phillips, Pete Lockhart and Tim White, plus Mike Charleston, Ant Poole, Mort Piripi, Simon Hills, Olga Kardailsky, Andrew Clarke and Richard Carter, for friendship, fun, support and fascinating conversations. Thank you also to my Swedish friends and colleagues, including Anette Gullberg (again), Xiufeng Xu, Tina Ledje, Anna Härlid, Ann-Sofie Rasmussen, Björn Ursing, Christian Elmerot, Martin Johansson and all of the others within the Lund Department of Cell and Organism Biology who helped me out with various things. I would also like to thank all those I met at assorted conferences and seminars for reminding me that there is more to life than bird mitochondrial genomes and that science is both interesting and stimulating! I would like to thank Alan Tennyson and Sandy Bartle of Te Papa (Museum of NZ) for supplying the penguin and albatross samples and Rod Hitchmough (Department of Conservation, Wellington) for his hatchet job cutting them up (much appreciated Rod), Anette Gullberg (University of Lund) for obtaining the goose sample, Dick Gill (NZ Department of Conservation, Waikanae office) for the petrel and the gull, Einar Arnason (University of Iceland) and Thorvaldur Björnsson (Museum of Natural History, Reykjavik, Iceland) for the loon, Darryl Jones (Australian School of Environmental Studies, Griffith University, Brisbane) and Ian Owens (University of Queensland) for the brush-turkey and Cathy Nock (Centre for Animal Conservation Genetics, Southern Cross University [Lismore campus], New South Wales) for the lyrebird. The work carried out in this study was supported at different times by a Swedish Institute Guest Scholarship, a Massey University Doctoral Scholarship, a University of Lund (Department of Genetics) Summer Stipendium, a Sven and Lilly Lawski Stipendium, a University of Lund (Department of Genetics) Doktorandtjänst, the Jörgen Lindströms Stipendiefond, the Swedish Science Council, the Nilsson-Ehle Foundation, the Allan Wilson Center for Molecular Ecology and Evolution (a NZ Centre for Research Excellence) and the NZ Marsden Fund. page iv Chapter 1. Introduction This introduction provides background to some of the key issues in avian phylogeny up to the time my first paper on bird evolution was published - Slack et al. (2003; Chapter 2). The date of this publication defines the scope of the introduction, thus references after 2003 are generally not included in this chapter, although there are exceptions, such as Clements (2005) which is used for nomenclature, and Penny and Phillips (2004) which a gives a range of hypotheses to be tested. In my summary (Chapter 5) I give an updating of the current understanding of avian evolution. Class Aves consists of all extant birds (Neornithes) together with some extinct groups such as enantiornithines (‘opposite birds’), hesperornithids (toothed waterbirds) and icthyornithids (toothed seabirds). Birds are usually considered as one of the five main groups of vertebrates, the others being fish, amphibians, reptiles and mammals (although ‘reptiles’ is not a strictly monophyletic group). Avians are descended from non-mammalian reptiles (almost certainly theropod dinosaurs; see Cracraft 1988 and references therein) and can easily be distinguished from other vertebrates through morphological characteristics such as feathers, wings and beaks (among others). There are almost 10,000 species of extant modern birds and they are globally distributed, being found from the Arctic to the Antarctic, on every continent and most if not all islands, and in a huge variety of environments. Assuming that Neornithes are a monophyletic group, for which there is substantial evidence (see, for example, Cracraft 2001 and references therein), three main questions about neornithine evolution remain: 1. When and where did neornithines originate? 2. How are the main lineages of modern birds interrelated? 3. What has been their temporal and spatial pattern of diversification? Although all aspects of avian phylogeny are important in their own right, this study focuses on aspects of questions 2 and 3: 1. The avian tree. This is split into two subprojects: a) finding the root of the avian tree, and b) resolving some deep avian relationships. 2. Dating avian divergences using well-supported early fossils (i.e. how many lineages of modern birds existed before the Cretaceous-Tertiary
