Supporting Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra. -
Annotated Checklist of Fossil Fishes from the Smoky Hill Chalk of the Niobrara Chalk (Upper Cretaceous) in Kansas
Lucas, S. G. and Sullivan, R.M., eds., 2006, Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 35. 193 ANNOTATED CHECKLIST OF FOSSIL FISHES FROM THE SMOKY HILL CHALK OF THE NIOBRARA CHALK (UPPER CRETACEOUS) IN KANSAS KENSHU SHIMADA1 AND CHRISTOPHER FIELITZ2 1Environmental Science Program and Department of Biological Sciences, DePaul University,2325 North Clifton Avenue, Chicago, Illinois 60614; and Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601;2Department of Biology, Emory & Henry College, P.O. Box 947, Emory, Virginia 24327 Abstract—The Smoky Hill Chalk Member of the Niobrara Chalk is an Upper Cretaceous marine deposit found in Kansas and adjacent states in North America. The rock, which was formed under the Western Interior Sea, has a long history of yielding spectacular fossil marine vertebrates, including fishes. Here, we present an annotated taxo- nomic list of fossil fishes (= non-tetrapod vertebrates) described from the Smoky Hill Chalk based on published records. Our study shows that there are a total of 643 referable paleoichthyological specimens from the Smoky Hill Chalk documented in literature of which 133 belong to chondrichthyans and 510 to osteichthyans. These 643 specimens support the occurrence of a minimum of 70 species, comprising at least 16 chondrichthyans and 54 osteichthyans. Of these 70 species, 44 are represented by type specimens from the Smoky Hill Chalk. However, it must be noted that the fossil record of Niobrara fishes shows evidence of preservation, collecting, and research biases, and that the paleofauna is a time-averaged assemblage over five million years of chalk deposition. -
Origin, Evolution and Homologies of the Weberian Apparatus: a New Insight
Int. J. Morphol., 27(2):333-354, 2009. Origin, Evolution and Homologies of the Weberian Apparatus: A New Insight Origen, Evolución y Homologías del Aparato Weberiano: Un Nuevo Acercamiento Rui Diogo DIOGO, R. Origin, evolution and homologies of the Weberian apparatus: a new insight. Int. J. Morphol., 27(2):333-354, 2009. SUMMARY: The Weberian apparatus is essentially a mechanical device improving audition, consisting of a double chain of ossicles joining the air bladder to the inner ear. Despite being one of the most notable complex systems of teleost fishes and the subject of several comparative, developmental and functional studies, there is still much controversy concerning the origin, evolution and homologies of the structures forming this apparatus. In this paper I provide a new insight on these topics, which takes into account the results of recent works on comparative anatomy, paleontology, and ontogeny as well as of a recent extensive phylogenetic analysis including not only numerous otophysan and non-otophysan extant otocephalans but also ostariophysan fossils such as †Chanoides macropoma, †Clupavus maroccanus, †Santanichthys diasii, †Lusitanichthys characiformis, †Sorbininardus apuliensis and †Tischlingerichthys viohli. According to the evidence now available, the Weberian apparatus of otophysans seems to be the outcome of a functional integration of features acquired in basal otocephalans and in basal ostariophysans, which were very likely not directly related with the functioning of this apparatus, and of features acquired in the nodes leading to the Otophysi and to the clade including the four extant otophysan orders, which could well have been the result of a selection directly related to the functioning of the apparatus. -
35-51 New Data on Pleuropholis Decastroi (Teleostei, Pleuropholidae)
Geo-Eco-Trop., 2019, 43, 1 : 35-51 New data on Pleuropholis decastroi (Teleostei, Pleuropholidae), a “pholidophoriform” fish from the Lower Cretaceous of the Eurafrican Mesogea Nouvelles données sur Pleuropholis decastroi (Teleostei, Pleuropholidae), un poisson “pholidophoriforme” du Crétacé inférieur de la Mésogée eurafricaine Louis TAVERNE 1 & Luigi CAPASSO 2 Résumé: Le crâne et le corps de Pleuropholis decastroi, un poisson fossile de l’Albien (Crétacé inférieur) du sud de l’Italie, sont redécrits en détails. P. decastroi diffère des autres espèces du genre par ses deux nasaux en contact médian et qui séparent complètement le dermethmoïde ( = rostral) des frontaux. Avec son maxillaire extrêmement élargi qui couvre la mâchoire inférieure et son supramaxillaire fortement