Readingsample

Total Page:16

File Type:pdf, Size:1020Kb

Readingsample Impact Studies Impact Tectonics Bearbeitet von Christian Koeberl, Herbert Henkel 1. Auflage 2005. Buch. xix, 552 S. Hardcover ISBN 978 3 540 24181 2 Format (B x L): 15,5 x 23,5 cm Gewicht: 2160 g Weitere Fachgebiete > Geologie, Geographie, Klima, Umwelt > Geologie > Tektonik, Strukturgeologie schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Redistribution of Lithologies in Impact-induced Dikes of Impact Structures Victor L. Masaitis Karpinsky Geological Institute, Sredny prospekt 74, St.-Petersburg, 199106, Russia ([email protected]) Abstract. Lithic breccias and impactites, which occur as dikes and other intersecting bodies in the disturbed crater basement and in the crater fill, bear rock clasts derived from all layers of the target including uppermost and lowermost ones. Three groups of dikes bearing such redistributed clasts can be distinguished: injected dikes (composed of impact melt rock and polymict lithic breccia), squeezed dikes (monomict lithic breccias), and dikes in filled by gravitation (sandstone, claystone). These groups differ by the formation during different consecutive stages of cratering, by their respective spatial occurrence inside impact structures and in their vicinity, by the type of strain that induced fissures, by the directions of clast displacement, by the composition and aggregate state of the transporting systems that carried these clasts, etc. The study of redistributed clasts, and dikes that bear them, allows reconstructing various features of an impact structure, and some conditions of its formation (a character of brittle deformation of host rocks, a depth of crater excavation and penetration of fissures into its true and apparent floor, a mode of clast transportation by fluidized systems). All these data are important for the investigation of “instant tectonics” taking place during impact cratering. 1 Introduction Rock fragments (or so called “xenoliths”) are usually found within dikes inside and outside of impact craters. They are different in lithology from 112 Masaitis the country rocks of the dike walls. These fragments may be named “wandering clasts”, and are derived from different horizons of the target, and transported for a long distance during cratering, sometimes in opposite directions. The dimensions of clasts may vary from mm to tens of cm, they can be angular or rounded. Wandering clasts, although rare, are discernable by their peculiar lithologies, which allow to reconstruct their initial position in the vertical section of layered target rocks, and thus to estimate the trajectory and amplitude of their displacements. Various clast- bearing dikes have been distinguished in many impact craters (Wilshire et al. 1972, Halls and Grieve 1976, Grieve and Robertson 1976, Stöffler 1977, Lambert 1981, Mashchak and Ezersky 1982, Bischoff and Oskierski 1987, Stöffler et al. 1987, Müller-Mohr 1992, Rondot 1994, 1995, Hunton and Shoemaker 1995, Therriault et al. 1997, Sturkell and Ormö 1997, Warme and Kuehner 1998, Masaitis 1999, and others). Three main groups of dikes, that differ by their respective mode of origin and that bear wandering clasts, can be distinguished: dikes formed by injection, dikes formed by squeezing, and dikes formed by infilling (Fig. 1, Table 1). In impact craters and in their vicinity other groups of dikes exists (e.g., pseudotachylites and cataclasites, apophyses of thick impact melt sheets etc.), which formed variably during excavation and modification stages. As they show only small-scale displacements of clasts, they are not considered here. The first group comprises clast-bearing dikes that formed during the excavation stage by downward injection of brecciated and melted material. Three varieties that differ in the composition of matrix, occurrence in the crater, and mode of transportation are distinguished. The second group is formed mainly during the compression and excavation stages, due to Fig. 1. Schematic occurrence of different groups of dikes within impact craters and in their vicinity. A complex crater with a central uplift in the two-layered target is shown. Dikes formed by injection: DI: impactites, DM: mylolisthenites and polymict lithic breccias, DE: polymict lithic breccias. Dikes formed by squeezing: DS: monomict lithic breccias. Dikes formed by infilling: DF: sandstones, clays. Pseudotachylite dikes: DP. Redistribution of Lithologies in Impact-induced Dikes of Impact Structures 113 increased pressure in the water-saturated target layers in the vicinity of a growing crater, and by squeezing out of these unconsolidated deposits. The third group of dikes forms at the late modification stage by infilling of open fissures in the apparent crater floor. The dikes are indicated with letters, according to the type of dike-forming rocks (impactite or impact melt rock - DI, mylolisthenite (see below) and polymict lithic breccia - DM), or mode of origin (ejection - DE, squeezing - DS, infilling - DF). 