An Inventory of Non-Avian Dinosaurs from National Park Service Areas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.Preliminary Report on a Late Cretaceous Vertebrate Fossil
Boletín de la Sociedad Geológica Mexicana ISSN: 1405-3322 [email protected] Sociedad Geológica Mexicana, A.C. México Rivera-Sylva, Héctor E.; Frey, Eberhard; Palomino-Sánchez, Francisco J.; Guzmán-Gutiérrez, José Rubén; Ortiz-Mendieta, Jorge A. Preliminary Report on a Late Cretaceous Vertebrate Fossil Assemblage in Northwestern Coahuila, Mexico Boletín de la Sociedad Geológica Mexicana, vol. 61, núm. 2, 2009, pp. 239-244 Sociedad Geológica Mexicana, A.C. Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=94316034014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Preliminary Report on a Late Cretaceous Vertebrate Fossil Assemblage in Northwestern Coahuila, Mexico 239 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA VOLUMEN 61, NÚM. 2, 2009, P. 239-244 D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Preliminary Report on a Late Cretaceous Vertebrate Fossil Assemblage in Northwestern Coahuila, Mexico Héctor E. Rivera-Sylva1, Eberhard Frey2, Francisco J. Palomino-Sánchez3, José Rubén Guzmán-Gutiérrez4, Jorge A. Ortiz-Mendieta5 1 Departamento de Paleontología, Museo del Desierto. Pról. Pérez Treviño 3745, 25015, Saltillo, Coah., México. 2 Geowissenschaftliche Abteilung,Staatliches Museum für Naturkunde Karlsruhe. Karlsruhe, Alemania. 3 Laboratorio de Petrografía y Paleontología, Instituto Nacional de Estadística, Geografía e Informática, Aguascalientes, Ags., México. 4 Centro para la Conservación del Patrimonio Natural y Cultural de México, Aguascalientes, Ags., México. -
Eubrontes and Anomoepus Track
Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 345 EUBRONTES AND ANOMOEPUS TRACK ASSEMBLAGES FROM THE MIDDLE JURASSIC XIASHAXIMIAO FORMATION OF ZIZHONG COUNTY, SICHUAN, CHINA: REVIEW, ICHNOTAXONOMY AND NOTES ON PRESERVED TAIL TRACES LIDA XING1, MARTIN G. LOCKLEY2, GUANGZHAO PENG3, YONG YE3, JIANPING ZHANG1, MASAKI MATSUKAWA4, HENDRIK KLEIN5, RICHARD T. MCCREA6 and W. SCOTT PERSONS IV7 1School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; -email: [email protected]; 2Dinosaur Trackers Research Group, University of Colorado Denver, P.O. Box 173364, Denver, CO 80217; 3 Zigong Dinosaur Museum, Zigong 643013, Sichuan, China; 4 Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan; 5 Saurierwelt Paläontologisches Museum Alte Richt 7, D-92318 Neumarkt, Germany; 6 Peace Region Palaeontology Research Centre, Box 1540, Tumbler Ridge, British Columbia V0C 2W0, Canada; 7 Department of Biological Sciences, University of Alberta 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada Abstract—The Nianpanshan dinosaur tracksite, first studied in the 1980s, was designated as the type locality of the monospecific ichnogenus Jinlijingpus, and the source of another tridactyl track, Chuanchengpus, both presumably of theropod affinity. After the site was mapped in 2001, these two ichnotaxa were considered synonyms of Eubrontes and Anomoepus, respectively, the latter designation being the first identification of this ichnogenus in China. The assemblage indicates a typical Jurassic ichnofauna. The present study reinvestigates the site in the light of the purported new ichnospecies Chuanchengpus shenglingensis that was introduced in 2012. After re- evaluation of the morphological and extramorphological features, C. -
Rival Species Recast Significance of 'First Bird'
NEWS IN FOCUS PALAEONTOLOGY Rival species recast significance of ‘first bird’ Archaeopteryx’s status is changing, but the animal is still key to the dinosaur–bird transition. BY EWEN CALLAWAY bird,” says Gareth Dyke, a vertebrate palaeon- brains of Archaeopteryx and a variety of dino- tologist at the University of Southampton, UK. saurs related to it were, like modern birds, all he iconic status of Archaeopteryx, the “They’d rather cut off one of their legs than relatively large for their body sizes. Because SCIENCE first animal discovered with both bird admit it has nothing to do with bird origins.” earlier dinosaurs did not fly as well as modern and dinosaur features, is under attack. New specimens of Archaeopteryx are birds, if they flew at all, the finding suggests that TMore-recently discovered rival species show also reinvigorating research. There are now the brain expansion occurred well before flight a similar mix of traits. But Archaeopteryx still 12 known fossils of the creature, and at the emerged. It is yet another clue that Archaeop- hogged the opening symposium at the 2014 symposium Kundrat unveiled the first scien- teryx may not have been any more bird-like VLADIMIR NIKOLOV. SILHOUETTE: Society of Vertebrate Paleontology meeting tific description of the eighth to be discovered. than other suggested transitional species. “It’s in Berlin last month, and even festooned the Researchers lost track of the ‘phantom’ after it another piece of data that has taken away from official conference beer glasses. was found in Germany in the early 1990s, until the specialness of Archaeopteryx,” says Balanoff. -