Recommended publications
  • (Ruru) Nest Box
    Helping RURU with W I N G S P A N National Bird of Prey Centre There are lots of ways to help our native morepork owl or ruru but one of the best ways is to put up a ruru nest box. Wingspan has developed the following design which has proven effective both out in the wild and in captivity, to attract ruru when looking to nest, providing a safe environment for them to do so. Although ruru can and do nest in tree cavities and epiphytes, they sometimes choose to nest on the ground often somewhere as simple as under tree fern fronds or logs. With many introduced pest species predating on ground nesting birds, this puts them at great risk. A simple solution, to encourage them back up into the trees if there are no hollows around, is to construct and pop up a nest box. The following pages illustrate how you can construct a simple yet effective nest box to help out our native ruru. A sex bias towards male ruru recorded in one study suggests that females may be vulnerable to predation when incubating and brooding. A nest box can help reduce the risk of predation on this species. ASSEMBLED NEST BOX 300mm 260mm ENTRY PERCH < ATTACHED HERE 260mm 580mm Helping RURU with W I N G S P A N National Bird of Prey Centre MATERIALS: + 12mm tanalised plywood + Galvanised screws 30mm (x39) Galvanised screws 20mm (x2 for access panel) DIMENSIONS: Top: 300 x 650mm Front: 245 x 580mm Back: 350 x 580mm Base: 260 x 580mm Ends: 260 x 260 x 300mm Door: 150 x 150mm Entrance & Access Holes: 100mm + + + TOP + 300x650mm + + + + + + + + BACK 350x580mm + + + + ACCESS + + FRONT + HOLE + 100x100 ENTRANCE 245x580mm HOLE END 100x100 END 260x260x300mm 260x260x300mm + + + + + + + + + + + ACCESS COVER 150x150mm + BASE + 260x580mm + + + + + Helping RURU with W I N G S P A N National Bird of Prey Centre INSTRUCTIONS FOR RURU NEST BOX ASSEMBLY: Screw front and back onto inside edge of base (4 screws along each edge using pre-drilled holes).
    [Show full text]
  • 1931-15701-1-LE Maquetación 1
    AMEGHINIANA 50 (6) Suplemento 2013–RESÚMENES REUNIÓN DE COMUNICACIONES DE LA ASOCIACIÓN PALEONTOLÓGICA ARGENTINA 20 a 22 de Noviembre de 2013 Ciudad de Córdoba, Argentina INSTITUCIÓN ORGANIZADORA AUSPICIAN AMEGHINIANA 50 (6) Suplemento 2013–RESÚMENES COMISIÓN ORGANIZADORA Claudia Tambussi Emilio Vaccari Andrea Sterren Blanca Toro Diego Balseiro Diego Muñoz Emilia Sferco Ezequiel Montoya Facundo Meroi Federico Degrange Juan José Rustán Karen Halpern María José Salas Sandra Gordillo Santiago Druetta Sol Bayer COMITÉ CIENTÍFICO Dr. Guillermo Albanesi (CICTERRA) Dra. Viviana Barreda (MACN) Dr. Juan Luis Benedetto (CICTERRA) Dra. Noelia Carmona (UNRN) Dra. Gabriela Cisterna (UNLaR) Dr. Germán M. Gasparini (MLP) Dra. Sandra Gordillo (CICTERRA) Dr. Pedro Gutierrez (MACN) Dr. Darío Lazo (UBA) Dr. Ricardo Martinez (UNSJ) Dra. María José Salas (CICTERRA) Dr. Leonardo Salgado (UNRN) Dra. Emilia Sferco (CICTERRA) Dra. Andrea Sterren (CICTERRA) Dra. Claudia P. Tambussi (CICTERRA) Dr. Alfredo Zurita (CECOAL) AMEGHINIANA 50 (6) Suplemento 2013–RESÚMENES RESÚMENES CONFERENCIAS EL ANTROPOCENO Y LA HIPÓTESIS DE GAIA ¿NUEVOS DESAFÍOS PARA LA PALEONTOLOGÍA? S. CASADÍO1 1Universidad Nacional de Río Negro, Lobo 516, R8332AKN Roca, Río Negro, Argentina. [email protected] La hipótesis de Gaia propone que a partir de unas condiciones iniciales que hicieron posible el inicio de la vida en el planeta, fue la propia vida la que las modificó. Sin embargo, desde el inicio del Antropoceno la humanidad tiene un papel protagónico en dichas modificaciones, e.g. el aumento del CO2 en la atmósfera. Se estima que para fines de este siglo, se alcanzarían concentraciones de CO2 que el planeta no registró en los últimos 30 Ma. La información para comprender como funcionarían los sistemas terrestres con estos niveles de CO2 está contenida en los registros de períodos cálidos y en las grandes transiciones climáticas del pasado geológico.