2 Clast-bearing Dikes Formed by Injection The most widespread group of injected dikes forms at the excavation stage during the transient cavity growth and radial tension of its floor. In the true crater floor two varieties of such dikes may be distinguished: a) DI - impactite dikes (impact melt matrix), and, 2) DM - mylolisthenite (from Greek myle – mill, and olistainein – to slide, Rondot 1994) and polymict lithic breccia dikes (matrix composed of clastic material, which is fluidal in the case of mylolisthenite), but some transitional types may exist. Some dikes formed involving multiple injections. Spatial distribution of these varieties in the crater floors is often radial and circumferential, but also depends on the initial irregularities within the target rocks - contacts, faults Fig. 2. Zhamanshin impact struc- ture, Kazakhstan. Core sample of the polymict lithic breccia dike from the drill hole in the central uplift from 177 m depth. The breccia contains some particles of amber (amb) and organic debris derived from Paleocene deposits. Scale in mm. 114 Masaitis etc. The thickness of these dikes is usually from cm to several meters, but in large impact craters they can reach up tens of meters. The larger fragments are usually concentrated in the central part of such dikes. The rock fragments are often shock metamorphosed, and sometimes show thermal and hydrothermal alterations. These dikes usually are partially disturbed at the early modification stage during the collapse of the transient cavity, and are displaced back upward together with the host rocks. Injected dikes of tagamite (or another impact melt rock), mylolisthenite and polymict lithic breccia comprising wandering clasts are widespread in many impact structures. They are found in large structures whose diameters are from hundreds of km to many tens of km: Vredefort (French et al. 1989, Therriault et al. 1997, Henkel and Reimold 1998, Gibson and Reimold 2001), Sudbury (Dressler 1984, Müller-Mohr 1992), Popigai (Masaitis et al. 1998), Manicouagan (Currie 1972, Grieve and Floran 1978, Dressler 1990), Puchezh-Katunki (Masaitis and Pevzner 1999), Charlevoix (Robertson 1968, 1973,), Siljan (Hjelmquist 1966, Rondot 1976) etc., as well as in the middle-sized craters with the diameters from some tens to ten km: Sierra Madera (Wilshire et al. 1971, 1972), Slate Island (Halls and Grieve 1976, Sharpton et al. 1996, Dressler and Sharpton, 1997), Rochechouart (Lambert 1981, Bischoff and Oskierski 1987, Rondot 1995), Carswell (Pagel et al. 1985), Ries (Hüttner 1977, Stöffler 1977, Chao et al. 1978, Stöffler et al. 1987), Zhamanshin (Masaitis et al. 1993), Wells Creek (Roddy 1977), etc., and small ones, with diameters of only several km, e.g. Flynn Creek, Steinheim (Roddy 1977), and others. The lithology of wandering clasts allows to estimate their stratigraphic displacements or depth of penetration in the brecciated crater basement, including its central uplift. In the Sierra Madera impact structure the wandering clasts, found in polymict lithic breccia dikes and lenses, were displaced by about 1200 m (Wilshire et al. 1972). Numerous clast-bearing dikes were mapped in the Rochechouart impact structure (Lambert 1981, Bischoff and Oskierski 1987). Dikes in the floor of this crater are represented mostly by mylolisthenites, composed of crushed crystalline rocks (Rondot 1995). Polymict lithic breccia and other dikes occur abundantly in the central part of the Slate Island impact structure. They include specific rock fragments, showing that the amplitude of stratigraphic displacement may be as much as 5 km (Halls and Grieve 1976, Dressler and Sharpton 1997). In the Charlevoix impact structure mylolisthenite dikes rarely include sedimentary fragments (Robertson 1968, 1973, Rondot 1976). The estimated penetration of clasts into the basement is about of 1 km or more. The most frequent dikes (their arrangement is radial and concentric) occur Redistribution of Lithologies in Impact-induced Dikes of Impact Structures 115 close to the center of the impact structure and in the ring trough, but they are absent directly in the center (Rondot 1976). In the largest and oldest impact structure known in the world, the Vredefort structure (e.g. Henkel and