The Braincase, Brain and Palaeobiology of the Basal Sauropodomorph Dinosaur Thecodontosaurus Antiquus
applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2020, XX, 1–22. With 10 figures. Downloaded from https://academic.oup.com/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlaa157/6032720 by University of Bristol Library user on 14 December 2020 The braincase, brain and palaeobiology of the basal sauropodomorph dinosaur Thecodontosaurus antiquus ANTONIO BALLELL1,*, J. LOGAN KING1, JAMES M. NEENAN2, EMILY J. RAYFIELD1 and MICHAEL J. BENTON1 1School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK 2Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK Received 27 May 2020; revised 15 October 2020; accepted for publication 26 October 2020 Sauropodomorph dinosaurs underwent drastic changes in their anatomy and ecology throughout their evolution. The Late Triassic Thecodontosaurus antiquus occupies a basal position within Sauropodomorpha, being a key taxon for documenting how those morphofunctional transitions occurred. Here, we redescribe the braincase osteology and reconstruct the neuroanatomy of Thecodontosaurus, based on computed tomography data. The braincase of Thecodontosaurus shares the presence of medial basioccipital components of the basal tubera and a U-shaped basioccipital–parabasisphenoid suture with other basal sauropodomorphs and shows a distinct combination of characters: a straight outline of the braincase floor, an undivided metotic foramen, an unossified gap, large floccular fossae, basipterygoid processes perpendicular to the cultriform process in lateral view and a rhomboid foramen magnum. We reinterpret these braincase features in the light of new discoveries in dinosaur anatomy. Our endocranial reconstruction reveals important aspects of the palaeobiology of Thecodontosaurus, supporting a bipedal stance and cursorial habits, with adaptations to retain a steady head and gaze while moving. -
A Mysterious Giant Ichthyosaur from the Lowermost Jurassic of Wales
A mysterious giant ichthyosaur from the lowermost Jurassic of Wales JEREMY E. MARTIN, PEGGY VINCENT, GUILLAUME SUAN, TOM SHARPE, PETER HODGES, MATT WILLIAMS, CINDY HOWELLS, and VALENTIN FISCHER Ichthyosaurs rapidly diversified and colonised a wide range vians may challenge our understanding of their evolutionary of ecological niches during the Early and Middle Triassic history. period, but experienced a major decline in diversity near the Here we describe a radius of exceptional size, collected at end of the Triassic. Timing and causes of this demise and the Penarth on the coast of south Wales near Cardiff, UK. This subsequent rapid radiation of the diverse, but less disparate, specimen is comparable in morphology and size to the radius parvipelvian ichthyosaurs are still unknown, notably be- of shastasaurids, and it is likely that it comes from a strati- cause of inadequate sampling in strata of latest Triassic age. graphic horizon considerably younger than the last definite Here, we describe an exceptionally large radius from Lower occurrence of this family, the middle Norian (Motani 2005), Jurassic deposits at Penarth near Cardiff, south Wales (UK) although remains attributable to shastasaurid-like forms from the morphology of which places it within the giant Triassic the Rhaetian of France were mentioned by Bardet et al. (1999) shastasaurids. A tentative total body size estimate, based on and very recently by Fischer et al. (2014). a regression analysis of various complete ichthyosaur skele- Institutional abbreviations.—BRLSI, Bath Royal Literary tons, yields a value of 12–15 m. The specimen is substantially and Scientific Institution, Bath, UK; NHM, Natural History younger than any previously reported last known occur- Museum, London, UK; NMW, National Museum of Wales, rences of shastasaurids and implies a Lazarus range in the Cardiff, UK; SMNS, Staatliches Museum für Naturkunde, lowermost Jurassic for this ichthyosaur morphotype. -
Download the Article