réduit, P. decastroi semble plus nettement apparenté avec Pleuropholis cisnerosorum, du Jurassique supérieur du Mexique, qu’avec les autres espèces du genre. Par ses mâchoires raccourcies et ses nombreux os orbitaires, Pleuropholis apparaît également comme le genre le plus spécialisé de la famille. La position systématique des Pleuropholidae au sein du groupe des « pholidophoriformes » est discutée. Mots-clés: Pleuropholis decastroi, Albien, Italie du sud, Pleuropholis, Pleuropholidae, “Pholidophoriformes”, ostéologie, position systématique. Abstract: The skull and the body of Pleuropholis decastroi, a fossil fish from the marine Albian (Lower Cretaceous) of southern Italy, are re-described in details. P. decastroi differs from the other species of the genus by their two nasals that are in contact along the mid-line, completely separating the dermethmoid (= rostral) from the frontals. With its extremely broadened maxilla that covers the lower jaw and its strongly reduced supramaxilla, P. decastroi seems more closely related to Pleuropholis cisnerosorum, from the Upper Jurassic of Mexico, than to the other species of the genus. -
Bibliography of Alexander O
Зоологический институт РАН Лаборатория териологии Bibliography of Alexander O. Averianov A. Monograph 1992. Averianov A.O., Baryschnikov G.F., Garutt W.E., Garutt N.W. & Fomicheva N.L. The Volgian Fauna of Pleistocene Mammals in the Geological-Mineralogical Museum of the Kazan University. Kazan State University, Kazan. 164pp. [In Russian] B. Edited books 2003. [Systematics, Phylogeny and Paleontology of Small Mammals. Proceedings of the International Conference devoted to the 90-th anniversary of Prof. I.M. Gromov] (Edited by A.O. Averianov and N.I. Abramson). Zoologicheskii Institut RAN, St. Petersburg. 246 pp. [papers in Russian and English] 1999. [Materials on the History of Fauna of Eurasia] (Edited by I.S. Darevskii and A.O. Averianov). Trudy Zoologicheskogo Instituta RAN, T. 277. 144 pp. [papers in Russian and English] 1997. Nessov, L.A. [Cretaceous Nonmarine Vertebrates of Northern Eurasia] (Posthumous edition by L.B. Golovneva and A.O. Averianov). 218 pp. Izdatelstvo Sankt-Peterburgskogo Universiteta, Saint Petersburg. [in Russian] C. Refereed Journals 2017. Averianov A.O. and Sues H.-D. 2017. The oldest record of Alvarezsauridae (Dinosauria: Theropoda) in the Northern Hemisphere. PLoS One 12(10): e0186254. 2017. Аверьянов А.О. 2017. Титанозавры: новые данные о возрастной и индивидуальной изменчивости зубов. Природа. № 2. С.83-84. 2017. Averianov A.O. and Archibald J.D. 2017. Therian postcranial bones from the Upper Cretaceous Bissekty Formation of Uzbekistan. Proceedings of the Zoological Institute of the Russian Academy of Sciences 321(4): 433–484. 2017. Lopatin A.V. and Averianov A.O. 2017. The stem placental mammal Prokennalestes from the Early Cretaceous of Mongolia. -
History of Fishes - Structural Patterns and Trends in Diversification
History of fishes - Structural Patterns and Trends in Diversification AGNATHANS = Jawless • Class – Pteraspidomorphi • Class – Myxini?? (living) • Class – Cephalaspidomorphi – Osteostraci – Anaspidiformes – Petromyzontiformes (living) Major Groups of Agnathans • 1. Osteostracida 2. Anaspida 3. Pteraspidomorphida • Hagfish and Lamprey = traditionally together in cyclostomata Jaws = GNATHOSTOMES • Gnathostomes: the jawed fishes -good evidence for gnathostome monophyly. • 4 major groups of jawed vertebrates: Extinct Acanthodii and Placodermi (know) Living Chondrichthyes and Osteichthyes • Living Chondrichthyans - usually divided into Selachii or Elasmobranchi (sharks and rays) and Holocephali (chimeroids). • • Living Osteichthyans commonly regarded as forming two major groups ‑ – Actinopterygii – Ray finned fish – Sarcopterygii (coelacanths, lungfish, Tetrapods). • SARCOPTERYGII = Coelacanths + (Dipnoi = Lung-fish) + Rhipidistian (Osteolepimorphi) = Tetrapod Ancestors (Eusthenopteron) Close to tetrapods Lungfish - Dipnoi • Three genera, Africa+Australian+South American ACTINOPTERYGII Bichirs – Cladistia = POLYPTERIFORMES Notable exception = Cladistia – Polypterus (bichirs) - Represented by 10 FW species - tropical Africa and one species - Erpetoichthys calabaricus – reedfish. Highly aberrant Cladistia - numerous uniquely derived features – long, independent evolution: – Strange dorsal finlets, Series spiracular ossicles, Peculiar urohyal bone and parasphenoid • But retain # primitive Actinopterygian features = heavy ganoid scales (external -