Recommended publications
  • Fault Formation at Impact Craters in Porous Sedimentary Rock Targets W.R
    40th Lunar and Planetary Science Conference (2009) 1073.pdf FAULT FORMATION AT IMPACT CRATERS IN POROUS SEDIMENTARY ROCK TARGETS W.R. Orr Key1 and R.A. Schultz, Geomechanics-Rock Fracture Group, Department of Geological Sciences and Engineer- ing/172, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, NV 89557-0138, [email protected]. Summary: We present results of a study in which provides a unique opportunity to compare the mechan- the mechanics of faulting at high strain rates in porous ics of faulting at high and low strain rates. sedimentary rocks were evaluated at the Upheaval Results and Implications: It was decided that Dome impact crater in southeast Utah. We find that at faults would be evaluated within the Navajo Sandstone high strain rates, deformation band damage zones are and the rim syncline of the crater because mechanical absent and instead a cracking-dominated behavior gen- observations relating to fault formation are best ob- erating pulverized rock occurs. Using the measured served where offsets on the faults are minimal. Two of grain sizes of the pulverized rock, strain rates under these faults were identified for field investigation which this material formed are ~ 103 s-1. within the rim syncline of Upheaval Dome and are Introduction: Faulting in porous sedimentary shown in Figure 1. By contrast, offsets within the cen- rocks subjected to typical tectonic strain rates has been tral uplift at Upheaval Dome [10] are too great to allow extensively studied [1-3]. These studies have shown for the mechanical observations required for this study. that the strain is first accommodated by a localized reduction of porosity resulting in the formation of in- dividual deformation bands and as the strain continues to accumulate, deformation band damage zones (DBDZs) develop [2].
    [Show full text]
  • Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com­ Pared
    Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen­ erally limited to relatively early-time phenomena as a result of high com­ putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com­ pared. These structures provide information on aspects of the third dimen­ sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave.
    [Show full text]
  • Deformation Styles at Upheaval Dome, Utah Imply Both Meteorite Impact and Subsequent Salt Diapirism
    41st Lunar and Planetary Science Conference (2010) 1969.pdf DEFORMATION STYLES AT UPHEAVAL DOME, UTAH IMPLY BOTH METEORITE IMPACT AND SUBSEQUENT SALT DIAPIRISM. R. G. Daly and S. A. Kattenhorn, University of Idaho Department of Geo- logical Sciences ([email protected]; [email protected]). Introduction: Upheaval Dome is a ~5.5 km wide that diapirism may have had an influence on the de- circular topographic depression in Canyonlands Na- formation present at the dome. tional Park, Utah (Fig. 1). Upturned beds around the Observations: Field work has focused on observ- feature indicate a structural dome located above salt ing brittle deformation in and around the ring syncline. layers in the Pennsylvanian aged Paradox Formation. This area is pervasively deformed and as such affords Its ambiguous origin, either as a salt diapir or a mete- many varied examples of brittle failure. This work orite impact, has been debated for the last 75 years. complements the extensive research done in the central Recently, planar deformation features (PDFs) were uplift of the dome [6]. Many different morphologies discovered at the dome. Based on current field work are present, such as joints, deformation bands, and we propose two methods of deformation present at the shear fractures. There is also variation within each dome: meteorite impact and subsequent salt diapirism. morphology. Many shear fractures are planar and regu- Based on field and aerial photograph analysis, we larly spaced; however, there are also many sets with a have identified and characterized both dynamic and distinct curvilinear shape, the orientation of which slowly-formed deformation features around the dome.