A couple of partially-feathered creatures about the The Outside Story size of a turkey pop out of a stand of ferns. By the water you spot a flock of bigger animals, lean and predatory, catching fish. And then an even bigger pair of animals, each longer than a car, with ostentatious crests on their heads, stalk out of the heat haze. The fish-catchers dart aside, but the new pair have just come to drink. We can only speculate what a walk through Jurassic New England would be like, but the fossil record leaves many hints. According to Matthew Inabinett, one of the Beneski Museum of Natural History’s senior docents and a student of vertebrate paleontology, dinosaur footprints found in the sedimentary rock of the Connecticut Valley reveal much about these animals and their environment. At the time, the land that we know as New England was further south, close to where Cuba is now. A system of rift basins that cradled lakes ran right through our region, from North Carolina to Nova Scotia. As reliable sources of water, with plants for the herbivores and fish for the carnivores, the lakes would have been havens of life. While most of the fossil footprints found in New England so far are in the lower Connecticut Valley, Dinosaur Tracks they provide a window into a world that extended throughout the region. According to Inabinett, the By: Rachel Marie Sargent tracks generally fall into four groupings. He explained that these names are for the tracks, not Imagine taking a walk through a part of New the dinosaurs that made them, since, “it’s very England you’ve never seen—how it was 190 million difficult, if not impossible, to match a footprint to a years ago. -
The Origin and Early Evolution of Dinosaurs
Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’. -
Los Restos Directos De Dinosaurios Terópodos (Excluyendo Aves) En España
Canudo, J. I. y Ruiz-Omeñaca, J. I. 2003. Ciencias de la Tierra. Dinosaurios y otros reptiles mesozoicos de España, 26, 347-373. LOS RESTOS DIRECTOS DE DINOSAURIOS TERÓPODOS (EXCLUYENDO AVES) EN ESPAÑA CANUDO1, J. I. y RUIZ-OMEÑACA1,2 J. I. 1 Departamento de Ciencias de la Tierra (Área de Paleontología) y Museo Paleontológico. Universidad de Zaragoza. 50009 Zaragoza. [email protected] 2 Paleoymás, S. L. L. Nuestra Señora del Salz, 4, local, 50017 Zaragoza. [email protected] RESUMEN La mayoría de los restos fósiles de dinosaurios terópodos de España son dientes aislados y escasos restos postcraneales. La única excepción es el ornitomimosaurio Pelecanimimus polyodon, del Barremiense de Las Hoyas (Cuenca). Hay registro de terópodos en el Jurásico superior (Oxfordiense superior-Tithónico inferior), en el tránsito Jurásico-Cretácico (Tithónico superior- Berriasiense inferior) y en todos los pisos del Cretácico inferior, con excepción del Valanginiense. En el Cretácico superior únicamente hay restos en el Campaniense y Maastrichtiense. La mayor parte de las determinaciones son demasiado generales, lo que impide conocer algunas de las familias que posiblemente estén representadas. Se han reconocido: Neoceratosauria, Baryonychidae, Ornithomimosauria, Dromaeosauridae, además de terópodos indeterminados, y celurosaurios indeterminados (dientes pequeños sin dentículos). La mayoría de los restos son de Maniraptoriformes, siendo especialmente abundantes los dromeosáuridos. Las únicas excepciones son por el momento, el posible Ceratosauria del Jurásico superior de Asturias, los barionícidos del Hauteriviense-Barremiense de Burgos, Teruel y La Rioja, el posible carcharodontosáurido del Aptiense inferior de Morella y el posible abelisáurido del Campaniense de Laño. Además hay algunos terópodos incertae sedis, como los "paronicodóntidos" (entre los que se incluye Euronychodon), y Richardoestesia. -
A Basal Lithostrotian Titanosaur (Dinosauria: Sauropoda) with a Complete Skull: Implications for the Evolution and Paleobiology of Titanosauria
RESEARCH ARTICLE A Basal Lithostrotian Titanosaur (Dinosauria: Sauropoda) with a Complete Skull: Implications for the Evolution and Paleobiology of Titanosauria Rubén D. F. Martínez1*, Matthew C. Lamanna2, Fernando E. Novas3, Ryan C. Ridgely4, Gabriel A. Casal1, Javier E. Martínez5, Javier R. Vita6, Lawrence M. Witmer4 1 Laboratorio de Paleovertebrados, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina, 2 Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, United States of America, 3 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina, 4 Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America, 5 Hospital Regional de Comodoro Rivadavia, Comodoro Rivadavia, Chubut, Argentina, 6 Resonancia Magnética Borelli, Comodoro Rivadavia, Chubut, Argentina * [email protected] OPEN ACCESS Citation: Martínez RDF, Lamanna MC, Novas FE, Ridgely RC, Casal GA, Martínez JE, et al. (2016) A Basal Lithostrotian Titanosaur (Dinosauria: Abstract Sauropoda) with a Complete Skull: Implications for the Evolution and Paleobiology of Titanosauria. PLoS We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dino- ONE 11(4): e0151661. doi:10.1371/journal. saur from the Upper Cretaceous (Cenomanian—Turonian) Lower Member of the Bajo Bar- pone.0151661 real Formation of southern Chubut Province in -
