Deep Evolutionary Origin of Limb and Fin Regeneration

Total Page:16

File Type:pdf, Size:1020Kb

Deep Evolutionary Origin of Limb and Fin Regeneration Deep evolutionary origin of limb and fin regeneration Sylvain Darneta,1, Aline C. Dragalzewa,1, Danielson B. Amarala,1, Josane F. Sousaa, Andrew W. Thompsonb, Amanda N. Cassc, Jamily Lorenaa,d, Eder S. Piresd, Carinne M. Costaa, Marcos P. Sousae, Nadia B. Fröbischf, Guilherme Oliveirad, Patricia N. Schneidera, Marcus C. Davisc, Ingo Braaschb, and Igor Schneidera,2 aInstituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil; bDepartment of Integrative Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824; cDepartment of Biology, James Madison University, Harrisonburg, VA 22807; dInstituto Tecnológico Vale, 66055-090 Belém, Brazil; eLaboratório de Biologia Molecular, Museu Paraense Emílio Goeldi, 66077-530 Belém, Pará, Brazil; and fMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany Edited by Günter P. Wagner, Yale University, New Haven, CT, and approved June 11, 2019 (received for review January 10, 2019) Salamanders and lungfishes are the only sarcopterygians (lobe- data support the hypothesis that tetrapods inherited a limb re- finned vertebrates) capable of paired appendage regeneration, generation program from sarcopterygian fish ancestors (10). regardless of the amputation level. Among actinopterygians (ray- Among actinopterygians, teleosts, such as zebrafish, have been finned fishes), regeneration after amputation at the fin endoskel- broadly used for fin regeneration studies, yet their regenerative eton has only been demonstrated in polypterid fishes (Cladistia). abilities are thought to be limited to the dermal fin ray skeleton Whether this ability evolved independently in sarcopterygians and (11, 12). However, evidence of tail regeneration after endo- actinopterygians or has a common origin remains unknown. Here skeleton amputation has been shown in zebrafish (13). Thus far, we combine fin regeneration assays and comparative RNA-sequencing only 2 actinopterygian species, both from the earliest branching Polypterus (RNA-seq) analysis of and axolotl blastemas to provide ray-finned fishes, the Polypteridae, have been found to fully re- support for a common origin of paired appendage regeneration in generate paired fins, including the endoskeleton: the Senegal Osteichthyes (bony vertebrates). We show that, in addition to poly- bichir Polypterus senegalus (14, 15) and the ropefish Erpetoichthys pterids, regeneration after fin endoskeleton amputation occurs in calabaricus (15). Currently, our understanding of the evolution of extant representatives of 2 other nonteleost actinopterygians: the appendage regeneration is hindered by limited knowledge of the American paddlefish (Chondrostei) and the spotted gar (Holostei). Furthermore, we assessed regeneration in 4 teleost species and regeneration capabilities across fish clades. To address this, we show that, with the exception of the blue gourami (Anabantidae), assessed fin regeneration capacity in key taxa representing all ex- 3 species were capable of regenerating fins after endoskeleton am- tant major actinopterygian clades and examined gene-expression putation: the white convict and the oscar (Cichlidae), and the gold- profiles of limb and fin regenerating blastemas via RNA se- fish (Cyprinidae). Our comparative RNA-seq analysis of regenerating quencing (RNA-seq) in Polypterus. blastemas of axolotl and Polypterus reveals the activation of com- Here we provide evidence of regeneration after amputation at mon genetic pathways and expression profiles, consistent with a the fin endoskeleton in the American paddlefish (Chondrostei), shared genetic program of appendage regeneration. Comparison of RNA-seq data from early Polypterus blastema to single-cell RNA- Significance seqdatafromaxolotllimbbudandlimbregenerationstagesshows Polypterus that and axolotl share a regeneration-specific genetic Salamanders and lungfishes are the only lobe-finned verte- program. Collectively, our findings support a deep evolutionary brates where appendage regeneration after endoskeleton origin of paired appendage regeneration in Osteichthyes and provide amputation has been demonstrated. Here