    [Show full text]
  • A Novel Geomatics Method for Assessing the Haughton Impact Structure
    Meteoritics & Planetary Science 1–13 (2020) doi: 10.1111/maps.13573-3267 Electronic-Only Article A novel geomatics method for assessing the Haughton impact structure Calder W. PATTERSON * and Richard E. ERNST Department of Earth Sciences, Ottawa Carleton Geoscience Center, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada *Corresponding author. E-mail: [email protected] (Received 22 July 2019; revision accepted 22 August 2020) Abstract–Terrestrial impact structures are typically modified by erosion, burial, and tectonic deformation. Their systematic morphologies are typically reconstructed through a combination of geological and topographic mapping, satellite imagery, and geophysical surveys. This study applies a novel geomatics approach to assessment of the morphology of the extensively studied Haughton impact structure (HIS), Devon Island, Nunavut, in order to test its potential to improve the accuracy and quality of future impact structure reconstruction. This new methodology integrates HIS lithological data, in the form of digitized geologic mapping, with a digital elevation model, within diametrically opposed, wedge-shaped couplets, and plots these data as pseudo cross sections that capitalize on the radial symmetry of the impact structure. The pseudo cross sections provide an accurate reconstruction of the near- surface stratigraphic sequences and terraces in the faulted annulus of the modified crater rim. The resultant pseudo cross sections support current interpretations regarding the 10–12 km diameter of the transient cavity, and successfully reproduce the visible outer ring and intermediate uplifted zone within the central basin. Observed positions of vertical offsets suggest that the extent of impact deformation extends beyond the current estimates of the apparent crater rim to radial distances of between 14 and 15 km.
    [Show full text]
  • Pirstekartioista Keurusselällä Ja Maailmalla TEEMU ÖHMAN
    Pirstekartioista Keurusselällä ja maailmalla TEEMU ÖHMAN li erittäin ilahduttavaa huomata, että kittävä vaikutus jatkotutkimusten ohjaamisessa lu- jo Marmon (1963, s. 16) mitä ilmei- paavimpiin kohteisiin. Geofysiikalla ei kuitenkaan simmin kuvaamia, joskaan ei tör- koskaan todisteta mahdollisen kraatterin synnystä mäyssyntyisiksi tulkitsemia Keurus- tai pirstekartioista sitä eikä tätä. Se, että törmäys- Oselän pirstekartioita on intouduttu tutkimaan mi- malli selittää muutoin käsittämättömiksi jäävät neralogisesta näkökulmasta (Kinnunen ja Hietala havainnot, joita “perinteisin” teorioin on turhaan 2009, jatkossa KH09). Myös mielipiteiden nopea yritetty ymmärtää, usein vuosikymmenien ajan, on vaihtuminen (KH09 vs. esimerkiksi Hietala ja Moi- varsin vahva viite mallin oikeellisuuden puolesta, lanen 2004, 2007, Pesonen et al . 2005, Ruotsalai- eikä suinkaan kerro siitä, etteikö muita selitysmal- nen et al . 2006 ja vielä Schmieder et al . 2009) on leja olisi yritetty näihin kohteisiin soveltaa. virkistävä poikkeus usein hyvin jääräpäisessä geo- KH09:n väite, että kiistattomia todisteita tör- tieteellisessä tutkimuksessa. Kuten KH09 toteavat- mäyksistä löydettäisiin vain “geologisesti melko kin, ei pirstekartioiden mineralogiaan ole maail- nuorista” kraattereista, on yksinkertaisesti väärä, mallakaan järin paljon huomiota kiinnitetty, ja pirs- ellei sitten lähdetä tieteenfilosofiseen hetteikköön tekartioiden synty on useammastakin teoriasta pohtimaan sitä, mikä on kiistaton todiste. Pääsään- huolimatta edelleen hämärän peitossa. KH09 esit-