    [Show full text]
  • Skull Shape Analysis and Diet of South American Fossil Penguins (Sphenisciformes) Claudia Patricia Tambussi & Carolina Acosta Hospitaleche
    Skull shape analysis and diet of South American fossil penguins (Sphenisciformes) Claudia Patricia Tambussi & Carolina Acosta Hospitaleche CONICET & Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina [email protected] [email protected] ABSTRACT – Form and function of the skull of Recent and fossil genera of available Spheniscidae are analysed in order to infer possible dietary behaviors for extinct penguins. Skull shapes were compared using the Resistant-Fit Theta-Rho- Analysis (RFTRA) Procrustean method. Due to the availability and quality of the material, this study was based on six living species belonging to five genera (Spheniscus, Eudyptula, Eudyptes, Pygoscelis, and Aptenodytes) and two Miocene species: Paraptenodytes antarticus (Moreno and Mercerat, 1891) and Madrynornis mirandus Acosta Hospitaleche, Tambussi, Donato & Cozzuol. Seventeen landmark from the skull were chosen, including homologous and geometrical points. Morphologi- cal similarities among RFTRA distances are depicted using the resulting dendrograms for UPGMA (unweighted pair-group method using arithmetic average) cluster analysis. This shape analysis allows the assessment of similarities and differences in the skulls and jaws of penguins within a more comprehensive ecomorphological and phylogenetic framework. Even though penguin diet is not well known, enough data supports the conclusion that Spheniscus + Eudyptes penguins specialize on fish and all other taxa are plankton-feeders or fish and crustacean-feeders. We compared representative species of both ecomor- phological groups with the available fossil material to evaluate their feeding strategies. Penguins are the most abundant birds, indeed the most abundant aquatic tetrapods, in Cenozoic marine sediments of South America. The results arising from this study will be of singular importance in the reconstruction of those marine ecosystems.
    [Show full text]
  • Bayesian Total Evidence Dating Reveals the Recent Crown Radiation of Penguins
    Supporting Information Bayesian total evidence dating reveals the recent crown radiation of penguins Contents 1 Methods 1 1.1 Prior distributions for parameters..........................1 1.2 Data..........................................2 1.3 Fossil ages.......................................2 1.4 Validation.......................................8 2 Results 8 2.1 Divergence dates...................................8 2.2 Sensitivity to the choice of prior distributions for the net diversification rate.. 11 1 Methods 1.1 Prior distributions for parameters We used the following prior distributions for the parameters in all analyses except for the sensitivity analyses. For the net diversification rate, d, we place a log-normal prior distribution with parameters1 M = −3:5 and S2 = 1:5. The 2.5% and 97.5% quantiles of this distribution are 1:6 · 10−3 and 0:57 implying that it well covers the interval (with the lowest 5% quantile of 0.02 and the largest 95% quantile of 0.15) estimated in [1] Figure 1. We place a Uniform(0,1) prior distribution for the turnover, ν, and Uniform(0,1) prior distri- bution for the fossil sampling proportion, s. For birth, death and sampling rates (λ, µ, and ) we used log-normal distributions with pa- rameters1 M = −2:5 and S2 = 1:5 and 2.5% and 97.5% quantiles of 4:34 · 10−3 and 1:55. For the time of origin, tor, we use the Uniform prior distribution between the oldest sample and 160 Ma because Jetz et al. estimated the upper bound for the MRCA of all birds to be 1Parameters M and S for log-normal distributions here are the mean and standard deviation of the associated normal distributions 1 150 Ma ([1] Figure 1) and Lee et al.