we show that an evolutionary framework for studies on the genetic basis of paired-fin regeneration after endoskeleton amputation occurs appendage regeneration. in living representatives of all major actinopterygian clades: the American paddlefish (Chondrostei), the spotted gar (Holostei), limb | fin | regeneration | tetrapod | evolution and in 2 cichlid and 1 cyprinid species (Teleostei). Through comparative transcriptome analysis of blastemas, we demon- typical osteichthyan paired fin (i.e., pectoral and pelvic fin) strate that axolotl and Polypterus deploy a similar genetic pro- Ais composed of an array of proximal fin radials (the endo- gram during regeneration. Furthermore, we show that early skeleton), followed distally by the fin rays (the dermal skeleton). blastemas in both species activate a common regeneration- The tetrapod limb evolved from paired fins in Devonian sar- specific genetic program. Collectively, our findings support a copterygians. During this transition, the fin ray dermal skeleton deep evolutionary origin of limb and fin regeneration and was lost and the elaborate limb endoskeleton emerged, consist- highlight the strengths of a comparative approach to identify ing of a proximal segment, the stylopod (humerus and femur), an genetic signatures of vertebrate appendage regeneration. intermediate segment, the zeugopod (radius/ulna, tibia/fibula), and a distal segment, the autopod (manus and pes) (1). There- Author contributions: S.D., A.C.D., D.B.A., J.F.S., A.W.T., A.N.C., N.B.F., M.C.D., I.B., and I.S. designed research; S.D., A.C.D., D.B.A., J.F.S., A.W.T., A.N.C., E.S.P., C.M.C., G.O., P.N.S., fore, whereas fin rays have no direct homologous counterpart in M.C.D., I.B., and I.S. performed research; S.D., J.L., E.S.P., C.M.C., M.P.S., G.O., P.N.S., tetrapod limbs, the limb endoskeleton and the endoskeletal el- M.C.D., and I.B. contributed new reagents/analytic tools; S.D., A.C.D., D.B.A., J.F.S., ements of fish paired fins share deep homology (2, 3) (Fig. 1A). A.W.T., A.N.C., J.L., E.S.P., M.P.S., N.B.F., G.O., P.N.S., M.C.D., I.B., and I.S. analyzed data; Among sarcopterygians, the capacity to regenerate the limbs and S.D., A.C.D., D.B.A., J.F.S., A.W.T., A.N.C., N.B.F., M.C.D., I.B., and I.S. wrote the paper. and fins after amputations severing the endoskeleton has been The authors declare no conflict of interest. reported only in 3 groups: frogs (4), salamanders (5), and lungfishes This article is a PNAS Direct Submission. (6). Although adult frogs cannot regenerate limbs, this capacity is Published under the PNAS license. exhibited by tadpoles before metamorphosis (7). Recent fossil ev- Data deposition: The sequences reported in this paper have been deposited in the NCBI idence has shown that limb regeneration occurred in basal am- Sequence Read Archive (project nos. PRJNA480693 and PRJNA480698). phibians before the emergence of stem salamanders, caecilians, and 1S.D., A.C.D., and D.B.A. contributed equally to this work. frogs; hence, this capacity is likely an ancient, plesiomorphic feature 2To whom correspondence may be addressed. Email: [email protected]. of tetrapods (8, 9). Recently, transcriptome analysis revealed strong This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. similarities between the transcriptional profiles deployed in lungfish 1073/pnas.1900475116/-/DCSupplemental. fin and salamander limb blastemas (LBs) (6). Altogether, current Published online July 3, 2019. 15106–15115 | PNAS | July 23, 2019 | vol. 116 | no. 30 www.pnas.org/cgi/doi/10.1073/pnas.1900475116 Downloaded by guest on September 29, 2021 A Fin/limb regeneration after endoskeleton amputation Present Dermal skeleton Absent Unknown Endoskeleton Endoskeleton (Mya) y 0 Gar Birds Frogs* Lizards Teleosts Lungfish Mammals Paddlefish Polypterids Coelacanth Salamanders Teleostei Holostei Cartilaginous fish Amniota Chondrostei Cladistia 300 Tetrapoda Dev Sarcopterygii Actinopterygii 400 Ord Sil Car Per day Present 500 EVOLUTION American paddlefish (P. spathula) Spotted gar (L. oculatus) B E Pectoral fin Pelvic fin Pectoral fin Pelvic fin C 28 dpa D 28 dpa F Before amputation G After amputation H 257 dpa I I’ Reg Uninjured J J’ Fig. 1. Phylogenetic distribution