    [Show full text]
  • Impact Structures and Events – a Nordic Perspective
    107 by Henning Dypvik1, Jüri Plado2, Claus Heinberg3, Eckart Håkansson4, Lauri J. Pesonen5, Birger Schmitz6, and Selen Raiskila5 Impact structures and events – a Nordic perspective 1 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, NO 0316 Oslo, Norway. E-mail: [email protected] 2 Department of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. 3 Department of Environmental, Social and Spatial Change, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark. 4 Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark. 5 Division of Geophysics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland. 6 Department of Geology, University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden. Impact cratering is one of the fundamental processes in are the main reason that the Nordic countries are generally well- the formation of the Earth and our planetary system, as mapped. reflected, for example in the surfaces of Mars and the Impact craters came into the focus about 20 years ago and the interest among the Nordic communities has increased during recent Moon. The Earth has been covered by a comparable years. The small Kaalijärv structure of Estonia was the first impact number of impact scars, but due to active geological structure to be confirmed in northern Europe (Table 1; Figures 1 and processes, weathering, sea floor spreading etc, the num- 7). First described in 1794 (Rauch), the meteorite origin of the crater ber of preserved and recognized impact craters on the field (presently 9 craters) was proposed much later in 1919 (Kalju- Earth are limited.
    [Show full text]
  • Terrestrial Impact Structures and Their Confirmation: Example from Dhala Structure, Central India
    e-Journal Earth Science India, Vol.2 (IV), October, 2009, pp. 289 - 298 http://www.earthscienceindia.info/; ISSN: 0974 - 8350 Terrestrial Impact Structures and their Confirmation: Example from Dhala Structure, central India J. K. Pati1, K. Prakash2 and R. Kundu1 1Department of Earth & Planetary Sciences, Nehru Science Centre, University of Allahabad, Allahabad, India 2Department of Geology, Banaras Hindu University, Varanasi, India Email: [email protected]; [email protected] Abstract Although seventy percent of the Moon surface area is covered by meteoritic impact structures only 176 confirmed impact structures known on Earth hitherto. In India, the recently discovered Dhala impact structure, M.P. and the Lonar crater, Maharastra are the only two confirmed impact structures. The simple, complex and multi-ring impact structures are confirmed on the basis of mesoscopic and microscopic shock metamorphic features besides the physical and/or chemical signature(s) of the impactor (meteorite). The role of bolide impacts in the formation of mineral deposits and playing a crucial role in some of the major mass extinction events is also well known. The impact cratering process is considered responsible for the planetary evolution, landscape modification, and the presence of water and life on Earth. Introduction Bolide impact structures broadly cover the surfaces of planetary bodies in the solar system (Taylor, 1992) but predominantly occur in the planets of the inner solar system, their moons and asteroids. Nearly 70% of the Lunar surface is covered by impact structures. However, these are rare features on the surface of the planet Earth and only 176 structures are currently known (http://www.unb.ca/passc/ImpactDatabase/Age; October 10, 2009) as confirmed impact structures.