    [Show full text]
  • PALEOGENE FOSSILS and the RADIATION of MODERN BIRDS HQ F
    The Auk 122(4):1049–1054, 2005 © The American Ornithologists’ Union, 2005. Printed in USA. OVERVIEW PALEOGENE FOSSILS AND THE RADIATION OF MODERN BIRDS Hq F. Jrx1 Division of Birds, MRC-116, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013, USA M birds arose mainly in 1989, Mayr and Manegold 2004), and others. the Neogene Period (1.8–23.8 mya), and mod- Paleogene fossils also document diverse extinct ern species mainly in the Plio-Pleistocene branches of the neornithine tree, ranging from (0.08–5.3 mya). Neogene fossil birds generally large pseudotoothed seabirds to giant fl ightless resemble modern taxa, and those that cannot land birds to small zygodactyl perching birds be a ributed to a modern genus or species (Ballmann 1969, Harrison and Walker 1976, can usually be placed in a modern family with Andors 1992). a fair degree of confi dence (e.g. Becker 1987, Before the Paleogene, fossils of putative neor- Olson and Rasmussen 2001). Fossil birds from nithine birds are sparse and fragmentary (Hope earlier in the Cenozoic can be more challeng- 2002), and their phylogenetic placement is all ing to classify. The fossil birds of the Paleogene the more equivocal. The Paleogene is thus a cru- (23.8–65.5 mya) are clearly a ributable to the cial time period for understanding the history of Neornithes (modern birds), and the earliest diversifi cation of birds, particularly with respect well-established records of most traditional to the deeper branches of the neornithine tree. orders and families of modern birds occur then.
    [Show full text]
  • Lowest Paleogene Strata on Vega Island, Antarctica
    Palaeogeography, Palaeoclimatology, Palaeoecology 402 (2014) 55–72 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Stratigraphy and vertebrate paleoecology of Upper Cretaceous–?lowest Paleogene strata on Vega Island, Antarctica Eric M. Roberts a,⁎, Matthew C. Lamanna b, Julia A. Clarke c, Jin Meng d, Eric Gorscak e, Joseph J.W. Sertich f, Patrick M. O'Connor e, Kerin M. Claeson g,RossD.E.MacPheeh a School of Earth and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia b Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Ave., Pittsburgh, PA 15213, USA c Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, 1 University Station C1100, Austin, TX 78712, USA d Department of Paleontology, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA e Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA f Department of Earth Sciences, Denver Museum of Nature and Science, 2001 Colorado Blvd., Denver, CO 80205, USA g Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA h Department of Mammalogy, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA article info abstract Article history: The Upper Cretaceous (Maastrichtian) Sandwich Bluff Member of the López de Bertodano Formation is well Received 24 October 2013 exposed on Vega Island in the James Ross Basin off the northeastern coast of the Antarctic Peninsula. Although Received in revised form 18 February 2014 this unit is one of the richest sources of end-Cretaceous vertebrate fossils in Antarctica, it is also one of the Accepted 3 March 2014 least sedimentologically and stratigraphically characterized units in the basin.
    [Show full text]
  • Bulletin~ of the American Museum of Natural History Volume 87: Article 1 New York: 1946 - X X |! |
    GEORGE GAYLORD SIMPSON BULLETIN~ OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 87: ARTICLE 1 NEW YORK: 1946 - X X |! | - -s s- - - - - -- -- --| c - - - - - - - - - - - - - - - - - -- FOSSIL PENGUINS FOSSIL PENGUINS GEORGE GAYLORD SIMPSON Curator of Fossil Mammals and Birds PUBLICATIONS OF THE SCARRITT EXPEDITIONS, NUMBER 33 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 87: ARTICLE 1 NEW YORK: 1946 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 87, article 1, pages 1-100, text figures 1-33, tables 1-9 Issued August 8, 1946 CONTENTS INTRODUCTION . 7 A SKELETON OF Paraptenodytes antarcticus. 9 CONSPECTUS OF TERTIARY PENGUINS . 23 Patagonia. 24 Deseado Formation. 24 Patagonian Formation . 25 Seymour Island . 35 New Zealand. 39 Australia. 42 COMPARATIVE OSTEOLOGY OF MIOCENE PENGUINS . 43 Skull . 43 Vertebrae 44 Scapula. 45 Coracoid. 46 Sternum. 49 Humerus. 49 Radius and Ulna. 53 Metacarpus. 55 Phalanges . 56 The Wing as a Whole. 56 Femur. 59 Tibiotarsus. 60 Tarsometatarsus 61 NOTES ON VARIATION. 65 TAXONOMY AND PHYLOGENY OF THE SPHENISCIDAE . 68 DISTRIBUTION OF MIOCENE PENGUINS. 71 SIZE OF THE FOSSIL PENGUINS 74 THE ORIGIN OF PENGUINS. 77 Status of the Problem. 77 The Fossil Evidence . 78 Conclusions from the Fossil Evidence. 83 A General Theory of Penguin Evolution. 84 A Note on Archaeopteryx and Archaeornis 92 ADDENDUM . 96 BIBLIOGRAPHY 97 5 INTRODUCTION FEW ANIMALS have excited greater popular basis for comparison, synthesis, and gener- and scientific interest than penguins. Their alization, in spite of the fact