of appendage regeneration after endoskeleton amputation among vertebrates and of fin regeneration in nonteleost actinopterygians. (A, Upper) Schematic representation of endoskeleton and dermal skeleton of vertebrate appendages. (A, Lower) A time-calibrated ver- tebrate phylogeny depicts the state of current knowledge at the time this study was undertaken. Lineages containing one or more species capable of fin or limb regeneration after endoskeleton amputation are denoted in blue, those incapable denoted in orange, and those where no information exists in black. (B) Cleared and stained juvenile paddlefish at 75 dpf; pectoral and pelvic fins denoted. (C) Ventral view of a specimen with regenerated right pelvic fin at 28 dpa; arrowheads denote amputation site. (D) Ventral view of the cleared and stained specimen shown in C, displaying endoskeletal regeneration distal to the amputation site. (E) Spotted gar with pectoral and pelvic fins denoted. (F) Left pelvic fin before amputation. (G) Skeletal staining of fin removed by amputation; dotted line shows amputation site across the
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • Helostoma Temminckii (Kissing Gourami)
    Kissing Gourami (Helostoma temminckii) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, September 2018 Web Version, 2/14/2019 Photo: 5snake5. Licensed under CC BY-SA 4.0. Available: https://commons.wikimedia.org/wiki/File:Helostoma_temminkii_01.jpg. (September 2018). 1 Native Range and Status in the United States Native Range From Fuller and Neilson (2018): “Tropical Asia, including central Thailand, Malay Peninsula, Sumatra, Borneo, and Java (Berra 1981; Roberts 1989; Talwar and Jhingran 1992).” 1 Status in the United States Fuller and Neilson (2018) report Helostoma temminckii from the following HUCs (hydrologic units) in Florida between 1971 and 1978: Florida Southeast Coast, Little Manatee, and Tampa Bay. From Fuller and Neilson (2018): “Failed at both locations in Florida. No additional specimens have been reported or collected.” This species is in trade in the United States. From Arizona Aquatic Gardens (2018): “Pink Kissing Gourami Fish […] $8.99 Out of stock” Means of Introductions in the United States From Fuller and Neilson (2018): “The introduction resulted from either an aquarium release or a fish-farm escape.” Remarks This species’ name is spelled “Helostoma temminkii” according to ITIS (2018), but the correct spelling according to Fricke et al. (2018) is “Helostoma temminckii”. The misspelling occurs often enough that it was also used when researching in preparation of this report. From Fricke et al. (2018): “temminkii, Helostoma Cuvier [G.] (ex Kuhl & van Hasselt) 1829:228 [Le Règne
    [Show full text]
  • Discovery and Optimization of Selective Inhibitors of Meprin Α (Part II)
    pharmaceuticals Article Discovery and Optimization of Selective Inhibitors of Meprin α (Part II) Chao Wang 1,2, Juan Diez 3, Hajeung Park 1, Christoph Becker-Pauly 4 , Gregg B. Fields 5 , Timothy P. Spicer 1,6, Louis D. Scampavia 1,6, Dmitriy Minond 2,7 and Thomas D. Bannister 1,2,* 1 Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA; [email protected] (C.W.); [email protected] (H.P.); [email protected] (T.P.S.); [email protected] (L.D.S.) 2 Department of Chemistry, Scripps Research, Jupiter, FL 33458, USA; [email protected] 3 Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA; [email protected] 4 The Scripps Research Molecular Screening Center, Scripps Research, Jupiter, FL 33458, USA; [email protected] 5 Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel, Rudolf-Höber-Str.1, 24118 Kiel, Germany; fi[email protected] 6 Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA 7 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA * Correspondence: [email protected] Abstract: Meprin α is a zinc metalloproteinase (metzincin) that has been implicated in multiple diseases, including fibrosis and cancers. It has proven difficult to find small molecules that are capable Citation: Wang, C.; Diez, J.; Park, H.; of selectively inhibiting meprin α, or its close relative meprin β, over numerous other metzincins Becker-Pauly, C.; Fields, G.B.; Spicer, which, if inhibited, would elicit unwanted effects.