    [Show full text]
  • Appendix a Recovery of Ejecta Material from Confirmed, Probable
    Appendix A Recovery of Ejecta Material from Confirmed, Probable, or Possible Distal Ejecta Layers A.1 Introduction In this appendix we discuss the methods that we have used to recover and study ejecta found in various types of sediment and rock. The processes used to recover ejecta material vary with the degree of lithification. We thus discuss sample processing for unconsolidated, semiconsolidated, and consolidated material separately. The type of sediment or rock is also important as, for example, carbonate sediment or rock is processed differently from siliciclastic sediment or rock. The methods used to take and process samples will also vary according to the objectives of the study and the background of the investigator. We summarize below the methods that we have found useful in our studies of distal impact ejecta layers for those who are just beginning such studies. One of the authors (BPG) was trained as a marine geologist and the other (BMS) as a hard rock geologist. Our approaches to processing and studying impact ejecta differ accordingly. The methods used to recover ejecta from unconsolidated sediments have been successfully employed by BPG for more than 40 years. A.2 Taking and Handling Samples A.2.1 Introduction The size, number, and type of samples will depend on the objective of the study and nature of the sediment/rock, but there a few guidelines that should be followed regardless of the objective or rock type. All outcrops, especially those near industrialized areas or transportation routes (e.g., highways, train tracks) need to be cleaned off (i.e., the surface layer removed) prior to sampling.
    [Show full text]
  • Fynd Av Bergarter Bildade Vid Meteoritnedslaget I Siljansområdet
    Fynd av bergarter bildade vid meteoritnedslaget i Siljansområdet Jan-Olov Svedlund & Thomas Lundqvist december 2010 SGU-rapport 2010:21 Sveriges geologiska undersökning Box 670, 751 28 Uppsala tel: 018-17 90 00 fax: 018-17 92 10 e-post: [email protected] www.sgu.se 1(26) INNEHÅLL Inledning 2 Berggrunden i Siljanstrakten 2 Jordarterna i Siljanstrakten 5 Block av smältbergart nära Ingärdningsbodarna 5 Tuffartad bergart från bergtäkt i Bergkarlås 12 Sammanfattning 14 Litteratur 14 Appendix 17 Omslagsbilden visar en sten från Ingärdningsbodarna med partier av impaktsmälta eller pseudotakylit (mörkbrun till grå) i röd Siljansgranit. 2(26) INLEDNING Vid Sveriges geologiska undersöknings (SGUs) fältarbeten med dokumentation av jordarterna i norra Dalarna påträffade en av oss (JOS) ett flertal block av en smältbergart (s.k. pseudotakylit) som bildats vid det stora meteoritnedslag som skedde i Siljanstrakten under devonperioden. Blocken finns på ett hygge nära Ingärdningsbodarna ca 17 km öster om Mora. Ett par av dem finns numera uppställda i ett vägskäl invid hygget, på en plats med koordinaterna 6764740/1448080 i Rikets Nät (RT 90), samt latitud och longitud 60°59’46’’ resp. 14°50’55’’. Intill blocken finns sedan hösten 2009 en informationstavla uppställd. Ett annat fynd av en bergart som sannolikt också är bildad vid meteoritnedslaget gjordes vid SGUs dokumentationsarbeten i en större bergtäkt vid Bergkarlås. Här rör det sig om en tuffliknande bergart i traktens Järnagranit. Stort tack till Prof. Kord Ernstson, Fakultät für Geowissenschaften, Universität Würzburg, som i appendix gjort en bedömning av slipprover från Siljansområdet och jämförelser med några kända meteoritkratrar. Han har generöst ställt sitt utlåtande till vårt förfogande.
    [Show full text]
  • The Ries-Steinheim Crater Pair and Two Major Earthquakes – New Discoveries Challenging the Double-Impact Theory
    The Ries-Steinheim crater pair and two major earthquakes – New discoveries challenging the double-impact theory Elmar Buchner ( [email protected] ) University of Applied Sciences Neu-Ulm Volker Sach Meteorkratermuseum Steinheim Martin Schmieder USRA, Houston, Texas Article Keywords: impact-earthquakes, Nördlinger Ries, Steinheim Basin Posted Date: July 27th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-43745/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract The Nördlinger Ries and the Steinheim Basin are widely perceived as a Middle Miocene impact crater doublet. We discovered two independent earthquake-produced seismite horizons in North Alpine Foreland Basin deposits. The older seismite horizon,associated with the Ries impact is overlain by in situ-preserved distal impact ejecta, forming a unique continental seismite-ejecta couplet within a distance up to 180 km from the crater. The younger seismite unit, also triggered by a major palaeo-earthquake, comprises clastic dikes that cut through the Ries seismite-ejecta couplet. The clastic dikes were likely formed in response to the Steinheim impact, some kyr after the Ries impact, in line with paleontologic results. With the Ries and Steinheim impacts as two separate events, Southern Germany witnessed a double disaster in the Middle Miocene. The magnitude–distance relationship of seismite formation during large earthquakes suggests the seismic and destructive potential of impact-earthquakes may be signicantly underestimated. Introduction The ~24 km-diameter Nördlinger Ries1,2,3,4 and the ~4 km-diameter Steinheim Basin1,5,6,7,8 impact structures in southern Germany (Fig.