Titanosauriform Teeth from the Cretaceous of Japan
“main” — 2011/2/10 — 15:59 — page 247 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 247-265 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Titanosauriform teeth from the Cretaceous of Japan HARUO SAEGUSA1 and YUKIMITSU TOMIDA2 1Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan Manuscript received on October 25, 2010; accepted for publication on January 7, 2011 ABSTRACT Sauropod teeth from six localities in Japan were reexamined. Basal titanosauriforms were present in Japan during the Early Cretaceous before Aptian, and there is the possibility that the Brachiosauridae may have been included. Basal titanosauriforms with peg-like teeth were present during the “mid” Cretaceous, while the Titanosauria with peg-like teeth was present during the middle of Late Cretaceous. Recent excavations of Cretaceous sauropods in Asia showed that multiple lineages of sauropods lived throughout the Cretaceous in Asia. Japanese fossil records of sauropods are conformable with this hypothesis. Key words: Sauropod, Titanosauriforms, tooth, Cretaceous, Japan. INTRODUCTION humerus from the Upper Cretaceous Miyako Group at Moshi, Iwaizumi Town, Iwate Pref. (Hasegawa et al. Although more than twenty four dinosaur fossil local- 1991), all other localities provided fossil teeth (Tomida ities have been known in Japan (Azuma and Tomida et al. 2001, Tomida and Tsumura 2006, Saegusa et al. 1998, Kobayashi et al. 2006, Saegusa et al. 2008, Ohara 2008, Azuma and Shibata 2010). -
Mineralogical Characteristics and Geological Significance of Albian (Early Cretaceous) Glauconite in Zanda, Southwestern Tibet, China
Clay Minerals, (2012) 47, 45–58 Mineralogical characteristics and geological significance of Albian (Early Cretaceous) glauconite in Zanda, southwestern Tibet, China 1 2, 2 2 XIANG LI , YUANFENG CAI *, XIUMIAN HU , ZHICHENG HUANG AND JIANGANG WANG2 1 Wuhan Institute of Geology and Mineral Resources, China Geological Survey, Wuhan 430223, China, and 2 State Key Laboratory for Mineral Deposits Research (Nanjing University), School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China (Received 27 November 2010; revised 9 September 2011; Editor: George Christidis) ABSTRACT: Early Cretaceous glauconite from the Xiala section, southwestern Tibet, China, was investigated by petrographic microscopy and scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, and electron probe microanalysis (EPMA). The investigations revealed that the glauconite in both sandstones and limestone is highly evolved. The glauconite in sandstone is autochthonous, but in limestone it may be derived from the underlying glauconitic sandstone. Based on analyses of the depositional environments and comparisons of glauconite-bearing strata in Zanda with sequences in adjacent areas, we conclude that the glauconitization at Zanda was probably associated with rising sea levels during the Late Albian, which represent the final separation of the Indian continent from the Australian-Antarctic continent. After the separation of the Indian continent from the Australian- Antarctic continent, cooling of the Indian continent resulted in subsidence and northward subduction of the Indian plate. A gradually rising sea level in Zanda, located along the northern margin of the Indian continent, was the cause of the low sedimentation rate. Continued transgression resulted in the occurrence of the highly evolved glauconite in this area. -
Chronostratigraphy and New Vertebrate Sites from the Upper Maastrichtian of Huesca (Spain), and Their Relation with the K/Pg Boundary
Accepted Manuscript Chronostratigraphy and new vertebrate sites from the upper Maastrichtian of Huesca (Spain), and their relation with the K/Pg boundary E. Puértolas-Pascual, I. Arenillas, J.A. Arz, P. Calvín, L. Ezquerro, C. García-Vicente, M. Pérez-Pueyo, E.M. Sánchez-Moreno, J.J. Villalaín, J.I. Canudo PII: S0195-6671(17)30487-1 DOI: 10.1016/j.cretres.2018.02.016 Reference: YCRES 3817 To appear in: Cretaceous Research Received Date: 9 November 2017 Revised Date: 24 January 2018 Accepted Date: 22 February 2018 Please cite this article as: Puértolas-Pascual, E., Arenillas, I., Arz, J.A., Calvín, P., Ezquerro, L., García- Vicente, C., Pérez-Pueyo, M., Sánchez-Moreno, E.M., Villalaín, J.J., Canudo, J.I., Chronostratigraphy and new vertebrate sites from the upper Maastrichtian of Huesca (Spain), and their relation with the K/ Pg boundary, Cretaceous Research (2018), doi: 10.1016/j.cretres.2018.02.016. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Chronostratigraphy and new vertebrate sites from the upper Maastrichtian of Huesca (Spain), and their relation with the K/Pg boundary E. Puértolas-Pascual1,4, I. Arenillas5, J.A. Arz5, P. Calvín2, L.