    [Show full text]
  • Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine
    Journal of Developmental Biology Review Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine Eleonora N. Grigoryan Kol’tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; [email protected]; Tel.: +7-(499)-1350052 Abstract: The review considers the molecular, cellular, organismal, and ontogenetic properties of Urodela that exhibit the highest regenerative abilities among tetrapods. The genome specifics and the expression of genes associated with cell plasticity are analyzed. The simplification of tissue structure is shown using the examples of the sensory retina and brain in mature Urodela. Cells of these and some other tissues are ready to initiate proliferation and manifest the plasticity of their phenotype as well as the correct integration into the pre-existing or de novo forming tissue structure. Without excluding other factors that determine regeneration, the pedomorphosis and juvenile properties, identified on different levels of Urodele amphibians, are assumed to be the main explanation for their high regenerative abilities. These properties, being fundamental for tissue regeneration, have been lost by amniotes. Experiments aimed at mammalian cell rejuvenation currently use various approaches. They include, in particular, methods that use secretomes from regenerating tissues of caudate amphibians and fish for inducing regenerative responses of cells. Such an approach, along with those developed on the basis of knowledge about the molecular and genetic nature and age dependence of regeneration, may become one more step in the development of regenerative medicine Citation: Grigoryan, E.N. Study of Keywords: salamanders; juvenile state; tissue regeneration; extracts; microvesicles; cell rejuvenation Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in 1.
    [Show full text]
  • Recent Trends in Breeding and Trade of Ornamental Gourami in India
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331717622 Recent Trends in Breeding and Trade of Ornamental Gourami in India Article in World Aquaculture · March 2019 CITATIONS READS 3 3,032 2 authors: Alok Kumar Jena Pradyut Biswas Central Institute of Fisheries Education Central Agricultural University 29 PUBLICATIONS 37 CITATIONS 62 PUBLICATIONS 132 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Effects of temperature on the Caudal fin regeneration of Flying Barb Esomus danricus (Hamilton, 1822) (Cyprinidae) View project Grow-out rearing of Indian butter catfish, Ompok bimaculatus (Bloch), at different stocking densities in outdoor concrete tanks View project All content following this page was uploaded by Alok Kumar Jena on 13 March 2019. The user has requested enhancement of the downloaded file. Recent Trends in Breeding and Trade of Ornamental Gourami in India Alok Kumar Jena, Pradyut Biswas and Sandeep Shankar Pattanaik FIGURE 2. Blue gourami Trichogaster trichopterus (Left) and pearl gourami Trichogaster leeri (Right). FIGURE 1. Banded gourami Colisa fasciatus juvenile. TABLE 1. List of gouramis indigenous to India. Common Name Scientific Name Rainbow gourami/banded gourami Colisa fasciatus Dwarf gourami/lily gourami Colisa lalia Honey gourami Colisa chuna FIGURE 3. Preparation of bubble nest by a male gourami. The ornamental fish TABLE 2. List of gouramis exotic to India. farms located in the country
    [Show full text]
  • Comparative Transcriptome Analysis of Embryo Invasion in the Mink Uterus
    Placenta 75 (2019) 16–22 Contents lists available at ScienceDirect Placenta journal homepage: www.elsevier.com/locate/placenta Comparative transcriptome analysis of embryo invasion in the mink uterus T ∗ Xinyan Caoa,b, , Chao Xua,b, Yufei Zhanga,b, Haijun Weia,b, Yong Liuc, Junguo Caoa,b, Weigang Zhaoa,b, Kun Baoa,b, Qiong Wua,b a Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China b State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China c Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Teachers College, Fuyang, China ABSTRACT Introduction: In mink, as many as 65% of embryos die during gestation. The causes and the mechanisms of embryonic mortality remain unclear. The purpose of our study was to examine global gene expression changes during embryo invasion in mink, and thereby to identify potential signaling pathways involved in implantation failure and early pregnancy loss. Methods: Illumina's next-generation sequencing technology (RNA-Seq) was used to analyze the differentially expressed genes (DEGs) in implantation (IMs) and inter- implantation sites (inter-IMs) of uterine tissue. Results: We identified a total of 606 DEGs, including 420 up- and 186 down-regulated genes in IMs compared to inter-IMs. Gene annotation analysis indicated multiple biological pathways to be significantly enriched for DEGs, including immune response, ECM complex, cytokine activity, chemokine activity andprotein binding. The KEGG pathway including cytokine-cytokine receptor interaction, Jak-STAT, TNF and the chemokine signaling pathway were the most enriched.