    [Show full text]
  • Download Vol. 11, No. 3
    BULLETIN OF THE FLORIDA STATE MUSEUM BIOLOGICAL SCIENCES Volume 11 Number 3 CATALOGUE OF FOSSIL BIRDS: Part 3 (Ralliformes, Ichthyornithiformes, Charadriiformes) Pierce Brodkorb M,4 * . /853 0 UNIVERSITY OF FLORIDA Gainesville 1967 Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM are pub- lished at irregular intervals. Volumes contain about 800 pages and are not nec- essarily completed in any one calendar year. WALTER AuFFENBERC, Managing Editor OLIVER L. AUSTIN, JA, Editor Consultants for this issue. ~ HILDEGARDE HOWARD ALExANDER WErMORE Communications concerning purchase or exchange of the publication and all manuscripts should be addressed to the Managing Editor of the Bulletin, Florida State Museum, Seagle Building, Gainesville, Florida. 82601 Published June 12, 1967 Price for this issue $2.20 CATALOGUE OF FOSSIL BIRDS: Part 3 ( Ralliformes, Ichthyornithiformes, Charadriiformes) PIERCE BRODKORBl SYNOPSIS: The third installment of the Catalogue of Fossil Birds treats 84 families comprising the orders Ralliformes, Ichthyornithiformes, and Charadriiformes. The species included in this section number 866, of which 215 are paleospecies and 151 are neospecies. With the addenda of 14 paleospecies, the three parts now published treat 1,236 spDcies, of which 771 are paleospecies and 465 are living or recently extinct. The nominal order- Diatrymiformes is reduced in rank to a suborder of the Ralliformes, and several generally recognized families are reduced to subfamily status. These include Geranoididae and Eogruidae (to Gruidae); Bfontornithidae
    [Show full text]
  • An Avian Femur from the Late Cretaceous of Vega Island, Antarctic Peninsula: Removing the Record of Cursorial Landbirds from the Mesozoic of Antarctica
    An avian femur from the Late Cretaceous of Vega Island, Antarctic Peninsula: removing the record of cursorial landbirds from the Mesozoic of Antarctica Abagael R. West1,2,3, Christopher R. Torres4, Judd A. Case5, Julia A. Clarke4,6, Patrick M. O’Connor7,8 and Matthew C. Lamanna1 1 Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, PA, USA 2 Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA 3 Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA 4 Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA 5 Department of Biology, Eastern Washington University, Cheney, WA, USA 6 Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA 7 Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA 8 Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, OH, USA ABSTRACT In 2006, a partial avian femur (South Dakota School of Mines and Technology (SDSM) 78247) from the Upper Cretaceous (Maastrichtian) Sandwich Bluff Member of the López de Bertodano Formation of Sandwich Bluff on Vega Island of the northern Antarctic Peninsula was briefly reported as that of a cariamiform—a clade that includes extant and volant South American species and many extinct flightless and cursorial species. Although other authors have since rejected this taxonomic assignment, SDSM 78247 had never been the subject of a detailed description, hindering a definitive assessment
    [Show full text]
  • Birders Checklist for the Mapungubwe National Park and Area
    Birders Checklist for the Mapungubwe National Park and area Reproduced with kind permission of Etienne Marais of Indicator Birding Visit www.birding.co.za for more info and details of birding tours and events Endemic birds KEY: SA = South African Endemic, SnA = Endemic to Southern Africa, NE = Near endemic (Birders endemic) to the Southern African Region. RAR = Rarity Status KEY: cr = common resident; nr = nomadic breeding resident; unc = uncommon resident; rr = rare; ? = status uncertain; s = summer visitor; w = winter visitor r Endemicity Numbe Sasol English Status All Scientific p 30 Little Grebe cr Tachybaptus ruficollis p 30 Black-necked Grebe nr Podiceps