<<

Europe's largest crater is home to deep ancient fungi 18 February 2021, by Dr Henrik Drake

noted fine filamentous structures in the vuggy rock. After closer examination in the laboratory, it became clear to them that the filaments were fossilized remains of fungi. Fungi that withstand the oxygen free environment at these depths.

The relative abundance of different isotopes of carbon and sulfur within minerals found in relation to fungi suggested to the researchers that the fungi were involved in - and sulfide-forming processes in relationships with other inhabitants of the deep biosphere—bacteria and archaea.

Henrik Drake, of the Linnaeus University, , and lead author of the study, explains the discovery: "The findings suggest that fungi may be widespread decomposers of organic matter and overlooked symbiotic partners to other, more primitive, microorganisms, thereby capable of enhancing the production of greenhouse gases in Graphic figure showing Siljan. Credit: Linnaeus the vast rock-hosted deep biosphere." University Radioisotopic dating of tiny calcite crystals formed following microbial methane formation revealed an age of the fungi to around 39 million years Fractured rocks of impact craters have been ago, more than 300 million years after the meteorite suggested as suitable environments for deep impact. colonization of microbial communities. In a new study published in Communications Earth & "We propose that the anaerobic fungi decomposed Environment, a team of researchers shows that organic bituminous material in the fractures and fungi has colonized deep parts of the largest produced hydrogen gas that fueled methanogens. in Europe, the Siljan , This would be the first in situ finding of ancient Sweden. Intriguingly, the fungi seem to have been anaerobic fungi linked to methanogenesis at great fueling methane production in the crater. depth in the continental crust," says Magnus Ivarsson, at the Swedish Museum of Natural At the scenic Swedish lake of Siljan, an impressive History and co-author of the study. impact structure of more than 50 km in diameter formed almost 400 million years ago. In newly The impact structure, with a ring zone of down- retrieved bore cores from drillings deep into the faulted Paleozoic sediments, has been optimal for crater, a team of researchers have found deep colonization of fungi, because energy sources evidence of fungi. in the form of organics and hydrocarbons from overlying shales have migrated throughout the The researchers examined an intensively fractured fractured crater. rock section at 540 depth level in the crater and

1 / 3

Close up showing fungie. Credit: Linnaeus University

"The preserved organic molecules that we could detect in the fungal remains give us additional evidence for a fungal origin and also for the proposed biodegradation pathway of shale-derived hydrocarbons, ultimately leading to production of methane at depth," adds co-author Christine Heim, of University of Cologne, Germany.

Henrik Drake says, "Microorganisms and their strategies for survival and colonization of Earth's most hostile environments continue to amaze and surprise us, and here we add another fungal piece to the deep biosphere jigsaw puzzle."

The results are presented in the article"Fossilized anaerobic and possibly methanogenesis-fueling fungi identified deep within the Siljan impact structure, Sweden" in the Nature journal Communications Earth & Environment.

More information: "Fossilized anaerobic and possibly methanogenesis-fueling fungi identified deep within the Siljan impact structure, Sweden" Communications Earth & Environment (published 18th of February 2021). DOI: 10.1038/s43247-021-00107-9, www.nature.com/articles/s43247-021-00107-9

Provided by Linnaeus University APA citation: Europe's largest meteorite crater is home to deep ancient fungi (2021, February 18) retrieved 25 September 2021 from https://phys.org/news/2021-02-europe-largest-meteorite-crater- home.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no

2 / 3

part may be reproduced without the written permission. The content is provided for information purposes only.

3 / 3

Powered by TCPDF (www.tcpdf.org)