    [Show full text]
  • Edna in a Bottleneck: Obstacles to Fish Metabarcoding Studies in Megadiverse Freshwater 3 Systems 4 5 Authors: 6 Jake M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425493; this version posted January 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Title: 2 eDNA in a bottleneck: obstacles to fish metabarcoding studies in megadiverse freshwater 3 systems 4 5 Authors: 6 Jake M. Jackman1, Chiara Benvenuto1, Ilaria Coscia1, Cintia Oliveira Carvalho2, Jonathan S. 7 Ready2, Jean P. Boubli1, William E. Magnusson3, Allan D. McDevitt1* and Naiara Guimarães 8 Sales1,4* 9 10 Addresses: 11 1Environment and Ecosystem Research Centre, School of Science, Engineering and Environment, 12 University of Salford, Salford, M5 4WT, UK 13 2Centro de Estudos Avançados de Biodiversidade, Instituto de Ciências Biológicas, Universidade 14 Federal do Pará, Belém, Brazil 15 3Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, 16 Amazonas, Brazil 17 4CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, 18 Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal 19 20 *Corresponding authors: 21 Naiara Guimarães Sales, [email protected] 22 Allan McDevitt, [email protected] 23 24 Running title: Obstacles to eDNA surveys in megadiverse systems 25 26 Keywords: Amazon, barcoding gap, freshwater, MiFish, Neotropics, reference database, 27 taxonomic resolution 28 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425493; this version posted January 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Behavior and Phylogeny of Fishes of the Genus Colisa and the Family Belontiidae
    BEHAVIOR AND PHYLOGENY OF FISHES OF THE GENUS COLISA AND THE FAMILY BELONTIIDAE by RUDOLPH J. MILLER') and AMBROSE JEARLD2) (Department of Zoology, Oklahoma State University, Stillwater, Oklahoma, U.S.A.) (With2 Figures) (Acc.25-VI-1982) Introduction In an earlier paper on the behavior and phylogeny of trichogasterine fishes (MILLER & RoBISON, 1974) we presented arguments supporting the use of behavioral characteristics in assessing phylogenetic relation- ships among animals. Though we agreed with ATZ (1970) that care must be taken in establishing "homologies of behavior", we concluded that behaviortaxonomy studies often prove useful at the family or genus group level (MAYR, 1958; CULLEN, 1959; ALEXANDER, 1962; WICKLER, 1967; HINDE, 1970). We were able to show that the four species in the genus Trichogaster fall rather easily into two groups, based on numerous trench- ant behavioral characteristics. We also have been studying the behavior of the four species currently recognized in the genus Colisa (RESER, 1969; JANZOw, 1971; JEARLD, 1975). The purpose of this paper is to describe the reproductive behaviors of the Colisa spp., examine this information for insights on phylogenetic relationships of the group, and integrate this data with the earlier material on Trichogaster. Since LIEM (1963) placed both genera at the peak of adaptive radiation in the family Belontiidae, such a comparison may be of some value in assessing strengths and weaknesses of the comparative behavior technique. The Anabantoidei are a group of over 50 species of perciform fishes in- habiting tropical and subtropical regions of Southeast Asia, India, and Central Africa. The most recent revision of the group was done by LIEM (1963) who ordered the 15 genera into four families on the basis of 1) We are grateful to Drs H.