nigricollis p 56 African Darter cr Anhinga rufa p 56 Reed Cormorant cr Phalacrocorax africanus p 56 White-breasted Cormorant cr Phalacrocorax lucidus p 58 Great White Pelican nr Pelecanus onocrotalus p 58 Pink-backed Pelican ? Pelecanus rufescens p 60 Grey Heron cr Ardea cinerea p 60 Black-headed Heron cr Ardea melanocephala p 60 Goliath Heron cr Ardea goliath p 60 Purple Heron uncr Ardea purpurea p 62 Little Egret uncr Egretta garzetta p 62 Yellow-billed Egret uncr Egretta intermedia p 62 Great Egret cr Egretta alba p 62 Cattle Egret cr Bubulcus ibis p 62 Squacco Heron cr Ardeola ralloides p 64 Black Heron uncs Egretta ardesiaca p 64 Rufous-bellied Heron ? Ardeola rufiventris RA p 64 White-backed Night-Heron rr Gorsachius leuconotus RA p 64 Slaty Egret ? Egretta vinaceigula p 66 Green-backed Heron cr Butorides striata p 66 Black-crowned Night-Heron uncr Nycticorax nycticorax p
    [Show full text]
  • Ratite Molecular Evolution, Phylogeny and Biogeography Inferred from Complete Mitochondrial Genomes
    RATITE MOLECULAR EVOLUTION, PHYLOGENY AND BIOGEOGRAPHY INFERRED FROM COMPLETE MITOCHONDRIAL GENOMES by Oliver Haddrath A thesis submitted in confonnity with the requirements for the Degree of Masters of Science Graduate Department of Zoology University of Toronto O Copyright by Oliver Haddrath 2000 National Library Biblioth&que nationale 191 .,,da du Canada uisitions and Acquisitions et Services services bibliographiques 395 Welington Street 395. rue WdKngton Ottawa ON KIA ON4 Otîâwâ ON K1A ûN4 Canada Canada The author has granted a non- L'auteur a accordé une iicence non exclusive licence allowing the exclusive permettant A la National Library of Canada to Bihliotheque nationale du Canada de reproduce, loan, distribute or sell reproduire, @ter, distribuer ou copies of diis thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/fïîm, de reproduction sur papier ou sur format 61ectronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette tbése. thesis nor substantial exûacts fiom it Ni la thèse ni des extraits substantiels may be priated or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Ratite Molecular Evolution, Phylogeny and Biogeography Inferred fiom Complete Mitochoncîrial Genomes. Masters of Science. 2000. Oliver Haddrath Department of Zoology, University of Toronto. The relationships within the ratite birds and their biogeographic history has been debated for over a century. While the monophyly of the ratites has been established, consensus on the branching pattern within the ratite tree has not yet been reached.
    [Show full text]
  • COVER PAGE and CAMPUS MAP to Be Inserted (Campus Map on Last Page)
    COVER PAGE and CAMPUS MAP to be inserted (campus map on last page) 1 Welcome and Conference Overview Welcome to the 2012 New Zealand Ecological Society Conference. The organising committee is excited by the wide range of symposia and papers submitted. When we volunteered Lincoln University to host this conference we wanted to show that science is still alive and well in Canterbury and the great response we have had from all of you indicates that our somewhat shaken heart is still beating! Given the high numbers of papers submitted we have had to organise four concurrent sessions for the first two days of the conference. What this means is that we are hosting over 130 oral presentations. This high level of demand was somewhat unexpected but we are pleased to report that we accepted nearly all of the oral papers that were submitted to the conference organisers. No mean feat! I would especially like to thank the organising committee and all our student helpers. We have a small team of organisers and they have all worked extremely hard to bring this event together. Our postgraduate students have done an excellent job creating the “student-only day” and it was a delight to support this endeavour. We also thank the Lincoln University Conference & Event Management group for their professional management of this event. Well done team! This conference would not have been possible without the generous support of all our sponsors. Given the current economic climate I did wonder if we may end up with the “2012 Austerity Conference”; however, I was pleasantly surprised with the level of support we have received and I particularly want to thank our main sponsors: the Faculty of Agriculture and Life Sciences here at Lincoln and the Department of Conservation.
    [Show full text]