Re-Evaluation of Pachycormid Fishes from the Late Jurassic of Southwestern Germany
Editors' choice Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany ERIN E. MAXWELL, PAUL H. LAMBERS, ADRIANA LÓPEZ-ARBARELLO, and GÜNTER SCHWEIGERT Maxwell, E.E., Lambers, P.H., López-Arbarello, A., and Schweigert G. 2020. Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany. Acta Palaeontologica Polonica 65 (3): 429–453. Pachycormidae is an extinct group of Mesozoic fishes that exhibits extensive body size and shape disparity. The Late Jurassic record of the group is dominated by fossils from the lithographic limestone of Bavaria, Germany that, although complete and articulated, are not well characterized anatomically. In addition, stratigraphic and geographical provenance are often only approximately known, making these taxa difficult to place in a global biogeographical context. In contrast, the late Kimmeridgian Nusplingen Plattenkalk of Baden-Württemberg is a well-constrained locality yielding hundreds of exceptionally preserved and prepared vertebrate fossils. Pachycormid fishes are rare, but these finds have the potential to broaden our understanding of anatomical variation within this group, as well as provide new information regarding the trophic complexity of the Nusplingen lagoonal ecosystem. Here, we review the fossil record of Pachycormidae from Nusplingen, including one fragmentary and two relatively complete skulls, a largely complete fish, and a fragment of a caudal fin. These finds can be referred to three taxa: Orthocormus sp., Hypsocormus posterodorsalis sp. nov., and Simocormus macrolepidotus gen. et sp. nov. The latter taxon was erected to replace “Hypsocormus” macrodon, here considered to be a nomen dubium. Hypsocormus posterodorsalis is known only from Nusplingen, and is characterized by teeth lacking apicobasal ridging at the bases, a dorsal fin positioned opposite the anterior edge of the anal fin, and a hypural plate consisting of a fused parhypural and hypurals. -
Copyrighted Material
06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago). -
Euteleostei: Aulopiformes) and the Timing of Deep-Sea Adaptations ⇑ Matthew P
Molecular Phylogenetics and Evolution 57 (2010) 1194–1208 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Estimating divergence times of lizardfishes and their allies (Euteleostei: Aulopiformes) and the timing of deep-sea adaptations ⇑ Matthew P. Davis a, , Christopher Fielitz b a Museum of Natural Science, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA b Department of Biology, Emory & Henry College, Emory, VA 24327, USA article info abstract Article history: The divergence times of lizardfishes (Euteleostei: Aulopiformes) are estimated utilizing a Bayesian Received 18 May 2010 approach in combination with knowledge of the fossil record of teleosts and a taxonomic review of fossil Revised 1 September 2010 aulopiform taxa. These results are integrated with a study of character evolution regarding deep-sea evo- Accepted 7 September 2010 lutionary adaptations in the clade, including simultaneous hermaphroditism and tubular eyes. Diver- Available online 18 September 2010 gence time estimations recover that the stem species of the lizardfishes arose during the Early Cretaceous/Late Jurassic in a marine environment with separate sexes, and laterally directed, round eyes. Keywords: Tubular eyes have arisen independently at different times in three deep-sea pelagic predatory aulopiform Phylogenetics lineages. Simultaneous hermaphroditism evolved a single time in the stem species of the suborder Character evolution Deep-sea Alepisauroidei, the clade of deep-sea aulopiforms during the Early Cretaceous. This result indicates the Euteleostei oldest known evolutionary event of simultaneous hermaphroditism in vertebrates, with the Alepisauroidei Hermaphroditism being the largest vertebrate clade with this reproductive strategy. Divergence times Ó 2010 Elsevier Inc. -
Fine Structure of the Gas Bladder of Alligator Gar, Atractosteus Spatula Ahmad Omar-Ali1, Wes Baumgartner2, Peter J