    [Show full text]
  • GEOLOGY of the MOAB REGION Introduction
    GEOLOGY OF THE MOAB REGION (Arches, Dead Horse Point and Canyonlands) Annabelle Foos Geology Department, University of Akron Introduction The geology of Arches National Park, porphyry laccolith that was intruded during the Dead Horse Point State Park and the “Island in Oligocene, 30 million years ago and the Sky” section of Canyonlands National Park experienced glaciation during the Pleistocene. is very similar. They occur in the Canyonlands Melting snow which accumulates in the section of the Colorado Plateau, in the vicinity mountains during winter months, replenishes of the confluence between the Green and streams and recharges bedrock aquifers Colorado Rivers. The same stratigraphic units providing a valuable source of fresh water to outcrop in all three parks (figure 1) plus salt this region. (Doelling and others, 1987) tectonic features can be found in both Arches and Canyonlands. While in the Moab region you will become familiar with some of the stratigraphic units we will see throughout the Colorado Plateau, observe salt tectonic features, arch formation and in the distance you can view the La Sal Mountains. Cryptogamic Soils While in these three parks (and throughout this trip) you will be required to STAY ON THE DESIGNATED TRAILS. This rule is especially important at these parks in order to preserve the fragile cryptogamic soils (figure 2). Cryptogamic soils are a complex of lichens, algae, moss and fungus that occurs as a black coating on the ground surface and as small mounds where it is well developed. It plays an extremely important role in the desert ecology. It binds the soil together and inhibits wind erosion and erosion by sheet wash.
    [Show full text]
  • Four Hundred Years of Hits and Misses in Scientific Impact Crater Research
    NIR Workshop, Gardnos − Gol, June 9th 2009 Four Hundred Years of Hits and Misses in Scientific Impact Crater Research Teemu Öhman Division of Geology, Department of Geosciences and Division of Astronomy, Department of Physical Sciences University of Oulu Finland Galileo Galilei Galileo Galilei (1564−1642) • First observer of lunar craters, late November 1609, Padua, Italy • Surface previously supposed smooth can be divided to dark lowlands (“large spots”) and bright highlands, which are covered with pits that have uplifted rims • A clear description of a central uplift Galilaei, D=15.5 km (LO) Johannes Kepler (1571−1630) • Supposed, like e.g. Plutarch in 1st century A.D., that the lunar lowlands are filled with water • Coined the terms “mare” and “terra” • Believed meteor(ite)s to have a cosmic origin(?) Kepler, D=32 km (LO) Robert Hooke (1635−1703) • Crater observer: Hipparchus, D=150 km Halley Micrographia, 1665 Lunar Orbiter Robert Hooke • First crater experimentalist: 1. Dropping bullets to a mixture of tobacco pipe clay and water: Æcraters “not unlike these of the Moon; but considering the state and condition of the Moon, there seems not any probability to imagine, that it should proceed from any cause analogus to this; for it would be difficult to imagine whence those bodies should come; and next, how the substance of the Moon should be so soft;” Robert Hooke 2. A pot of boiling alabaster: • When the boiling ceased, the surface was covered with craters • Compared these to terrestrial volcanoes Æ “…these pits in the Moon seem to
    [Show full text]