    [Show full text]
  • Breeding and Embryonic Development of an Indigenous Ornamental Fish
    Journal of Entomology and Zoology Studies 2017; 5(3): 111-115 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(3): 111-115 Breeding and embryonic development of an © 2017 JEZS indigenous ornamental fish Trichogaster lalius Received: 18-03-2017 Accepted: 19-04-2017 (Hamilton, 1822) in captive condition Shibam Saha Department of Fisheries Resource Management, Faculty of Fishery Shibam Saha, S. Behera, Dibakar Bhakta, Abhrajyoti Mandal, Sanjeev Sciences, West Bengal University of Animal and Fishery Sciences, Kumar and Anandamoy Mondal Budherhat Road, Chakgaria, Panchasayar, Kolkata, West Bengal, India. Abstract The present study was conducted to perform the captive breeding and embryonic development of dwarf S. Behera gourami Trichogaster lalius (Hamilton, 1822) in control condition at the Laboratory of Faculty of Department of Fisheries Resource Management, Faculty of Fishery Fishery Sciences, WBUAFS, Kolkata, West Bengal between May and June, 2016. A total 10 sets of Sciences, West Bengal University of experiment were conducted by keeping one pair of healthily fish (male and female 1:1 ratio) for each set. Animal and Fishery Sciences, The absolute fecundity was ranged from 1000 to 1350. The fertilization rate was found to be 63±0.50% Budherhat Road, Chakgaria, and incubation period was recorded 23 to 26 hours at 29.15 ± 0.95 ºC. The fertilized eggs were not Panchasayar, Kolkata, West Bengal, India. adhesive, golden in colour and optically transparent and size was ranged from 0.60 ± 0.05 to 0.69 ± 0.08 mm. The present findings established that T. lalius can easily bred in captive condition by maintaining Dibakar Bhakta suitable environmental parameters which is prerequisite to conserve the species in natural water bodies.
    [Show full text]
  • Polymorphisms of the Matrix Metalloproteinase Genes
    www.nature.com/scientificreports OPEN Polymorphisms of the matrix metalloproteinase genes are associated with essential hypertension in a Caucasian population of Central Russia Maria Moskalenko1, Irina Ponomarenko1, Evgeny Reshetnikov1*, Volodymyr Dvornyk2 & Mikhail Churnosov1 This study aimed to determine possible association of eight polymorphisms of seven MMP genes with essential hypertension (EH) in a Caucasian population of Central Russia. Eight SNPs of the MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, and MMP12 genes and their gene–gene (epistatic) interactions were analyzed for association with EH in a cohort of 939 patients and 466 controls using logistic regression and assuming additive, recessive, and dominant genetic models. The functional signifcance of the polymorphisms associated with EH and 114 variants linked to them (r2 ≥ 0.8) was analyzed in silico. Allele G of rs11568818 MMP7 was associated with EH according to all three genetic models (OR = 0.58–0.70, pperm = 0.01–0.03). The above eight SNPs were associated with the disorder within 12 most signifcant epistatic models (OR = 1.49–1.93, pperm < 0.02). Loci rs1320632 MMP8 and rs11568818 MMP7 contributed to the largest number of the models (12 and 10, respectively). The EH-associated loci and 114 SNPs linked to them had non-synonymous, regulatory, and eQTL signifcance for 15 genes, which contributed to the pathways related to metalloendopeptidase activity, collagen degradation, and extracellular matrix disassembly. In summary, eight studied SNPs of MMPs genes were associated with EH in the Caucasian population of Central Russia. Cardiovascular diseases are a global problem of modern healthcare and the second most common cause of total mortality1,2.
    [Show full text]
  • Supporting Information
    Supporting Information Clarke et al. 10.1073/pnas.1607237113 Major Axes of Shape Variation and Their Anatomical a comparison: the crown teleost vs. stem teleost comparison on Correlates molecular timescales. Here, the larger SL dataset delivers a All relative warp axes that individually account for >5% of the majority of trees where crown teleosts possess significantly variation across the species sampled are displayed in Table S3. higher rates than stem teleosts, whereas the CS and pruned SL Morphospaces derived from the first three axes, containing all datasets find this result in a large minority (Fig. S3). 398 Mesozoic neopterygian species in our shape dataset, are Overall, these results suggest that choice of size metric is presented in Fig. S1. Images of sampled fossil specimens are also relatively unimportant for our dataset, and that the overall size included in Fig. S1 to illustrate the anatomical correlates of and taxonomic samplings of the dataset are more likely to in- shape axes. The positions of major neopterygian clades in mor- fluence subsequent results, despite those factors having a rela- phospace are indicated by different colors in Fig. S2. Major tively small influence here. Nevertheless, choice of metric may be teleost clades are presented in Fig. S2A and major holostean important for other datasets (e.g., different groups of organisms clades in Fig. S2B. or datasets of other biological/nonbiological structures), because RW1 captures 42.53% of the variance, reflecting changes from it is possible to envisage scenarios where the choice of size metric slender-bodied taxa to deep-bodied taxa (Fig. S1 and Table S3).
    [Show full text]