www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com International Journal of Scientific Research in Environmental Science and Toxicology Research Article Open Access Fine Structure of the Gas Bladder of Alligator Gar, Atractosteus spatula Ahmad Omar-Ali1, Wes Baumgartner2, Peter J. Allen3, Lora Petrie-Hanson1* 1Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA 2Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA 3Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, MS 39762, USA Received: 1 November, 2016; Accepted: 2 December, 2016 ; Published: 12 December, 2016 *Corresponding author: Lora Petrie-Hanson, Associate Professor, College of Veterinary Medicine, 240 Wise Center Drive PO Box 6100, Mississippi State, MS 39762, USA, Tel: +1-(601)-325-1291; Fax: +1-(662)325-1031; E-mail: [email protected] Lepisosteidae includes the genera Atractosteus and Lepisosteus. Abstract Atractosteus includes A. spatula (alligator gar), A. tristoechus Anthropogenic factors seriously affect water quality and (Cuban gar), and A. tropicus (tropical gar), while Lepisosteus includes L. oculatus (spotted gar), L. osseus (long nose gar), L. in the Mississippi River and the coastal estuaries. Alligator gar platostomus (short nose gar), and L. platyrhincus (Florida gar) (adversely affect fish )populations. inhabits these Agricultural waters andrun-off is impactedaccumulates by Atractosteus spatula [2,6,7]. Atractosteus are distinguishable from Lepisosteus by agricultural pollution, petrochemical contaminants and oil spills. shorter, more numerous gill rakers and a more prominent accessory organ. The gas bladder, or Air Breathing Organ (ABO) of second row of teeth in the upper jaw [2]. -
A Synoptic Review of the Vertebrate Fauna from the “Green Series
A synoptic review of the vertebrate fauna from the “Green Series” (Toarcian) of northeastern Germany with descriptions of new taxa: A contribution to the knowledge of Early Jurassic vertebrate palaeobiodiversity patterns I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Sebastian Stumpf geboren am 9. Oktober 1986 in Berlin-Hellersdorf Greifswald, Februar 2017 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Ingelore Hinz-Schallreuter 2. Gutachter: Prof. Dr. Paul Martin Sander Tag des Promotionskolloquiums: 22. Juni 2017 2 Content 1. Introduction .................................................................................................................................. 4 2. Geological and Stratigraphic Framework .................................................................................... 5 3. Material and Methods ................................................................................................................... 8 4. Results and Conclusions ............................................................................................................... 9 4.1 Dinosaurs .................................................................................................................................. 10 4.2 Marine Reptiles ....................................................................................................................... -
LOCOMOTION ENERGETICS of LEEDSICHTHYS PROBLEMATICUS (ACTINOPTERYGII, PACHYCORMIFORMES) by HUMBERTO G
[Palaeontology, Vol. 61, Part 5, 2018, pp. 775–783] ASSESSING METABOLIC CONSTRAINTS ON THE MAXIMUM BODY SIZE OF ACTINOPTERYGIANS: LOCOMOTION ENERGETICS OF LEEDSICHTHYS PROBLEMATICUS (ACTINOPTERYGII, PACHYCORMIFORMES) by HUMBERTO G. FERRON 1,* ,BORJAHOLGADO2,* , JEFFREY J. LISTON3,4,5,6,CARLOSMARTINEZ-PEREZ 1,6 and HECTOR BOTELLA1 1Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/Catedratic Jose Beltran Martınez 2, 46980, Paterna, Valencia Spain; [email protected], [email protected], [email protected] 2Laboratory of Systematics & Taphonomy of Fossil Vertebrates, Departamento de Geologia e Paleontologia, Museu Nacional/Universidade Federal do Riode Janeiro (UFRJ), Quinta da Boa Vista, s/n, S~ao Cristov ~ao, 20940-040, Rio de Janeiro, RJ Brazil; [email protected] 3Bayerische Staatssammlung fur€ Pal€aontologie und Geologie, Richard-Wagner-Straße 10, 80333, Munchen,€ Germany; [email protected], [email protected] 4National Museums Scotland, Chambers Street, Edinburgh, EH1 1JF, UK; [email protected] 5Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; [email protected] 6School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK; [email protected], [email protected] *Corresponding authors Typescript received 21 October 2017; accepted in revised form 5 April 2018 Abstract: Maximum sizes attained by living actinoptery- weighing up to 44.9 tonnes would have been energetically gians are much smaller than those reached by chon- viable and suggests that similar body sizes could also be possi- drichthyans. Several factors, including the high metabolic ble among living taxa, discarding metabolic factors as likely requirements of bony fishes, have been proposed as possible body size constraints in actinopterygians.